1
|
Pan L, Zhang CJ, Bai Z, Liu YY, Zhang Y, Tian WZ, Zhou Y, Zhou YY, Liao AM, Hou YC, Yu GH, Hui M, Huang JH. Effects of different strains fermentation on nutritional functional components and flavor compounds of sweet potato slurry. Front Nutr 2023; 10:1241580. [PMID: 37693241 PMCID: PMC10483827 DOI: 10.3389/fnut.2023.1241580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
In this paper, we study the effect of microbial fermentation on the nutrient composition and flavor of sweet potato slurry, different strains of Aspergillus niger, Saccharomyces cerevisiae, Lactobacillus plantarum, Bacillus coagulans, Bacillus subtilis, Lactobacillus acidophilus, and Bifidobacterium brevis were employed to ferment sweet potato slurry. After 48 h of fermentation with different strains (10% inoculation amount), we compared the effects of several strains on the nutritional and functional constituents (protein, soluble dietary fiber, organic acid, soluble sugar, total polyphenol, free amino acid, and sensory characteristics). The results demonstrated that the total sugar level of sweet potato slurry fell significantly after fermentation by various strains, indicating that these strains can utilize the nutritious components of sweet potato slurry for fermentation. The slurry's total protein and phenol concentrations increased significantly, and many strains demonstrated excellent fermentation performance. The pH of the slurry dropped from 6.78 to 3.28 to 5.95 after fermentation. The fermentation broth contained 17 free amino acids, and the change in free amino acid content is closely correlated with the flavor of the sweet potato fermentation slurry. The gas chromatography-mass spectrometry results reveal that microbial fermentation can effectively increase the kinds and concentration of flavor components in sweet potato slurry, enhancing its flavor and flavor profile. The results demonstrated that Aspergillus niger fermentation of sweet potato slurry might greatly enhance protein and total phenolic content, which is crucial in enhancing nutrition. However, Bacillus coagulans fermentation can enhance the concentration of free amino acids in sweet potato slurry by 64.83%, with a significant rise in fresh and sweet amino acids. After fermentation by Bacillus coagulans, the concentration of lactic acid and volatile flavor substances also achieved its highest level, which can considerably enhance its flavor. The above results showed that Aspergillus niger and Bacillus coagulans could be the ideal strains for sweet potato slurry fermentation.
Collapse
Affiliation(s)
- Long Pan
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Cun-Jin Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Zhe Bai
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ying-Ying Liu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yu Zhang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Wei-Zhi Tian
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yu Zhou
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yuan-Yuan Zhou
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ai-Mei Liao
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yin-Chen Hou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Guang-Hai Yu
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ming Hui
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Ji-Hong Huang
- Henan Provincial Key Laboratory of Biological Processing and Nutritional Function of Wheat, School of Biological Engineering, Henan University of Technology, Zhengzhou, China
- School of Food and Pharmacy, Xuchang University, Xuchang, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
- Food Laboratory of Zhongyuan, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
2
|
Bilal M, Xu S, Iqbal HMN, Cheng H. Yarrowia lipolytica as an emerging biotechnological chassis for functional sugars biosynthesis. Crit Rev Food Sci Nutr 2021; 61:535-552. [PMID: 32180435 DOI: 10.1080/10408398.2020.1739000] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional sugars have unique structural and physiological characteristics with applied perspectives for modern biomedical and biotechnological sectors, such as biomedicine, pharmaceutical, cosmeceuticals, green chemistry, and agro-food. They can also be used as starting matrices to produce biologically active metabolites of interests. Though numerous chemical synthesis routes have been proposed and deployed for the synthesis of rare sugars, however, many of them are limited and economically incompetent because of expensive raw starting feedstocks. Whereas, the biosynthesis by enzymatic means are often associated with high catalyst costs and low space-time yields. Microbial production of rare sugars via green routes using bio-renewable resources offers noteworthy solutions to overcome the aforementioned limitations of synthetic and enzymatic synthesis routes. From the microbial-based synthesis perspective, the lipogenic yeast Yarrowia lipolytica is rapidly evolving as the most prevalent and unique "non-model organism" in the bio-production arena. Due to high flux tendency through the tri-carboxylic acid cycle intermediates and precursors such as acetyl-CoA and malonyl-CoA, this yeast has been widely investigated to meet the increasing demand of industrially relevant fine chemicals, including functional sugars. Incredible interest in Y. lipolytica originates from its robust tolerance to unstable pH, salt levels, and organic compounds, which subsequently enable easy bioprocess optimization. Meaningfully, GRAS (generally recognized as safe) status creates Y. lipolytica as an attractive and environmentally friendly microbial host for the manufacturing of nutraceuticals, fermented food, and dietary supplements. In this review, we highlight the recent and state-of-the-art research progress on Y. lipolytica as a host to synthesize bio-based compounds of interest beyond the realm of well-known fatty acid production. The unique physicochemical properties, biotechnological applications, and biosynthesis of an array of value-added functional sugars including erythritol, threitol, fructooligosaccharides, galactooligosaccharides, isomalto-oligosaccharides, isomaltulose, trehalose, erythrulose, xylitol, and mannitol using sustainable carbon sources are thoroughly vetted. Finally, we conclude with perspectives that would be helpful to engineer Y. lipolytica in greening the twenty-first century biomedical and biotechnological sectors of the modern world.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Nuevo León, Mexico
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Liu X, Lv J, Xu J, Xia J, He A, Zhang T, Li X, Xu J. Effects of osmotic pressure and pH on citric acid and erythritol production from waste cooking oil by Yarrowia lipolytica. Eng Life Sci 2018; 18:344-352. [PMID: 32624914 DOI: 10.1002/elsc.201700114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/04/2017] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
Erythritol and citric acid could be produced from waste cooking oil (WCO) by Yarrowia lipolytica under different medium conditions, and osmotic pressure together with pH were considered to be the critical factors in this process. High osmotic pressure (2.76 osmol/L) combined with low pH (pH 3.0) promoted the highest yield of erythritol (21.8 g/L) accompanied by low-producing citric acid (2.5 g/L). By contrast, the highest citric acid biosynthesis (12.6 g/L) was detected under a pH of 6.0 and an osmotic pressure of 0.75 osmol/L, when only 4.0 g/L of erythritol was yielded. Moreover, lipase activities in these two media were also detected, and pH 3.0-OP 2.76 was supposed to be more beneficial to lipase activity. Biochemical pathways involved in the biosynthesis of erythritol and citric acid were subsequently investigated, and the products yielded from WCO were assumed to be correlated with the activities of transketolase, erythrose reductase, citrate synthase, and glycerol kinase. However, RT-PCR analysis revealed that mRNA levels of these enzymes did not significantly differ, confirming that metabolic flux regulations of erythritol and citric acid mostly took place at the post-transcriptional level.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration Huaiyin Institute of Technology Huaian P. R. China
| | - Jinshun Lv
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| | - Tong Zhang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| | - Xiangqian Li
- Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration Huaiyin Institute of Technology Huaian P. R. China
| | - Jiming Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology Huaiyin Normal University Huaian P. R. China
| |
Collapse
|
5
|
Carly F, Steels S, Telek S, Vandermies M, Nicaud JM, Fickers P. Identification and characterization of EYD1, encoding an erythritol dehydrogenase in Yarrowia lipolytica and its application to bioconvert erythritol into erythrulose. BIORESOURCE TECHNOLOGY 2018; 247:963-969. [PMID: 30060436 DOI: 10.1016/j.biortech.2017.09.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 05/18/2023]
Abstract
In this study, gene YALI0F01650g has been isolated and characterized. Several experimental evidences suggest that the identified gene, renamed EYD1, encodes an erythritol dehydrogenase. An efficient bioreactor process for the bioconversion of erythritol into erythrulose was also developed. Using constitutive expression of EYD1 in a Y. lipolytica mutant containing a disrupted EYK1 gene, which encodes erythrulose kinase, erythrulose could be synthesized from erythritol at a rate of 0.116g/gDCW.h and with a bioconversion yield of 0.64g/g.
Collapse
Affiliation(s)
- Frédéric Carly
- Unité de Biotechnologies et Bioprocédés, Université Libre de Bruxelles, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Samuel Telek
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Marie Vandermies
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Centre, University of Liège - Gembloux Agro-Bio Tech, Belgium.
| |
Collapse
|