1
|
Alnasraui AHF, Joe IH, Al-Musawi S. Investigation of Folate-Functionalized Magnetic-Gold Nanoparticles Based Targeted Drug Delivery for Liver: In Vitro, In Vivo and Docking Studies. ACS Biomater Sci Eng 2024; 10:6299-6313. [PMID: 39221994 DOI: 10.1021/acsbiomaterials.4c01039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Magnetic nanoparticles used for targeted drug administration present a promising approach in cancer treatment owing to its notable advantages, such as targeted and enhanced encapsulation ability and improved bio protection compared with conventional drug delivery methods. Au shell-iron core nanoparticles (Fe3O4@Au) were manufactured by a chemical process, coated with dextran to encapsulate curcumin, and functionalized for precision drug delivery using folic acid to combat liver cancer. Dynamic light scattering, scanning electron microscopy, transmission electron microscopy, vibrational spectroscopy, and magnetometry were applied to assess the synthesis of the Fe3O4@Au-DEX-CU-FA compound. The mean size, zeta potential, and polydispersity of Fe3O4@Au-DEX-CU-FA were 63.3 ± 2.33 nm, -68.3 ± 1.78 mV, and 0.041 ± 0.008, respectively. Molecular docking models were created to examine the relationship between Fe3O4@Au-CU and BCL-XL, BAK, and to identify potential binding sites. The loading efficiency and release profile tests examined the medication delivery system's ability. MTT assay was subsequently utilized to determine the optimal dosage and therapeutic efficacy of Fe3O4@Au-DEX-CU-FA on cancer SNU-449 and healthy THLE-2 cell lines. Flow cytometry demonstrated that Fe3O4@Au-DEX-CU-FA effectively induced cancer cell death. Fe3O4@Au-DEX-FA showed a regulated release profile of free curcumin at 37 °C and pH values of 7.4 and 5.4. Real-time PCR revealed increased BAK expression and decreased BCL-XL expression. Nude tumor-bearing mice were used for in vivo experiments. Fe3O4@Au-DEX-CU-FA treatment dramatically reduced the swelling size compared with free CU and control treatments. It also resulted in a longer lifespan, expanded splenocyte proliferation, increased IFN-γ levels, and decreased IL-4 levels. The regular cells showed no cytotoxic effect compared with the cancer type, confirming that Fe3O4@Au-DEX-CU-FA maintained its potent anticancer actions. The data suggests that Fe3O4@Au-DEX-CU-FA possesses a promising potential as a therapeutic agent for combating tumors.
Collapse
Affiliation(s)
- Ali Hussein F Alnasraui
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695015, India
- College of Biotechnology, Al-Qasim Green University, Babylon 51013, Iraq
| | - I Hubert Joe
- Department of Nanoscience and Nanotechnology, University of Kerala, Thiruvananthapuram, Kerala 695015, India
| | | |
Collapse
|
2
|
Albukhaty S, Sulaiman GM, Al-Karagoly H, Mohammed HA, Hassan AS, Alshammari AAA, Ahmad AM, Madhi R, Almalki FA, Khashan KS, Jabir MS, Yusuf M, Al-aqbi ZT, Sasikumar P, Khan RA. Iron oxide nanoparticles: The versatility of the magnetic and functionalized nanomaterials in targeting drugs, and gene deliveries with effectual magnetofection. J Drug Deliv Sci Technol 2024; 99:105838. [DOI: 10.1016/j.jddst.2024.105838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Jaisankar E, Azarudeen RS, Thirumarimurugan M. Nanofibers Embedded with Nanoparticles as Carriers for the Controlled Release of Anticancer Drug: Promoting the Apoptosis of Breast Cancer Cell Line and Growth Inhibition of Microbial Strains. ACS APPLIED BIO MATERIALS 2024; 7:4323-4338. [PMID: 38867473 DOI: 10.1021/acsabm.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The polymeric nanofiber mats were produced from polylactic acid, methylcellulose, and polyethylene glycol with 5-fluorouracil (5Fu) drug and iron oxide (Fe3O4) nanoparticles. Spectral and crystallographic studies clearly elucidated the ionic interactions, structure and nature of the mats. Fe3O4 nanoparticles <10 nm in size, along with methyl cellulose and polyethylene glycol, have significantly reduced the size of nanofiber mats. The mechanical properties for the mats was found to be challenging; however, surface wettability, swelling capacity, and drug encapsulation efficiency results were promising. A controlled drug release pattern was observed from in vitro drug release study, zero-order kinetics, and a Higuchi model. Nanofiber mats showed higher anticancer activity (78%) against MDA-MB 231 cancer cells, which reveals that a small amount of 5Fu drug (15.86%) with high levels of O2••, H2O2, and OH• radicals generated from Fe3O4 have catalyzed the Fenton's reaction to eradicate the cancer cells, in a shorter span of 24 h, itself. In addition, the apoptosis assay by dual AO/PI staining method clearly exhibited the apoptotic cancer cells by fluorescence microscopy. Incorporation of Fe3O4 nanoparticles enhanced the anticancer activity of the mats, compared to the commercially available standard 5Fu drug. Nanofiber mats significantly controlled the growth of selected pathogenic microbial strains by the action of the 5Fu drug and Fe3+ ions. The degradation of mats was investigated by an in vitro mass loss study for a period of 360 days. In a nutshell, promising nanofiber mats were produced as targeted drug delivery devices for chemotherapy.
Collapse
Affiliation(s)
- Edumpan Jaisankar
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | - Raja Sulaiman Azarudeen
- Department of Chemical Engineering, Coimbatore Institute of Technology, Coimbatore 641 014, India
- Department of Chemistry, Coimbatore Institute of Technology, Coimbatore 641 014, India
| | | |
Collapse
|
4
|
Ju Y, Fang S, Liu L, Ma H, Zheng L. The function of the ELF3 gene and its mechanism in cancers. Life Sci 2024; 346:122637. [PMID: 38614305 DOI: 10.1016/j.lfs.2024.122637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
E74-like factor 3 (ELF3) is an important member of the E-twenty-six (ETS) transcription factor family. ELF3 is expressed in various types of cells and regulates a variety of biological behaviors, such as cell proliferation, differentiation, apoptosis, migration, and invasion, by binding to DNA to regulate the expression of other genes. In recent years, studies have shown that ELF3 plays an important role in the occurrence and development of many tumors and inflammation and immune related diseases. ELF3 has different functions and expression patterns in different tumors; it can function as a tumor suppressor gene or an oncogene, highlighting its dual effects of tumor promotion and inhibition. ELF3 also affects the levels of tumor immunity-related cytokines and is involved in the regulation and expression of multiple signaling pathways. In tumor therapy, ELF3 is a complex and multifunctional gene and has become a key focus of targeted treatment research. An in-depth study of the biological function of ELF3 can help to elucidate its role in biological processes and provide ideas and a basis for the development and clinical application of ELF3-related therapeutic methods. This review introduces the structure and physiological and cellular functions of the ELF3 gene, summarizes the mechanisms of action of ELF3 in different types of malignant tumors and its role in immune regulation, inflammation, etc., and discusses treatment methods for ELF3-related diseases, providing significant reference value for scholars studying the ELF3 gene and related diseases.
Collapse
Affiliation(s)
- Yiheng Ju
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Sheng Fang
- Yantai Penglai People's Hospital, Yantai, China
| | - Lei Liu
- Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Ma
- Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Longbo Zheng
- Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Khane Y, Albukhaty S, Sulaiman GM, Fennich F, Bensalah B, Hafsi Z, Aouf M, Amar ZH, Aouf D, Al-kuraishy HM, Saadoun H, Mohammed HA, Mohsin MH, Al-aqbi ZT. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur Polym J 2024; 214:113187. [DOI: 10.1016/j.eurpolymj.2024.113187] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Al-Obaidy R, Haider AJ, Al-Musawi S, Arsad N. Targeted delivery of paclitaxel drug using polymer-coated magnetic nanoparticles for fibrosarcoma therapy: in vitro and in vivo studies. Sci Rep 2023; 13:3180. [PMID: 36823237 PMCID: PMC9950487 DOI: 10.1038/s41598-023-30221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Fibrosarcoma is a rare type of cancer that affects cells known as fibroblasts that are malignant, locally recurring, and spreading tumor in fibrous tissue. In this work, an iron plate immersed in an aqueous solution of double added deionized water, supplemented with potassium permanganate solution (KMnO4) was carried out by the pulsed laser ablation in liquid method (PLAIL). Superparamagnetic iron oxide nanoparticles (SPIONs) were synthesized using different laser wavelengths (1064, 532, and 266 nm) at a fluence of 28 J/cm2 with 100 shots of the iron plate to control the concentration, shape and size of the prepared high-stability SPIONs. The drug nanocarrier was synthesized by coating SPION with paclitaxel (PTX)-loaded chitosan (Cs) and polyethylene glycol (PEG). This nanosystem was functionalized by receptors that target folate (FA). The physiochemical characteristics of SPION@Cs-PTX-PEG-FA nanoparticles were evaluated and confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray diffraction (XRD), atomic force microscopy (AFM), and dynamic light scattering (DLS) methods. Cell internalization, cytotoxicity assay (MTT), apoptosis induction, and gene expression of SPION@Cs-PTX-PEG-FA were estimated in fibrosarcoma cell lines, respectively. In vivo studies used BALB/c tumor-bearing mice. The results showed that SPION@Cs-PTX-PEG-FA exhibited suitable physical stability, spherical shape, desirable size, and charge. SPION@Cs-PTX-PEG-FA inhibited proliferation and induced apoptosis of cancer cells (P < 0.01). The results of the in vivo study showed that SPION@Cs-PTX-PEG-FA significantly decreased tumor size compared to free PTX and control samples (P < 0.05), leading to longer survival, significantly increased splenocyte proliferation and IFN-γ level, and significantly decreased the level of IL-4. All of these findings indicated the potential of SPION@Cs-PTX-PEG-FA as an antitumor therapeutic agent.
Collapse
Affiliation(s)
- Rusul Al-Obaidy
- grid.444967.c0000 0004 0618 8761Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad, Iraq
| | - Adawiya J. Haider
- grid.444967.c0000 0004 0618 8761Applied Sciences Department/Laser Science and Technology Branch, University of Technology, Baghdad, Iraq
| | | | - Norhana Arsad
- Photonics Technology Laboratory, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia UKM, 43600, Bangi, Malaysia.
| |
Collapse
|
7
|
Bhattacharya S, Parihar VK, Prajapati BG. Unveiling the therapeutic potential of cabozantinib-loaded poly D,L-lactic-co-glycolic acid and polysarcosine nanoparticles in inducing apoptosis and cytotoxicity in human HepG2 hepatocellular carcinoma cell lines and in vivo anti-tumor activity in SCID female mice. Front Oncol 2023; 13:1125857. [PMID: 36874145 PMCID: PMC9975495 DOI: 10.3389/fonc.2023.1125857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction The study aimed to develop a nano-based drug delivery system for the treatment of hepatocellular carcinoma (HCC), a type of liver cancer that accounts for 90% of all liver malignancies. The study focused on the use of cabozantinib (CNB), a potent multikinase inhibitor that targets the VEGF receptor 2, as the chemotherapeutic drug. We developed CNB-loaded nanoparticles made from Poly D, L-lactic-co-glycolic acid, and Polysarcosine (CNB-PLGA-PSar-NPs) for use in human HepG2 cell lines. Methods By O/W solvent evaporation method, the polymeric nanoparticles were prepared. The various techniques, such as photon correlation spectroscopy, scanning electron microscopy, and transmission electron microscopy were used, to determine the formulation's particle size, zeta potential, and morphology. SYBR Green/ROX qPCR Master Mix and RT-PCR equipment used to measure liver cancer cell line and tissue mRNA expression and MTT assay to test HepG2 cell cytotoxicity. Cell cycle arrest analysis, annexin V assay, and ZE5 Cell Analyzer apoptosis assay were also performed. Results The results of the study showed that the particle diameters were 192.0 ± 3.67 nm with 0.128 PDI and -24.18 ± 3.34 mV zeta potential. The antiproliferative and proapoptotic effects of CNB-PLGA-PSar-NPs were evaluated using MTT and flow cytometry (FCM). The IC50 value of CNB-PLGA-PSar-NPs was 45.67 µg/mL, 34.73 µg/mL, and 21.56 µg/mL for 24, 48, and 72 h, respectively. The study also found that 11.20% and 36.77% of CNB-PLGA-PSar-NPs-treated cells were apoptotic at 60 µg/mL and 80 µg/mL, respectively, suggesting that the nanoparticles were effective in inducing apoptosis in the cancer cells. It can also conclude that, CNB-PLGA-PSar-NPs inhibit human HepG2 hepatocellular carcinoma cells and kill them by upregulating the tumour suppressor genes MT1F, MT1X, and downregulating MTTP, APOA4. Further in vivo antitumor activity was well reported in SCID female mice. Discussion Overall, this study suggests that the CNB-PLGA-PSar-NPs are a promising drug delivery system for the treatment of HCC, and further research is needed to investigate their potential in clinical treatment.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Vipan Kumar Parihar
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Industrial Area, Hajipur, Bihar, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutical Technology, Shree S.K. Patel College of Pharmaceutical Education & Research Ganpat University, Mehsana, Gujarat, India
| |
Collapse
|