1
|
Kukreti N, Kumar P, Kataria R. Conversion of Corn Stover for Microbial Enzymes Production by Phanerochaete chrysosporium. Appl Biochem Biotechnol 2024; 196:5144-5160. [PMID: 38117456 DOI: 10.1007/s12010-023-04811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Phanerochaete chrysosporium, a white rot fungus, exhibits remarkable capabilities in producing various extracellular enzymes. These microbial enzymes find extensive applications in disrupting the intricate structure of plant cell walls, decolorizing synthetic dyes, and facilitating pulp extraction, among other functions. The process of solid-state fermentation stands out as an economical and sustainable approach, ideal for achieving high yields in enzyme production using lignocellulosic biomass as a substrate. In this research paper, both untreated and alkali pretreated corn stover materials served as substrates for enzyme production, leveraging the fungal strain's capacity to generate enzymes like cellulases and manganese peroxidase. The maximum production of endoglucanase was notably observed, reaching 121.21 ± 0.90 U/gds on the 9th day for untreated biomass and 79.75 ± 0.57 U/gds on the 6th day for treated biomass. Similarly, the peak exoglucanase production was recorded at 2.46 ± 0.008 FPU/ml on the 3rd day for untreated biomass and 0.92 ± 0.002 FPU/ml on the 6th day for treated biomass. Furthermore, the highest production of manganese peroxidase was achieved, with values of 5076.81 U/l on the 6th day for untreated biomass and 1127.58 ± 0.23 U/l on the 3rd day for treated biomass. These results collectively emphasize the potential of corn stover as a renewable and promising substrate for the production of essential enzymes.
Collapse
Affiliation(s)
- Neha Kukreti
- Department of Biotechnology, Delhi Technological University (DTU), Bawana Road, Delhi, 110042, India
| | - Pravir Kumar
- Department of Biotechnology, Delhi Technological University (DTU), Bawana Road, Delhi, 110042, India
| | - Rashmi Kataria
- Department of Biotechnology, Delhi Technological University (DTU), Bawana Road, Delhi, 110042, India.
| |
Collapse
|
2
|
Abdella MAA, Ahmed NE, Hasanin MS. Green ecofriendly enhancement of cellulase productivity using agricultural wastes by Aspergillus terreus MN901491: statistical designs and detergent ability on cotton fabrics. Microb Cell Fact 2024; 23:109. [PMID: 38609920 PMCID: PMC11015618 DOI: 10.1186/s12934-024-02376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.
Collapse
Affiliation(s)
- Mohamed A A Abdella
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt.
| | - Nehad E Ahmed
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Mohamed S Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Giza, 12622, Egypt
| |
Collapse
|
3
|
Yu C, Li M, Zhang B, Xin Y, Tan W, Meng F, Hou J, He X. Hydrothermal pretreatment contributes to accelerate maturity during the composting of lignocellulosic solid wastes. BIORESOURCE TECHNOLOGY 2022; 346:126587. [PMID: 34933104 DOI: 10.1016/j.biortech.2021.126587] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The aim of this work was to study the optimal conditions and mechanism of lignocellulose degradation in the hydrothermal pretreatment coupled with aerobic fermentation (HTPAF). The optimized process parameters in the hydrothermal pretreatment (HTP) were discussed. The response relationship between enzyme activity and microbial community in HTPAF were explored. The results showed that with the moisture content of 50%-90%, the lignin content decreased by 150 mg/g after treatment at 120 °C for 6 h, and a loose pore structure was formed on the surface of the chestnut shells after HTP. The compost maturity time was shortened to 12 days. The dominant microbial genera in HTPAF were Gallicola, Moheibacter and Atopostipes, which were significant different with that of the traditional composting. HTPAF is beneficial to increase the maximum temperature of aerobic fermentation and quickly degrade lignin to shorten the maturity time.
Collapse
Affiliation(s)
- Chengze Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Mingxiao Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Bin Zhang
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Yanjun Xin
- Qingdao Engineering Research Center for Rural Environment, College of Resources and Environment, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fanhua Meng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Xiaosong He
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|