1
|
Liu X, Yao T. Types, synthesis pathways, purification, characterization, and agroecological physiological functions of microbial exopolysaccharides: A review. Int J Biol Macromol 2024; 281:136317. [PMID: 39378926 DOI: 10.1016/j.ijbiomac.2024.136317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/29/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Exopolysaccharides (EPS), originating from various microbes, are essential bioproducts with widespread applications including packaging, biomedicine, wastewater treatment, cosmetics, agriculture, and food industries. Particularly, in the field of sustainable agriculture, microbial EPS have positive effects on plant growth and have gained considerable interest among agriculturists. However, few studies have elucidated the mechanisms of action of EPS in soil-microbe-plant interactions in agroecosystems. This review focuses on the sources and types of EPS, biosynthetic processes, factors affecting EPS yield, extraction and purification methods employed to produce microbial EPS, and structural characterization methods for EPS. Moreover, the agroecological physiological functions of microbial EPS with respect to promoting soil health (e.g., improving soil structure and fertility and repairing contaminated soil) and plant growth (e.g., plant growth and physiological metabolism under normal and stress conditions, such as salt, drought, heavy metals, and extreme temperatures) are critically highlighted. Furthermore, existing challenges and prospects for agricultural applications are discussed. This review demonstrates that the application of microbial EPS in agriculture provides a new type of green material for agricultural producers to improve soil quality, increase agricultural productivity, and provide new ideas for sustainable agricultural development.
Collapse
Affiliation(s)
- Xiaoting Liu
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China
| | - Tuo Yao
- College of Grassland Science, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
2
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
3
|
do Espírito Santo BC, Oliveira JADS, Ribeiro MADS, Schoffen RP, Polli AD, Polonio JC, da Silva AA, de Abreu Filho BA, Heck MC, Meurer EC, Constantin PP, Pileggi M, Vicentini VEP, Golias HC, Pamphile JA. Antitumor and antibacterial activity of metabolites of endophytic Colletotrichum siamense isolated from coffee (Coffea arabica L. cv IAPAR-59). Braz J Microbiol 2023; 54:2651-2661. [PMID: 37642890 PMCID: PMC10689633 DOI: 10.1007/s42770-023-01104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
Endophytic fungi produce a range of known metabolites and several others, not yet explored, which present important biological activities from the pharmaceutical and industrial perspective. Several studies have reported the diversity of endophytes in Coffea arabica plants, although few have been described in organic cultures. In the current paper, we describe the chemical profile of specialized metabolites in the ethyl acetate phase in a strain of the endophytic fungus Colletotrichum siamense associated with coffee (Coffea arabica L.) (Rubiaceae) and its potential against tumor cells and bacteria of medical and food importance. Cytotoxicity assays in tumor cells MCF-7 and HepG2/C3A were performed by MTT and microdilution in broth to evaluate the antibacterial action of metabolic extract. The antiproliferative assay showed promising results after 24 h of treatment, with 50% injunction concentrations for the two cell types. UHPLC-MS/MS analyses with an electrospray ionization source were used to analyze the extracts and identify compounds of species Colletotrichum siamense, which is still little explored as a source of active metabolites. Many of these compounds observed in the endophytic need to be chemically synthesized in industry, at high costs, while production by the fungus becomes a chemically and economically more viable alternative. Pyrocatechol, gentisyl alcohol, and alpha-linolenic acid, associated with different mechanisms of action against tumor cells, were detected among the main compounds. The extract of the endophytic fungus Colletotrichum siamense presented several compounds with pharmacological potential and antibacterial activity, corroborating its potential in biotechnological applications.
Collapse
Affiliation(s)
- Bruno César do Espírito Santo
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | | | - Rodrigo Pawloski Schoffen
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Andressa Domingos Polli
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Julio Cesar Polonio
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| | - Angela Aparecida da Silva
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Benício Alves de Abreu Filho
- Center for Health Sciences, Department of Basic Health Sciences, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Michele Cristina Heck
- Department of Biotechnology, Genetics and Cell Biology, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Paola Pereira Constantin
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Marcos Pileggi
- Department of Structural, Molecular and Genetic Biology, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Halison Correia Golias
- Department of Biotechnology, Genetics and Cell Biology, LBioMic, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | |
Collapse
|
4
|
Lin Y, Gu H, Jia X, Wang W, Hong B, Zhang F, Yin H. Rhizoctonia solani AG1 IA extracellular polysaccharides: Structural characterization and induced resistance to rice sheath blight. Int J Biol Macromol 2023; 244:125281. [PMID: 37330100 DOI: 10.1016/j.ijbiomac.2023.125281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/29/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023]
Abstract
Sheath blight, caused by Rhizoctonia solani (R. solani), is one of the most serious diseases of rice. Extracellular polysaccharides (EPS) are complex polysaccharides secreted by microbes that have a pivotal role in the plant-microbe interaction. At present, many studies have been carried out on R. solani, but it is not very clear whether the EPS is secreted by R. solani exists. Therefore, we isolated and extracted the EPS from R. solani, two kinds of EPS (EW-I and ES-I) were obtained by DEAE-cellulose 52 and Sephacryl S-300HR column further purification, and their structures were characterized by FT-IR, UV, GC, and NMR analysis. The results showed that EW-I and ES-I had similar monosaccharide composition but different molar ratio, they were composed of fucose, arabinose, galactose, glucose, and mannose with a ratio of 7.49: 27.72: 2.98: 6.66: 55.15 and 3.81: 12.98: 6.15: 10.83: 66.23, and their backbone may be composed of →2)-α-Manp-(1→ residues, beside ES-I was highly branched compared to EW-I. The exogenous application of EW-I and ES-I had no effect on the growth of R. solani AG1 IA itself, but their pretreatment of rice induced plant defense through activation of the salicylic acid pathway, resulting in enhanced resistance to sheath blight.
Collapse
Affiliation(s)
- Yudie Lin
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China; Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hui Gu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bo Hong
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an 715299, China
| | - Fuyun Zhang
- College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Dalian Technology Innovation Center for Green Agriculture, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
5
|
Sui X, Han X, Cao J, Li Y, Yuan Y, Gou J, Zheng Y, Meng C, Zhang C. Biocontrol potential of Bacillus velezensis EM-1 associated with suppressive rhizosphere soil microbes against tobacco bacterial wilt. Front Microbiol 2022; 13:940156. [PMID: 36081807 PMCID: PMC9445557 DOI: 10.3389/fmicb.2022.940156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/29/2022] [Indexed: 12/01/2022] Open
Abstract
Tobacco bacterial wilt caused by Ralstonia solanacearum is one of the most devastating diseases. Microbial keystone taxa were proposed as promising targets in plant disease control. In this study, we obtained an antagonistic Bacillus isolate EM-1 from bacterial wilt-suppressive soil, and it was considered rhizosphere-resident bacteria based on high (100%) 16S rRNA gene similarity to sequences derived from high-throughput amplicon sequencing. According to 16S rRNA gene sequencing and MLSA, strain EM-1 was identified as Bacillus velezensis. This strain could inhibit the growth of R. solanacearum, reduce the colonization of R. solanacearum in tobacco roots, and decrease the incidence of bacterial wilt disease. In addition, strain EM-1 also showed a strong inhibitory effect on other phytopathogens, such as Alternaria alternata and Phytophthora nicotianae, indicating a wide antagonistic spectrum. The antimicrobial ability of EM-1 can be attributed to its volatile, lipopeptide and polyketide metabolites. Iturin A (C14, C15, and C16) was the main lipopeptide, and macrolactin A and macrolactin W were the main polyketides in the fermentation broth of EM-1, while heptanone and its derivatives were dominant among the volatile organic compounds. Among them, heptanones and macrolactins, but not iturins, might be the main potential antibacterial substances. Complete genome sequencing was performed, and the biosynthetic gene clusters responsible for iturin A and macrolactin were identified. Moreover, strain EM-1 can also induce plant resistance by increasing the activity of CAT and PPO in tobacco. These results indicated that EM-1 can serve as a biocontrol Bacillus strain for tobacco bacterial wilt control. This study provides a better insight into the strategy of exploring biocontrol agent based on rhizosphere microbiome.
Collapse
Affiliation(s)
- Xiaona Sui
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Xiaobin Han
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Jianmin Cao
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yiqiang Li
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yuan Yuan
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jianyu Gou
- Biological Organic Fertilizer Engineering Technology Center of China Tobacco, Zunyi Branch of Guizhou Tobacco Company, Zunyi, China
| | - Yanfen Zheng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chen Meng
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Chengsheng Zhang
- Pest Integrated Management Key Laboratory of China Tobacco, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
6
|
Rahman MM, Rahaman MS, Islam MR, Hossain ME, Mannan Mithi F, Ahmed M, Saldías M, Akkol EK, Sobarzo-Sánchez E. Multifunctional Therapeutic Potential of Phytocomplexes and Natural Extracts for Antimicrobial Properties. Antibiotics (Basel) 2021; 10:1076. [PMID: 34572660 PMCID: PMC8468069 DOI: 10.3390/antibiotics10091076] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Natural products have been known for their antimicrobial factors since time immemorial. Infectious diseases are a worldwide burden that have been deteriorating because of the improvement of species impervious to various anti-infection agents. Hence, the distinguishing proof of antimicrobial specialists with high-power dynamic against MDR microorganisms is central to conquer this issue. Successful treatment of infection involves the improvement of new drugs or some common source of novel medications. Numerous naturally occurring antimicrobial agents can be of plant origin, animal origin, microbial origin, etc. Many plant and animal products have antimicrobial activities due to various active principles, secondary metabolites, or phytochemicals like alkaloids, tannins, terpenoids, essential oils, flavonoids, lectins, phagocytic cells, and many other organic constituents. Phytocomplexes' antimicrobial movement frequently results from a few particles acting in cooperative energy, and the clinical impacts might be because of the direct effects against microorganisms. The restorative plants that may furnish novel medication lead the antimicrobial movement. The purpose of this study is to investigate the antimicrobial properties of the phytocomplexes and natural extracts of the plants that are ordinarily being utilized as conventional medications and then recommended the chance of utilizing them in drugs for the treatment of multiple drug-resistant disease.
Collapse
Affiliation(s)
- Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Saidur Rahaman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Md. Emon Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Faria Mannan Mithi
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Muniruddin Ahmed
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.M.R.); (M.S.R.); (M.R.I.); (M.E.H.); (F.M.M.); (M.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Ankara, Turkey;
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
7
|
El-Ghonemy DH. Antioxidant and antimicrobial activities of exopolysaccharides produced by a novel Aspergillus sp. DHE6 under optimized submerged fermentation conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
Luft L, Confortin TC, Todero I, Neto JRC, Tonato D, Felimberti PZ, Zabot GL, Mazutti MA. Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. ENVIRONMENTAL TECHNOLOGY 2021; 42:1392-1401. [PMID: 31526308 DOI: 10.1080/09593330.2019.1669720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
The natural ability of microorganisms to secrete high levels of bioactive compounds make them attractive hosts for producing novel compounds. Microbial biopolymers have potential applications in most of the sectors of the world economy. According to the physicochemical properties, they present some advantages, such as biodegradability, reproducibility, and stability. Based on this context, the objective of this work was to evaluate different methods for concentration and characterisation of extracellular biopolymers produced by Phoma sp. Extracellular biopolymers were produced by submerged fermentation and were concentrated by hollow fibre membranes and by adsorption. The structural characterisation of purified biopolymers was determined by Fourier Transform Infrared spectroscopy. Phytotoxic effects were assessed through absorption assays in detached leaves of Cucumis sativus and evaluated on the seventh day after application. The surface tension was evaluated for each sample. Hollow-fibre microfiltration membrane presented a higher purification factor than hollow-fibre ultrafiltration membrane. Extracellular biopolymers were identified in the permeate and retentate fractions, but in higher concentration in the retentate fractions. The adsorption process was efficient for recovering more than 88% of extracellular biopolymers from cell-free fermented broth. The best performance was obtained by using silica and activated carbon as adsorbent, with a recovery higher than 93%. The herbicidal activity was proportional to the concentration of biopolymers and the results are very promising for future applications because a concentrated solution of biopolymers can increase weed control. Membrane processes can be used to develop a liquid formulation of bioherbicide, whereas adsorption can be used to develop a solid formula.
Collapse
Affiliation(s)
- Luciana Luft
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Tássia C Confortin
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Izelmar Todero
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | | | - Denise Tonato
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Pietra Z Felimberti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| | - Giovani L Zabot
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria, Cachoeira do Sul - RS, Brazil
| | - Marcio A Mazutti
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, Brazil
- Department of Agricultural Engineering, Federal University of Santa Maria, Santa Maria, Brazil
| |
Collapse
|
9
|
Wanke A, Malisic M, Wawra S, Zuccaro A. Unraveling the sugar code: the role of microbial extracellular glycans in plant-microbe interactions. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:15-35. [PMID: 32929496 PMCID: PMC7816849 DOI: 10.1093/jxb/eraa414] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 05/14/2023]
Abstract
To defend against microbial invaders but also to establish symbiotic programs, plants need to detect the presence of microbes through the perception of molecular signatures characteristic of a whole class of microbes. Among these molecular signatures, extracellular glycans represent a structurally complex and diverse group of biomolecules that has a pivotal role in the molecular dialog between plants and microbes. Secreted glycans and glycoconjugates such as symbiotic lipochitooligosaccharides or immunosuppressive cyclic β-glucans act as microbial messengers that prepare the ground for host colonization. On the other hand, microbial cell surface glycans are important indicators of microbial presence. They are conserved structures normally exposed and thus accessible for plant hydrolytic enzymes and cell surface receptor proteins. While the immunogenic potential of bacterial cell surface glycoconjugates such as lipopolysaccharides and peptidoglycan has been intensively studied in the past years, perception of cell surface glycans from filamentous microbes such as fungi or oomycetes is still largely unexplored. To date, only few studies have focused on the role of fungal-derived cell surface glycans other than chitin, highlighting a knowledge gap that needs to be addressed. The objective of this review is to give an overview on the biological functions and perception of microbial extracellular glycans, primarily focusing on their recognition and their contribution to plant-microbe interactions.
Collapse
Affiliation(s)
- Alan Wanke
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Milena Malisic
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Stephan Wawra
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| | - Alga Zuccaro
- University of Cologne, Cluster of Excellence on Plant Sciences (CEPLAS), Institute for Plant Sciences, Cologne, Germany
| |
Collapse
|
10
|
Jaroszuk-Ściseł J, Nowak A, Komaniecka I, Choma A, Jarosz-Wilkołazka A, Osińska-Jaroszuk M, Tyśkiewicz R, Wiater A, Rogalski J. Differences in Production, Composition, and Antioxidant Activities of Exopolymeric Substances (EPS) Obtained from Cultures of Endophytic Fusarium culmorum Strains with Different Effects on Cereals. Molecules 2020; 25:E616. [PMID: 32019268 PMCID: PMC7037457 DOI: 10.3390/molecules25030616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Exopolymeric substances (EPS) can determine plant-microorganism interactions and have great potential as bioactive compounds. The different amounts of EPS obtained from cultures of three endophytic Fusarium culmorum strains with different aggressiveness-growth promoting (PGPF), deleterious (DRMO), and pathogenic towards cereal plants-depended on growth conditions. The EPS concentrations (under optimized culture conditions) were the lowest (0.2 g/L) in the PGPF, about three times higher in the DRMO, and five times higher in the pathogen culture. The EPS of these strains differed in the content of proteins, phenolic components, total sugars, glycosidic linkages, and sugar composition (glucose, mannose, galactose, and smaller quantities of arabinose, galactosamine, and glucosamine). The pathogen EPS exhibited the highest total sugar and mannose concentration. FTIR analysis confirmed the β configuration of the sugars. The EPS differed in the number and weight of polysaccharidic subfractions. The EPS of PGPF and DRMO had two subfractions and the pathogen EPS exhibited a subfraction with the lowest weight (5 kDa). The three EPS preparations (ethanol-precipitated EP, crude C, and proteolysed P) had antioxidant activity (particularly high for the EP-EPS soluble in high concentrations). The EP-EPS of the PGPF strain had the highest antioxidant activity, most likely associated with the highest content of phenolic compounds in this EPS.
Collapse
Affiliation(s)
- Jolanta Jaroszuk-Ściseł
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Artur Nowak
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Iwona Komaniecka
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Adam Choma
- Department of Genetic and Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Monika Osińska-Jaroszuk
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| | - Renata Tyśkiewicz
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
- Military Institute of Hygiene and Epidemiology, Lubelska St. 2, 24-100 Puławy, Poland
| | - Adrian Wiater
- Department of Industrial and Environmental Microbiology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (R.T.); (A.W.)
| | - Jerzy Rogalski
- Department of Biochemistry and Biotechnology, Maria Curie-Sklodowska University, Akademicka St. 19, 20-033 Lublin, Poland; (A.J.-W.); (M.O.-J.); (J.R.)
| |
Collapse
|
11
|
Du W, Sun C, Wang B, Wang Y, Dong B, Liu J, Xia J, Xie W, Wang J, Sun J, Liu X, Wang H. Response mechanism of hypocrellin colorants biosynthesis by Shiraia bambusicola to elicitor PB90. AMB Express 2019; 9:146. [PMID: 31522304 PMCID: PMC6745040 DOI: 10.1186/s13568-019-0867-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
The valuable medicine Shiraia bambusicola P. Henn. and its major active substance hypocrellin exert unique curative effects on skin diseases, diabetes, and cancers. The wild S. bambusicola is endangered due to its harsh breeding conditions and long growth cycle. It is one of the effective ways to utilize the resources sustainably to produce hypocrellin by fermentation of S. bambusicola. PB90 is a protein elicitor isolated from Phytophthora boehmeriae to induce the useful metabolites production in fungi. In this work, PB90 was selected to promote the synthesis hypocrellin by S. bambusicola. To evaluate the effect of PB90 on S. bambusicola, it was found that the induced cells showed decreased biomass, increased cell wall permeability, rapid induction of secondary metabolites, and significant increase of some enzyme activities, which confirmed a strong activation of phenylalanine/flavonoid pathways. Studies on signal molecules and gene expression level in S. bambusicola treated with PB90 have found that hydrogen peroxide (H2O2) and nitric oxide (NO) are necessary signal molecules involved in the synthesis of hypocrellin in elicited cells, and increased their signal levels through mutual reaction. We have showed for the first time, the response mechanism of hypocrellin biosynthesis from S. bambusicola to PB90, which may be not only establish a theoretical foundation for the application of PB90 to the mass production of S. bambusicola, but can also motivate further research on the application of PB90 to the conservation and sustainable utilization of other medical fungi.
Collapse
|
12
|
Metabolite analysis of endophytic fungi from cultivars of Zingiber officinale Rosc. identifies myriad of bioactive compounds including tyrosol. 3 Biotech 2017; 7:146. [PMID: 28597159 DOI: 10.1007/s13205-017-0768-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 02/13/2017] [Indexed: 12/30/2022] Open
Abstract
Endophytic fungi associated with rhizomes of four cultivars of Zingiber officinale were identified by molecular and morphological methods and evaluated for their activity against soft rot pathogen Pythium myriotylum and clinical pathogens. The volatile bioactive metabolites produced by these isolates were identified by GC-MS analysis of the fungal crude extracts. Understanding of the metabolites produced by endophytes is also important in the context of raw consumption of ginger as medicine and spice. A total of fifteen isolates were identified from the four varieties studied. The various genera identified were Acremonium sp., Gliocladiopsis sp., Fusarium sp., Colletotrichum sp., Aspergillus sp., Phlebia sp., Earliella sp., and Pseudolagarobasidium sp. The endophytic community was unique to each variety, which could be due to the varying host genotype. Fungi from phylum Basidiomycota were identified for the first time from ginger. Seven isolates showed activity against Pythium, while only two showed antibacterial activity. The bioactive metabolites identified in the fungal crude extracts include tyrosol, benzene acetic acid, ergone, dehydromevalonic lactone, N-aminopyrrolidine, and many bioactive fatty acids and their derivatives which included linoleic acid, oleic acid, myristic acid, n-hexadecanoic acid, palmitic acid methyl ester, and methyl linoleate. The presence of these varying bioactive endophytic fungi may be one of the reasons for the differences in the performance of the different ginger varieties.
Collapse
|
13
|
Li P, Cao Z, Wu Z, Wang X, Li X. The Effect and Action Mechanisms of Oligochitosan on Control of Stem Dry Rot of Zanthoxylum bungeanum. Int J Mol Sci 2016; 17:ijms17071044. [PMID: 27376270 PMCID: PMC4964420 DOI: 10.3390/ijms17071044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/04/2016] [Accepted: 05/23/2016] [Indexed: 11/21/2022] Open
Abstract
In this report, the effects of two oligochitosans, i.e., oligochitosan A (OCHA) and oligochitosan B (OCHB), on control of dry rot of Zanthoxylumbungeanum (Z. bungeanum) caused by Fusariumsambucinum (F. sambucinum) were evaluated. First, both oligochitosans show desirable ability to decrease the infection of F. sambucinum. Second, the oligochitosans strongly inhibit the radial colony and submerged biomass growth of F. sambucinum. Lastly, these oligochitosans are capable of increasing the activities of phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO) and peroxidase (POD) significantly, as well as enhancing the content of total phenolics in Z. bungeanum stems. These findings indicate that the protective effects of OCHA and OCHB on Z. bungeanum stems against dry rot may be associated with the direct fungitoxic function against pathogen and the elicitation of biochemical defensive responses in Z. bungeanum stems. The outcome of this report suggests that oligochitosans may serve as a promising natural fungicide to substitute, at least partially, for synthetic fungicides in the disease management of Z. bungeanum.
Collapse
Affiliation(s)
- Peiqin Li
- Department of Forest Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Zhimin Cao
- Department of Forest Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Zhou Wu
- Department of Forest Protection, College of Forestry, Northwest A&F University, Yangling 712100, China.
| | - Xing Wang
- Department of Chemistry and Chemical Biology & the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Xiuhong Li
- Department of Chemical Processing of Forest Products, College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
14
|
Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M. Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 2015; 31:1823-44. [PMID: 26340934 PMCID: PMC4621709 DOI: 10.1007/s11274-015-1937-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/27/2015] [Indexed: 11/15/2022]
Abstract
Fungal polysaccharides (PSs) are the subject of research in many fields of science and industry. Many properties of PSs have already been confirmed and the list of postulated functions continues to grow. Fungal PSs are classified into different groups according to systematic affinity, structure (linear and branched), sugar composition (homo- and heteropolysaccharides), type of bonds between the monomers (β-(1 → 3), β-(1 → 6), and α-(1 → 3)) and their location in the cell (cell wall PSs, exoPSs, and endoPSs). Exopolysaccharides (EPSs) are most frequently studied fungal PSs but their definition, classification, and origin are still not clear and should be explained. Ascomycota and Basidiomycota fungi producing EPS have different ecological positions (saprotrophic and endophytic, pathogenic or symbiotic-mycorrhizae fungi); therefore, EPSs play different biological functions, for example in the protection against environmental stress factors and in interactions with other organisms. EPSs obtained from Ascomycota and Basidiomycota fungal cultures are known for their antioxidant, immunostimulating, antitumor, and antimicrobial properties. The major objective of the presented review article was to provide a detailed description of the state-of-the-art knowledge of the effectiveness of EPS production by filamentous and yeast Ascomycota and Basidiomycota fungi and techniques of derivation of EPSs, their biochemical characteristics, and biological properties allowing comprehensive analysis as well as indication of similarities and differences between these fungal groups. Understanding the role of EPSs in a variety of processes and their application in food or pharmaceutical industries requires improvement of the techniques of their derivation, purification, and characterization. The detailed analyses of data concerning the derivation and application of Ascomycota and Basidiomycota EPSs can facilitate development and trace the direction of application of these EPSs in different branches of industry, agriculture, and medicine.
Collapse
Affiliation(s)
- Monika Osińska-Jaroszuk
- Department of Biochemistry, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| | - Anna Jarosz-Wilkołazka
- Department of Biochemistry, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jolanta Jaroszuk-Ściseł
- Department of Environmental Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Katarzyna Szałapata
- Department of Biochemistry, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Artur Nowak
- Department of Environmental Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Magdalena Jaszek
- Department of Biochemistry, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Ewa Ozimek
- Department of Environmental Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Małgorzata Majewska
- Department of Environmental Microbiology, Institute of Microbiology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|