1
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Sheng Y, Hua H, Yong Y, Zhou L. Identification of Hub Genes and Typing of Tuberculosis Infections Based on Autophagy-Related Genes. Pol J Microbiol 2023; 72:223-238. [PMID: 37725899 PMCID: PMC10561080 DOI: 10.33073/pjm-2023-022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 09/21/2023] Open
Abstract
Tuberculosis (TB) caused by Mycobacterium tuberculosis is one of the leading causes of morbidity and death in humans worldwide. Some autophagy genes associated with TB and some miRNAs regulating TB have been found, but the identification of autophagy-related genes in M. tuberculosis remains to be explored. Forty-seven autophagy-related genes differentially expressed in TB were identified in this study by analysis of TB-related datasets in the Gene Expression Omnibus (GEO) and autophagy-related genes in the Human Autophagy Database. The potential crucial genes affecting TB were found through the protein-protein interaction (PPI) network, and the possible pathways affected by these genes were verified. Analysis of the PPI network of miRNAs associated with M. tuberculosis infection and their target genes revealed that hsa-let-7, hsa-mir-155, hsa-mir-206, hsa-mir-26a, hsa-mir-30a, and hsa-mir-32 may regulate the expression of multiple autophagy-related genes (MAPK8, UVRAG, UKL2, and GABARAPL1) alone or in combination. Subsequently, Cytoscape was utilized to screen the differentially expressed genes related to autophagy. The hub genes (GABARAPL1 and ULK2) affecting TB were identified. Combined with Gene Set Enrichment Analysis (GSEA), the signaling pathways affected by the hub genes were verified. Finally, we divided TB patients into two subgroups based on autophagy-related genes, and the immune microenvironment of patients in different subgroups was significantly different. Our study found two autophagy-related hub genes that could affect TB and divide TB samples into two subgroups. This finding is of great significance for TB treatment and provides new ideas for exploring the pathogenesis of M. tuberculosis.
Collapse
Affiliation(s)
- Yunfeng Sheng
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haibo Hua
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Yong
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lihong Zhou
- Department of Tuberculosis, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Wang Z, Li H, Song S, Sun H, Dai X, Chen M, Xu H, Zhang H, Pang Y. Transmission of tuberculosis in an incarcerated population during the subclinical period: A cross-sectional study in Qingdao, China. Front Public Health 2023; 11:1098519. [PMID: 36761133 PMCID: PMC9905226 DOI: 10.3389/fpubh.2023.1098519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Objectives As a closed gathering place, prison is the cradle of tuberculosis (TB) outbreak. Therefore, the analysis of the prevalence rate and risk factors of latent tuberculosis infection (LTBI) in prison will be a necessary measure to intervene in the spread of tuberculosis. Methods In this study, we consecutively recruited 506 adult prisoners in Qingdao to carry out this cross-sectional study. TB and LTBI were screened by IGRA, X-ray, X-pert, sputum smear and culture. Results A total of 17 TB, 101 LTBI and 388 HC were identified, with an infection rate of 23.32% (118/506) and a TB incidence rate of 3282/100,000 population. Age, malnutrition and inmates living with TB prisoners were risk factors for LTBI. Additionally, most TB cases (70.59%, 12/17) were subclinical tuberculosis (STB), contributing significantly to TB transmission. Conclusion Our results demonstrate that the transmission efficiency of asymptomatic patients is not essentially different from that of symptomatic patients, indicating that TB transmission occurs during the subclinical period. Our findings highlight the need to strengthen active case-finding strategies to increase TB case detection in this population.
Collapse
Affiliation(s)
- Zhongdong Wang
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Haoran Li
- 2Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Song Song
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Haiyan Sun
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Xiaoqi Dai
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Meng Chen
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Honghong Xu
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Huaqiang Zhang
- 1Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China,Huaqiang Zhang ✉
| | - Yu Pang
- 2Department of Bacteriology and Immunology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,*Correspondence: Yu Pang ✉
| |
Collapse
|
4
|
Li L, Ayiguli A, Luan Q, Yang B, Subinuer Y, Gong H, Zulipikaer A, Xu J, Zhong X, Ren J, Zou X. Prediction and Diagnosis of Respiratory Disease by Combining Convolutional Neural Network and Bi-directional Long Short-Term Memory Methods. Front Public Health 2022; 10:881234. [PMID: 35602136 PMCID: PMC9114643 DOI: 10.3389/fpubh.2022.881234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Objective Based on the respiratory disease big data platform in southern Xinjiang, we established a model that predicted and diagnosed chronic obstructive pulmonary disease, bronchiectasis, pulmonary embolism and pulmonary tuberculosis, and provided assistance for primary physicians. Methods The method combined convolutional neural network (CNN) and long-short-term memory network (LSTM) for prediction and diagnosis of respiratory diseases. We collected the medical records of inpatients in the respiratory department, including: chief complaint, history of present illness, and chest computed tomography. Pre-processing of clinical records with “jieba” word segmentation module, and the Bidirectional Encoder Representation from Transformers (BERT) model was used to perform word vectorization on the text. The partial and total information of the fused feature set was encoded by convolutional layers, while LSTM layers decoded the encoded information. Results The precisions of traditional machine-learning, deep-learning methods and our proposed method were 0.6, 0.81, 0.89, and F1 scores were 0.6, 0.81, 0.88, respectively. Conclusion Compared with traditional machine learning and deep-learning methods that our proposed method had a significantly higher performance, and provided precise identification of respiratory disease.
Collapse
Affiliation(s)
- Li Li
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Ürümqi, China
| | - Alimu Ayiguli
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Qiyun Luan
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Boyi Yang
- Department of Preventive Medicine, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yilamujiang Subinuer
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Hui Gong
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Abudureherman Zulipikaer
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Jingran Xu
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People's Hospital of Kashi, Kashi, China
| | - Jiangtao Ren
- Department of Software, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jiangtao Ren
| | - Xiaoguang Zou
- Department of Clinical Research Center of Infectious Diseases (Pulmonary Tuberculosis), First People's Hospital of Kashi, Kashi, China
- Xiaoguang Zou
| |
Collapse
|
5
|
Wedlich N, Figl J, Liebler-Tenorio EM, Köhler H, von Pückler K, Rissmann M, Petow S, Barth SA, Reinhold P, Ulrich R, Grode L, Kaufmann SHE, Menge C. Video Endoscopy-Guided Intrabronchial Spray Inoculation of Mycobacterium bovis in Goats and Comparative Assessment of Lung Lesions With Various Imaging Methods. Front Vet Sci 2022; 9:877322. [PMID: 35591868 PMCID: PMC9113525 DOI: 10.3389/fvets.2022.877322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Bovine tuberculosis (bTB) not only poses a zoonotic threat to humans but also has a significant economic impact on livestock production in many areas of the world. Effective vaccines for humans, livestock, and wildlife are highly desirable to control tuberculosis. Suitable large animal models are indispensable for meaningful assessment of vaccine candidates. Here, we describe the refinement of an animal model for bTB in goats. Intrabronchial inoculation procedure via video-guided endoscopy in anesthetized animals, collection of lungs after intratracheal fixation in situ, and imaging of lungs by computed tomography (CT) were established in three goats using barium sulfate as surrogate inoculum. For subsequent infection experiments, four goats were infected with 4.7 × 102 colony-forming units of M. bovis by intrabronchial inoculation using video-guided endoscopy with spray catheters. Defined amounts of inoculum were deposited at five sites per lung. Four age-matched goats were mock-inoculated. None of the goats developed clinical signs until they were euthanized 5 months post infection, but simultaneous skin testing confirmed bTB infection in all goats inoculated with M. bovis. In tissues collected at necropsy, M. bovis was consistently re-isolated from granulomas in lymph nodes, draining the lungs of all the goats infected with M. bovis. Further dissemination was observed in one goat only. Pulmonary lesions were quantified by CT and digital 2D radiography (DR). CT revealed mineralized lesions in all the infected goats ranging from <5 mm to >10 mm in diameter. Small lesions <5 mm predominated. The DR failed to detect small lesions and to determine the exact location of lesions because of overlapping of pulmonary lobes. Relative volume of pulmonary lesions was low in three but high in one goat that also had extensive cavitation. CT lesions could be correlated to gross pathologic findings and histologic granuloma types in representative pulmonary lobes. In conclusion, video-guided intrabronchial inoculation with spray catheters, mimicking the natural way of infection, resulted in pulmonary infection of goats with M. bovis. CT, but not DR, presented as a highly sensitive method to quantify the extent of pulmonary lesions. This goat model of TB may serve as a model for testing TB vaccine efficacy.
Collapse
Affiliation(s)
- Nadine Wedlich
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Julia Figl
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Elisabeth M. Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
- *Correspondence: Elisabeth M. Liebler-Tenorio
| | - Heike Köhler
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Kerstin von Pückler
- Clinic for Small Animals – Radiology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Melanie Rissmann
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | - Stefanie Petow
- Institute for Animal Welfare and Animal Husbandry, Friedrich-Loeffler-Institute, Celle, Germany
| | - Stefanie A. Barth
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Petra Reinhold
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| | - Reiner Ulrich
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, Germany
| | | | - Stefan H. E. Kaufmann
- Director Emeritus, Max Planck Institute for Infection Biology, Berlin, Germany
- Emeritus Group for Systems Immunology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institute (FLI), Jena, Germany
| |
Collapse
|
6
|
Turco BO, Boni FI, Gremião MPD, Chorilli M. Nanostructured polyelectrolyte complexes based on chitosan and sodium alginate containing rifampicin for the potential treatment of tuberculosis. Drug Dev Ind Pharm 2022; 47:1904-1914. [PMID: 35236214 DOI: 10.1080/03639045.2022.2048664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nanostructured polyelectrolyte complexes (nano PECs) were obtained by polyelectrolyte complexation technique from chitosan (CS) and sodium alginate (SA). Different polymer proportions were tested, as well as the addition order and homogenization type, to assess the influence on the nano PECs characteristics. The spherical shape and nanometric scale of the systems were observed by scanning electron microscopy (SEM). Nano PECs size, PDI and zeta potential ranged from 252 to 616 nm, from 0.22 to 0.73 and -50 to 30 mV, respectively. The increase of polymer proportion and the ultra-turrax homogenization led to the enlargement of particles size and PDI. However, no influence was observed on the zeta potential. The NP1s-Rb and NP4s-Rb, obtained through the sonicator with rifampicin (RIF) added before the CS and SA complexation, were selected due to the most promising characteristics of diameter (301 and 402 nm), PDI (0.27 and 0.26) and RIF incorporation (78 and 69%,). The release profiles of RIF incorporated in both nano PECs were similar, with a sustained release of the drug for 180 minutes in phosphate buffer pH (7.2). The Weibull and the Korsmeyer-Peppas models better describe the RIF release from NP1s-Rb and NP4s-Rb, respectively, demonstrating that the release process was driven by different mechanism according the particle composition. The nano PECs were lyophilized to prolong it stability and for possible nebulization. The addition of dextrose to the system allowed for resuspension after lyophilization. Therefore, with the results obtained, the incorporation of RIF in nano PECs based on CS and SA presents a promising system for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Bruna Ortolani Turco
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Fernanda Isadora Boni
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, Faculdade de Ciências Farmacêuticas, UNESP - Univ. Estadual Paulista, Campus Araraquara, Araraquara, SP, Brazil
| |
Collapse
|
7
|
Chen Y, Zhai W, Zhang K, Liu H, Zhu T, Su L, Bermudez L, Chen H, Guo A. Small RNA Profiling in Mycobacterium Provides Insights Into Stress Adaptability. Front Microbiol 2021; 12:752537. [PMID: 34803973 PMCID: PMC8600241 DOI: 10.3389/fmicb.2021.752537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/01/2021] [Indexed: 11/29/2022] Open
Abstract
Mycobacteria encounter a number of environmental changes during infection and respond using different mechanisms. Small RNA (sRNA) is a post-transcriptionally regulatory system for gene functions and has been investigated in many other bacteria. This study used Mycobacterium tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (BCG) infection models and sequenced whole bacterial RNAs before and after host cell infection. A comparison of differentially expressed sRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) and target prediction was carried out. Six pathogenically relevant stress conditions, growth rate, and morphology were used to screen and identify sRNAs. From these data, a subset of sRNAs was differentially expressed in multiple infection groups and stress conditions. Many were found associated with lipid metabolism. Among them, ncBCG427 was significantly downregulated when BCG entered into macrophages and was associated with increased biofilm formation. The reduction of virulence possibility depends on regulating lipid metabolism.
Collapse
Affiliation(s)
- Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wenjun Zhai
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Kailun Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Han Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Tingting Zhu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Li Su
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
8
|
Figueira MBDA, de Lima DS, Boechat AL, Filho MGDN, Antunes IA, Matsuda JDS, Ribeiro TRDA, Felix LS, Gonçalves ASF, da Costa AG, Ramasawmy R, Pontillo A, Ogusku MM, Sadahiro A. Single-Nucleotide Variants in the AIM2 - Absent in Melanoma 2 Gene (rs1103577) Associated With Protection for Tuberculosis. Front Immunol 2021; 12:604975. [PMID: 33868225 PMCID: PMC8047195 DOI: 10.3389/fimmu.2021.604975] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
Tuberculosis (TB) remains a serious public health burden worldwide. TB is an infectious disease caused by the Mycobacterium tuberculosis Complex. Innate immune response is critical for controlling mycobacterial infection. NOD-like receptor pyrin domain containing 3/ absent in melanoma 2 (NLRP3/AIM2) inflammasomes are suggested to play an important role in TB. NLRP3/AIM2 mediate the release of pro-inflammatory cytokines IL-1β and IL-18 to control M. tuberculosis infection. Variants of genes involved in inflammasomes may contribute to elucidation of host immune responses to TB infection. The present study evaluated single-nucleotide variants (SNVs) in inflammasome genes AIM2 (rs1103577), CARD8 (rs2009373), and CTSB (rs1692816) in 401 patients with pulmonary TB (PTB), 133 patients with extrapulmonary TB (EPTB), and 366 healthy control (HC) subjects with no history of TB residing in the Amazonas state. Quantitative Real Time PCR was performed for allelic discrimination. The SNV of AIM2 (rs1103577) is associated with protection for PTB (padj: 0.033, ORadj: 0.69, 95% CI: 0.49-0.97). CTSB (rs1692816) is associated with reduced risk for EPTB when compared with PTB (padj: 0.034, ORadj: 0.50, 95% CI: 0.27-0.94). Serum IL-1β concentrations were higher in patients with PTB than those in HCs (p = 0,0003). The SNV rs1103577 of AIM2 appeared to influence IL-1β release. In a dominant model, individuals with the CC genotype (mean 3.78 ± SD 0.81) appeared to have a higher level of IL-1β compared to carriers of the T allele (mean 3.45 ± SD 0.84) among the patients with PTB (p = 0,0040). We found that SNVs of AIM2 and CTSB were associated with TB, and the mechanisms involved in this process require further study.
Collapse
Affiliation(s)
- Mariana Brasil de Andrade Figueira
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | - Dhêmerson Souza de Lima
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Antonio Luiz Boechat
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| | | | | | | | | | - Luana Sousa Felix
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Ariane Senna Fonseca Gonçalves
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães da Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil.,Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Rajendranath Ramasawmy
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil.,Instituto de Pesquisa Clínica Carlos Borborema, Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Faculdade de Medicina Nilton Lins, Universidade Nilton Lins, Manaus, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas (ICB), Universidade de São Paulo (USP), São Paulo, Brazil
| | - Mauricio Morishi Ogusku
- Laboratório de Micobacteriologia, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Brazil
| | - Aya Sadahiro
- Laboratório de Imunologia Molecular, Departamento de Parasitologia, Universidade Federal do Amazonas (UFAM), Manaus, Brazil.,Programa de Pós-Graduação em Imunologia Básica e Aplicada, Universidade Federal do Amazonas, Manaus, Brazil
| |
Collapse
|