1
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic Expanded Granular Sludge Bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113532. [PMID: 34614559 DOI: 10.1016/j.jenvman.2021.113532] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 μg L-1, 166 ± 55-462 ± 213 μg L-1 and 201 ± 113-250 ± 141 μg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 μg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 μg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 μg L-1 influent), IBU (50 ± 15 % for 164 ± 47 μg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 μg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 μg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Pedro S Fadini
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
2
|
Philus CD, Mahanty B. Dynamic modelling of tetrazolium-based microbial toxicity assay-a parametric proxy of traditional dose-response relationship. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45390-45401. [PMID: 33866499 DOI: 10.1007/s11356-021-13870-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Microbial toxicity of test substances in tetrazolium assay is often quantified while referring to their IC50 values. However, the implication of such an estimate is very limited and can differ across studies depending on prevailing test conditions. In this work, a factorial design-based end-point microbial toxicity assay was performed, which suggests a significant interaction (P= 0.041) between inoculum and tetrazolium dose on formazan production. Subsequently, a dynamic model framework was utilized to capture the nonlinearities in biomass, substrate, formazan profiles and to project the toxicant inhibition parameter as a robust alternative to IC50 value. Microbial growth, glucose uptake and formazan production in the presence or absence of toxicant (Cu2+) from designed batch experiments were used for sequential estimation of model parameters, and their confidence intervals. A logistic growth model with multiplicative inhibition terms for formazan content and toxicant concentration fits the experimental data reasonably well (R2>0.96). Dynamic relative sensitivity analysis revealed that both microbial growth and formazan production profiles were sensitive to toxicant inhibition parameter. The modelling framework not only provides a better insight into the underlying toxic effect but also offers a stable toxicity index for the test substances that can be extended to design a versatile, robust in vitro assay system.
Collapse
Affiliation(s)
- Chris Daniel Philus
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India
| | - Biswanath Mahanty
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, 641114, India.
| |
Collapse
|
3
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Influence of metabolic cosubstrates on methanogenic potential and degradation of triclosan and propranolol in sanitary sewage. ENVIRONMENTAL RESEARCH 2021; 199:111220. [PMID: 33992637 DOI: 10.1016/j.envres.2021.111220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Triclosan (TCS) and propranolol (PRO) are emerging micropollutants that are difficult to remove in wastewater treatment plants. In this study, methanogenic potential (P) of anaerobic sludge submitted to TCS (3.6 ± 0.1 to 15.5 ± 0.1 mg L-1) and PRO (6.1 ± 0.1 to 55.9 ± 1.2 mg L-1) in sanitary sewage, was investigated in batch reactors. The use of cosubstrates (200 mg L-1 of organic matter) ethanol, methanol:ethanol and fumarate was evaluated for micropollutant degradation. Without cosubstrates, P values for 5.0 ± 0.1 mgTCS L-1, 15.5 ± 0.1 mgTCS L-1 and 55.0 ± 1.3 mgPRO L-1 were 50.53%, 98.24% and 17.66% lower in relation to Control assay (855 ± 5 μmolCH4) with sanitary sewage, without micropollutants and cosubstrates, respectively. The use of fumarate, ethanol and methanol:ethanol favored greater methane production, with P values of 2144 ± 45 μmolCH4, 2960 ± 185 μmolCH4 and 2239 ± 171 μmolCH4 for 5.1 ± 0.1 mgTCS L-1, respectively; and of 10,827 ± 185 μmolCH4, 10,946 ± 108 μmolCH4 and 10,809 ± 210 μmolCH4 for 55.0 ± 1.3 mgPRO L-1, respectively. Greater degradation of TCS (77.1 ± 0.1% for 5.1 ± 0.1 mg L-1) and PRO (24.1 ± 0.1% for 55.9 ± 1.2 mg L-1) was obtained with ethanol. However, with 28.5 ± 0.5 mg PRO L-1, greater degradation (88.4 ± 0.9%) was obtained without cosubstrates. With TCS, via sequencing of rRNA 16S gene, for Bacteria Domain, greater abundance of phylum Chloroflexi and of the genera Longilinea, Arcobacter, Mesotoga and Sulfuricurvum were identified. With PRO, the genus VadinBC27 was the most abundant. Methanosaeta was dominant in TCS with ethanol, while in PRO without cosubstrates, Methanobacterium and Methanosaeta were the most abundant. The use of metabolic cosubstrates is a favorable strategy to obtain greater methanogenic potential and degradation of TCS and PRO.
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo. Ave Trabalhador São-Carlense, no. 400, Zipcode, 13566-590, São Carlos, SP, Brazil.
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington Luiz Highway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo. Ave Trabalhador São-Carlense, no. 400, Zipcode, 13566-590, São Carlos, SP, Brazil.
| | - Pedro S Fadini
- Federal University of São Carlos, Washington Luiz Highway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo. Ave Trabalhador São-Carlense, no. 400, Zipcode, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Wang Y, Han K, Wang D, Yi N, Teng Y, Wang W, Liu L, Wang H. Revealing the mechanisms of Triclosan affecting of methane production from waste activated sludge. BIORESOURCE TECHNOLOGY 2020; 312:123505. [PMID: 32447124 DOI: 10.1016/j.biortech.2020.123505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Triclosan (TCS), as an antimicrobial agent, is considered as a representative emerging contaminant and was frequently detected in excess sludge. This study investigated the effect of TCS on activate wastewater sludge (WAS) digestion through laboratory methane production experiment. It was concluded that TCS had a tendency to restrain methane production from sludge with its exposure level increasing. The results displayed that the yields of final maximum cumulative methane production were similar about 108.4 mL/g VSS at TCS level lower 200 mg TCS/kg TSS, while the values were approximately 95.2 mL/g VSS with TCS level over 550 mg TCS/kg TSS. Although TCS could be degraded, its intermediates in this study had no effect on sludge digestion. In addition, TCS at higher levels had seriously negative effect on the solubilization, hydrolysis, acidification, and methanogenesis processes. Microbial community was further analyzed to understand the TCS's effect on digestion system from a micro perspective.
Collapse
Affiliation(s)
- Yali Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China.
| | - Kai Han
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Neng Yi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yajie Teng
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
| | - Wenjing Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
| | - Ling Liu
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China
| | - Hongjie Wang
- Institute of Ecology and Environmental Governance, College of Life Sciences, Hebei University, Baoding 071002, Hebei Province, PR China.
| |
Collapse
|