1
|
Wijerathna WSMSK, Wimalaweera TIP, Samarajeewa DR, Lindamulla LMLKB, Rathnayake RMLD, Nanayakkara KGN, Jegatheesan V, Wei Y, Jinadasa KBSN. Imperative assessment on the current status of rubber wastewater treatment: Research development and future perspectives. CHEMOSPHERE 2023; 338:139512. [PMID: 37474026 DOI: 10.1016/j.chemosphere.2023.139512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
The environment has been significantly impacted by the rubber industry through the release of large quantities of wastewater during various industrial processes. Therefore, it is crucial to treat the wastewater from the rubber industry before discharging it into natural water bodies. With the understanding that alarmingly depleting freshwater sources need to be preserved for future generations, this paper reviews the status of the rubber industry and the pollution caused by them, focusing mainly on water pollution. The review pays special attention to the recent advancements in wastewater treatment techniques for rubber industry wastewater categorizing them into pre-treatment, secondary, and tertiary treatment processes while discussing the advantages and disadvantages. Through a comprehensive analysis of existing literature, it was determined that organic content and NH4+ are the most frequently focused water quality parameters, and despite some treatment methods demonstrating superior performance, many of the methods still face limitations and require further research to improve systems to handle high organic loading on the treatment systems and to implement them in industrial scale. The paper also explores the potential of utilizing untreated or treated wastewater and byproducts of wastewater treatment in contributing towards achieving several United Nations sustainable development goals (UN-SDGs); SDG 6, SDG 7, SDG 9, and SDG 12.
Collapse
Affiliation(s)
- W S M S K Wijerathna
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - T I P Wimalaweera
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - D R Samarajeewa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - L M L K B Lindamulla
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - R M L D Rathnayake
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - K G N Nanayakkara
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| | - V Jegatheesan
- School of Engineering, RMIT University, GPO Box 2476, Melbourne, 3001, Australia.
| | - Yuansong Wei
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; National Institute of Fundamental Studies, Hantana Road, Kandy, 20000, Sri Lanka.
| | - K B S N Jinadasa
- Department of Civil Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, 20400, Sri Lanka; Laboratory of Water Pollution Control Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
2
|
Torpee S, Kantachote D, Sukhoom A, Tantirungkij M. Culture optimization to enhance carotenoid production of a selected purple nonsulfur bacterium and its activity against acute hepatopancreatic necrosis disease-causing Vibrio parahaemolyticus. Biotechnol Appl Biochem 2022; 69:2422-2436. [PMID: 34841569 DOI: 10.1002/bab.2292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/23/2021] [Indexed: 12/27/2022]
Abstract
Purple nonsulfur bacteria (PNSB) were investigated for their carotenoid production and anti-vibrio activity against acute hepatopancreatic necrosis disease (AHPND)-causing Vibrio parahaemolyticus. To test carotenoid production, selected strains were cultivated in basic isolation medium (BIM), glutamate acetate medium, G5 medium and artificial acetic acid wastewater (AAW) medium. From 144 PNSB, Rhodopseudomonas palustris KTSSG46 was selected to produce carotenoids under microaerobic light conditions in BIM. When the culture medium was optimized, strain KTSSG46 grown in BIM modified with l-glutamate at 1 g/L more effectively inhibited AHPND-causing V. parahaemolyticus strains than standard BIM with 1 g/L (NH4 )2 SO4 . BIM was further modified with 1.23 g/L MgSO4 ·7H2 O and carotenoid production increased 40.22%. Carotenoid production at day 2 by strain KTSSG46 grown in BIM modified with l-glutamate at 1 and 1.23 g/L MgSO4 ·7H2 O was the same as production in BIM modified with monosodium glutamate (MSG). Culture supernatants from all BIM formulations showed similar activity against the resistant AHPND strain SR2. Based on high-performance liquid chromatography, carotenoids of strain KTSSG46 might be canthaxanthin. Grown in BIM modified with MSG, strain KTSSG46 could produce inexpensive carotenoids and release anti-vibrio compounds that, applied as shrimp feed additive, would prevent AHPND strains.
Collapse
Affiliation(s)
- Salwa Torpee
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Ampaitip Sukhoom
- Department of Microbiology, Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Manee Tantirungkij
- Research and Academic Service Center, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand
| |
Collapse
|
3
|
The potential use of purple nonsulfur bacteria to simultaneously treat chicken slaughterhouse wastewater and obtain valuable plant growth promoting effluent and their biomass for agricultural application. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101721] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
4
|
Budiman PM, Wu TY, Ramanan RN, Md Jahim J. Reusing colored industrial wastewaters in a photofermentation for enhancing biohydrogen production by using ultrasound stimulated Rhodobacter sphaeroides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15870-15881. [PMID: 28409433 DOI: 10.1007/s11356-017-8807-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/13/2017] [Indexed: 05/24/2023]
Abstract
One-time ultrasonication pre-treatment of Rhodobacter sphaeroides was evaluated for improving biohydrogen production via photofermentation. Batch experiments were performed by varying ultrasonication amplitude (15, 30, and 45%) and duration (5, 10, and 15 min) using combined effluents from palm oil as well as pulp and paper mill as a single substrate. Experimental data showed that ultrasonication at amplitude 30% for 10 min (256.33 J/mL) achieved the highest biohydrogen yield of 9.982 mL H2/mLmedium with 5.125% of light efficiency. A maximum CODtotal removal of 44.7% was also obtained. However, when higher ultrasonication energy inputs (>256.33 J/mL) were transmitted to the cells, biohydrogen production did not improve further. In fact, 20.6% decrease of biohydrogen yield (as compared to the highest biohydrogen yield) was observed using the most intense ultrasonicated inoculum (472.59 J/mL). Field emission scanning electron microscope images revealed the occurrence of cell damages and biomass losses if ultrasonication at 472.59 J/mL was used. The present results suggested that moderate ultrasonication pre-treatment was an effective technique to improve biohydrogen production performances of R. sphaeroides.
Collapse
Affiliation(s)
- Pretty Mori Budiman
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Ta Yeong Wu
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Ramakrishnan Nagasundara Ramanan
- Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Jamaliah Md Jahim
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
5
|
Ziabari SSH, Khezri SM, Kalantary RR. Ozonation optimization and modeling for treating diesel-contaminated water. MARINE POLLUTION BULLETIN 2016; 104:240-245. [PMID: 26846995 DOI: 10.1016/j.marpolbul.2016.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/30/2015] [Accepted: 01/14/2016] [Indexed: 06/05/2023]
Abstract
The effect of ozonation on treatment of diesel-contaminated water was investigated on a laboratory scale. Factorial design and response surface methodology (RSM) were used to evaluate and optimize the effects of pH, ozone flow rate, and contact time on the treatment process. A Box-Behnken design was successfully applied for modeling and optimizing the removal of total petroleum hydrocarbons (TPHs). The results showed that ozonation is an efficient technique for removing diesel from aqueous solution. The determination coefficient (R(2)) was found to be 0.9437, indicating that the proposed model was capable of predicting the removal of TPHs by ozonation. The optimum values of experimental initial pH, degree of O3, and reaction time were 7.0, 1.5, and 35 min, respectively, which could contribute to approximately 60% of TPH removal. This result is in good agreement with the predicted value of 57.28%.
Collapse
Affiliation(s)
- Seyedeh-Somayeh Haghighat Ziabari
- Department of Environmental Science, Faculty of Environment and Energy, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Seyed-Mostafa Khezri
- Department of Environmental Science, Faculty of Environment and Energy, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Roshanak Rezaei Kalantary
- Department of Environmental Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Nunkaew T, Kantachote D, Chaiprapat S, Nitoda T, Kanzaki H. Use of wood vinegar to enhance 5-aminolevulinic acid production by selected Rhodopseudomonas palustris in rubber sheet wastewater for agricultural use. Saudi J Biol Sci 2016; 25:642-650. [PMID: 29740228 PMCID: PMC5936994 DOI: 10.1016/j.sjbs.2016.01.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 12/28/2015] [Accepted: 01/15/2016] [Indexed: 11/16/2022] Open
Abstract
This study aimed to produce inexpensive 5-aminolevulinic acid (ALA) in a non-sterile latex rubber sheet wastewater (RSW) by Rhodopseudomonas palustris TN114 and PP803 for the possibility to use in agricultural purposes by investigating the optimum conditions, and applying of wood vinegar (WV) as an economical source of levulinic acid to enhance ALA content. The Box-Behnken Design experiment was conducted under microaerobic-light conditions for 96 h with TN114, PP803 and their mixed culture (1:1) by varying initial pH, inoculum size (% v/v) and initial chemical oxygen demand (COD, mg/L). Results showed that the optimal condition (pH, % inoculum size, COD) of each set to produce extracellular ALA was found at 7.50, 6.00, 2000 for TN114; 7.50, 7.00, 3000 for PP803; and 7.50, 6.00, 4000 for a mixed culture; and each set achieved COD reduction as high as 63%, 71% and 75%, respectively. Addition of the optimal concentration of WV at mid log phase at 0.63% for TN114, and 1.25% for PP803 and the mixed culture significantly increased the ALA content by 3.7-4.2 times (128, 90 and 131 μM, respectively) compared to their controls. ALA production cost could be reduced approximately 31 times with WV on the basis of the amount of levulinic acid used. Effluent containing ALA for using in agriculture could be achieved by treating the RSW with the selected ALA producer R. palustris strains under the optimized condition with a little WV additive.
Collapse
Affiliation(s)
- Tomorn Nunkaew
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Duangporn Kantachote
- Department of Microbiology, Faculty of Science, Prince of Songkla University, Hat-Yai 90112, Thailand.,Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | - Sumate Chaiprapat
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand.,Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Hat-Yai 90112, Thailand
| | - Teruhiko Nitoda
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-Ku, Okayama 700-8530, Japan
| | - Hiroshi Kanzaki
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-Ku, Okayama 700-8530, Japan
| |
Collapse
|
7
|
Woraharn S, Lailerd N, Sivamaruthi BS, Wangcharoen W, Peerajan S, Sirisattha S, Chaiyasut C. Development of fermentedHericium erinaceusjuice with high content of L-glutamine and L-glutamic acid. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12873] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sasimar Woraharn
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| | - Narissara Lailerd
- Department of Physiology; Faculty of Medicine; Chiang Mai University; Chiang Mai 50200 Thailand
| | | | - Wiwat Wangcharoen
- Faculty of Engineering and agro-industry; Maejo University; Sansai Chiang Mai 50290 Thailand
| | | | - Sophon Sirisattha
- Department of Bioscience; Thailand Institute of Scientific and Technological Research; Pathumthani 12120 Thailand
| | - Chaiyavat Chaiyasut
- Department of Pharmaceutical Sciences; Faculty of Pharmacy; Chiang Mai University; Chiang Mai 50200 Thailand
| |
Collapse
|