1
|
Hamdy FC, Lamb AD, Tullis IDC, Verrill C, Rombach I, Rao SR, Colling R, Barber PR, Volpi D, Barbera-Martin L, Lopez JF, Omer A, Hewitt A, Lovell S, Niederer J, Lambert A, Snoeck J, Thomson C, Leslie T, Bryant RJ, Mascioni A, Jia F, Torgov M, Wilson I, Gudas J, Wu AM, Olafsen T, Vojnovic B. First-in-man study of the PSMA Minibody IR800-IAB2M for molecularly targeted intraoperative fluorescence guidance during radical prostatectomy. Eur J Nucl Med Mol Imaging 2024; 51:3009-3025. [PMID: 38853153 PMCID: PMC11300503 DOI: 10.1007/s00259-024-06713-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/10/2024] [Indexed: 06/11/2024]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) is increasingly used to image prostate cancer in clinical practice. We sought to develop and test a humanised PSMA minibody IAB2M conjugated to the fluorophore IRDye 800CW-NHS ester in men undergoing robot-assisted laparoscopic radical prostatectomy (RARP) to image prostate cancer cells during surgery. METHODS The minibody was evaluated pre-clinically using PSMA positive/negative xenograft models, following which 23 men undergoing RARP between 2018 and 2020 received between 2.5 mg and 20 mg of IR800-IAB2M intravenously, at intervals between 24 h and 17 days prior to surgery. At every step of the procedure, the prostate, pelvic lymph node chains and extra-prostatic surrounding tissue were imaged with a dual Near-infrared (NIR) and white light optical platform for fluorescence in vivo and ex vivo. Histopathological evaluation of intraoperative and postoperative microscopic fluorescence imaging was undertaken for verification. RESULTS Twenty-three patients were evaluated to optimise both the dose of the reagent and the interval between injection and surgery and secure the best possible specificity of fluorescence images. Six cases are presented in detail as exemplars. Overall sensitivity and specificity in detecting non-lymph-node extra-prostatic cancer tissue were 100% and 65%, and 64% and 64% respectively for lymph node positivity. There were no side-effects associated with administration of the reagent. CONCLUSION Intraoperative imaging of prostate cancer tissue is feasible and safe using IR800-IAB2M. Further evaluation is underway to assess the benefit of using the technique in improving completion of surgical excision during RARP. REGISTRATION ISCRCTN10046036: https://www.isrctn.com/ISRCTN10046036 .
Collapse
Affiliation(s)
- Freddie C Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK.
- Oxford University Hospitals NHS Trust, Oxford, UK.
| | - Alastair D Lamb
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ines Rombach
- Oxford Clinical Trials Research Unit and Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- University of Sheffield, School of Medicine and Population Health, Sheffield, UK
| | - Srinivasa R Rao
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Richard Colling
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Paul R Barber
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Davide Volpi
- Department of Oncology, University of Oxford, Oxford, UK
| | | | - J Francisco Lopez
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Altan Omer
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Aimi Hewitt
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Shelagh Lovell
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Jane Niederer
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Adam Lambert
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Joke Snoeck
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Claire Thomson
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
| | - Tom Leslie
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | - Richard J Bryant
- Nuffield Department of Surgical Sciences, University of Oxford, Old Road Campus Research Building, Headington, Oxford, OX3 7DQ, UK
- Oxford University Hospitals NHS Trust, Oxford, UK
| | | | - Fang Jia
- ImaginAb, Inc, Inglewood, CA, USA
| | | | | | | | - Anna M Wu
- Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | - Tove Olafsen
- Beckman Research Institute, City of Hope, Duarte, CA, 91010, USA
| | | |
Collapse
|
2
|
Buckle T, Rietbergen DDD, de Wit-van der Veen L, Schottelius M. Lessons learned in application driven imaging agent design for image-guided surgery. Eur J Nucl Med Mol Imaging 2024; 51:3040-3054. [PMID: 38900308 PMCID: PMC11300579 DOI: 10.1007/s00259-024-06791-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
To meet the growing demand for intraoperative molecular imaging, the development of compatible imaging agents plays a crucial role. Given the unique requirements of surgical applications compared to diagnostics and therapy, maximizing translational potential necessitates distinctive imaging agent designs. For effective surgical guidance, exogenous signatures are essential and are achievable through a diverse range of imaging labels such as (radio)isotopes, fluorescent dyes, or combinations thereof. To achieve optimal in vivo utility a balanced molecular design of the tracer as a whole is required, which ensures a harmonious effect of the imaging label with the affinity and specificity (e.g., pharmacokinetics) of a pharmacophore/targeting moiety. This review outlines common design strategies and the effects of refinements in the molecular imaging agent design on the agent's pharmacological profile. This includes the optimization of affinity, pharmacokinetics (including serum binding and target mediated background), biological clearance route, the achievable signal intensity, and the effect of dosing hereon.
Collapse
Affiliation(s)
- Tessa Buckle
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
| | - Daphne D D Rietbergen
- Interventional Molecular Imaging Laboratory, Leiden University Medical Center, Leiden, The Netherlands
- Section Nuclear Medicine, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Linda de Wit-van der Veen
- Department of Nuclear Medicine, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Margret Schottelius
- Translational Radiopharmaceutical Sciences, Department of Nuclear Medicine and Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, Rue du Bugnon 25A, Agora, Lausanne, CH-1011, Switzerland.
- Agora, pôle de recherche sur le cancer, Lausanne, Switzerland.
| |
Collapse
|
3
|
Welling MM, Warbroek K, Khurshid C, van Oosterom MN, Rietbergen DDD, de Boer MGJ, Nelissen RGHH, van Leeuwen FWB, Pijls BG, Buckle T. A radio- and fluorescently labelled tracer for imaging and quantification of bacterial infection on orthopaedic prostheses : a proof of principle study. Bone Joint Res 2023; 12:72-79. [PMID: 36649933 PMCID: PMC9872039 DOI: 10.1302/2046-3758.121.bjr-2022-0216.r1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
AIMS Arthroplasty surgery of the knee and hip is performed in two to three million patients annually. Periprosthetic joint infections occur in 4% of these patients. Debridement, antibiotics, and implant retention (DAIR) surgery aimed at cleaning the infected prosthesis often fails, subsequently requiring invasive revision of the complete prosthetic reconstruction. Infection-specific imaging may help to guide DAIR. In this study, we evaluated a bacteria-specific hybrid tracer (99mTc-UBI29-41-Cy5) and its ability to visualize the bacterial load on femoral implants using clinical-grade image guidance methods. METHODS 99mTc-UBI29-41-Cy5 specificity for Stapylococcus aureus was assessed in vitro using fluorescence confocal imaging. Topical administration was used to highlight the location of S. aureus cultured on femoral prostheses using fluorescence imaging and freehand single photon emission CT (fhSPECT) scans. Gamma counting and fhSPECT were used to quantify the bacterial load and monitor cleaning with chlorhexidine. Microbiological culturing helped to relate the imaging findings with the number of (remaining) bacteria. RESULTS Bacteria could be effectively stained in vitro and on prostheses, irrespective of the presence of biofilm. Infected prostheses revealed bacterial presence on the transition zone between the head and neck, and in the screw hole. Qualitative 2D fluorescence images could be complemented with quantitative 3D fhSPECT scans. Despite thorough chlorhexidine treatments, 28% to 44% of the signal remained present in the locations of the infection that were identified using imaging, which included 500 to 2,000 viable bacteria. CONCLUSION The hybrid tracer 99mTc-UBI29-41-Cy5 allowed effective bacterial staining. Qualitative real-time fluorescence guidance could be effectively combined with nuclear imaging that enables quantitative monitoring of the effectiveness of cleaning strategies.Cite this article: Bone Joint Res 2023;12(1):72-79.
Collapse
Affiliation(s)
- Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Kim Warbroek
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Chrow Khurshid
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthias N. van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Daphne D. D. Rietbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands,Department of Radiology, Section Nuclear Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Mark G. J. de Boer
- Departments of Internal Medicine and Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart G. Pijls
- Department of Orthopedics, Leiden University Medical Center, Leiden, Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands, Tessa Buckle. E-mail:
| |
Collapse
|
4
|
Yoo W, Kim S, Garcia M, Mehta S, Sanai N. Evaluation of two-stage designs of Phase 2 single-arm trials in glioblastoma: a systematic review. BMC Med Res Methodol 2022; 22:327. [PMID: 36550391 PMCID: PMC9773486 DOI: 10.1186/s12874-022-01810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Due to economical and ethical reasons, the two-stage designs have been widely used for Phase 2 single-arm trials in oncology because the designs allow us to stop the trial early if the proposed treatment is likely to be ineffective. Nonetheless, none has examined the usage for published articles that had applied the two-stage designs in Phase 2 single-arm trials in brain tumor. A complete systematic review and discussions for overcoming design issues might be important to better understand why oncology trials have shown low success rates in early phase trials. METHODS We systematically reviewed published single-arm two-stage Phase 2 trials for patients with glioblastoma and high-grade gliomas (including newly diagnosed or recurrent). We also sought to understand how these two-stage trials have been implemented and discussed potential design issues which we hope will be helpful for investigators who work with Phase 2 clinical trials in rare and high-risk cancer studies including Neuro-Oncology. The systematic review was performed based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-statement. Searches were conducted using the electronic database of PubMed, Google Scholar and ClinicalTrials.gov for potentially eligible publications from inception by two independent researchers up to May 26, 2022. The followings were key words for the literature search as index terms or free-text words: "phase II trials", "glioblastoma", and "two-stage design". We extracted disease type and setting, population, therapeutic drug, primary endpoint, input parameters and sample size results from two-stage designs, and historical control reference, and study termination status. RESULTS Among examined 29 trials, 12 trials (41%) appropriately provided key input parameters and sample size results from two-stage design implementation. Among appropriately implemented 12 trials, discouragingly only 3 trials (10%) explained the reference information of historical control rates. Most trials (90%) used Simon's two-stage designs. Only three studies have been completed for both stages and two out of the three completed studies had shown the efficacy. CONCLUSIONS Right implementation for two-stage design and sample size calculation, transparency of historical control and experimental rates, appropriate selection on primary endpoint, potential incorporation of adaptive designs, and utilization of Phase 0 paradigm might help overcoming the challenges on glioblastoma therapeutic trials in Phase 2 trials.
Collapse
Affiliation(s)
- Wonsuk Yoo
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Seongho Kim
- grid.254444.70000 0001 1456 7807Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, Detroit, MI 48201 USA
| | - Michael Garcia
- grid.427785.b0000 0001 0664 3531Department of Radiation Oncology, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Shwetal Mehta
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| | - Nader Sanai
- grid.427785.b0000 0001 0664 3531Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013 USA
| |
Collapse
|
5
|
Kamarunas E, Mulheren R, Wong SM, Griffin L, Ludlow CL. The Feasibility of Home-Based Treatment Using Vibratory Stimulation in Chronic Severe Dysphagia. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2022; 31:2539-2556. [PMID: 36346969 DOI: 10.1044/2022_ajslp-22-00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
PURPOSE Previously, externally placed vibratory laryngeal stimulation increased rates of swallowing in persons with and without dysphagia. This study examined the feasibility of using a vibratory device on the skin over the thyroid cartilage for home-based swallowing rehabilitation in long-standing dysphagia. METHOD Only participants with long-standing dysphagia (> 6 months) following cerebrovascular accident or head/neck cancer who had not previously benefited from dysphagia therapy participated. The device had two modes used daily for 90 days. In automatic mode, participants wore the device when awake, which vibrated for 4-8 s every 5 min to trigger a volitional swallow. In manual mode, participants practiced by activating vibration while swallowing rapidly. Study-related adverse events, such as pneumonia, and device-recorded adherence were tracked. Swallowing function on a modified barium swallow study was assessed at baseline and after 3 months of device use. Outcome measures included the Dysphagia Outcome and Severity Scale (DOSS), Penetration-Aspiration Scale (PAS), and swallowing timing measures. Participants' perceptions of the vibratory device and training were obtained. RESULTS The intent to treat analysis showed seven of 11 participants completed the study, all with severe chronic dysphagia. Of those seven participants completing the study, two developed respiratory complications (possibly due to pneumonia) that cleared after antibiotic intervention. For prescribed practice trials, adherence was 80% or greater in four of seven participants (57%) whereas prescribed automatic stimulations were met in only two of seven participants (29%). Three participants (43%) had a modest benefit on DOSS. The time to vestibule closure after the bolus passed the ramus was reduced in five participants (71%) on the modified barium swallow study. CONCLUSION Overall, the results have indicated that intensive home-based practice with stimulation may provide limited functional benefits in severe chronic dysphagia. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.21498591.
Collapse
Affiliation(s)
- Erin Kamarunas
- Department of Communication Sciences and Disorders, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA
- Voice and Swallow Clinic, Sentara Rockingham Memorial Hospital, Harrisonburg, VA
| | - Rachel Mulheren
- Department of Communication Sciences and Disorders, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA
- Communication Sciences Program, Department of Psychological Sciences, Case Western Reserve University, Cleveland, OH
| | - Seng Mun Wong
- Department of Communication Sciences and Disorders, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA
- Speech and Language Therapy Program, Health and Social Sciences, Singapore Institute of Technology
- Speech Therapy Department, Singapore General Hospital
| | - Lindsay Griffin
- Department of Communication Sciences and Disorders, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA
- Department of Communication Sciences and Disorders, School of Communication, Emerson College, Boston, MA
| | - Christy L Ludlow
- Department of Communication Sciences and Disorders, College of Health and Behavioral Studies, James Madison University, Harrisonburg, VA
- Voice and Swallow Clinic, Sentara Rockingham Memorial Hospital, Harrisonburg, VA
| |
Collapse
|
6
|
Dell'Oglio P, van Willigen DM, van Oosterom MN, Bauwens K, Hensbergen F, Welling MM, van der Stadt H, Bekers E, Pool M, van Leeuwen P, Maurer T, van Leeuwen FWB, Buckle T. Feasibility of fluorescence imaging at microdosing using a hybrid PSMA tracer during robot-assisted radical prostatectomy in a large animal model. EJNMMI Res 2022; 12:14. [PMID: 35254544 PMCID: PMC8901828 DOI: 10.1186/s13550-022-00886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/19/2022] [Indexed: 11/17/2022] Open
Abstract
Background With the rise of prostate-specific membrane antigen (PSMA) radioguided surgery, which is performed using a microdosing regime, demand for visual target confirmation via fluorescence guidance is growing. While proven very effective for radiotracers, microdosing approaches the detection limit for fluorescence imaging. Thus, utility will be highly dependent on the tracer performance, the sensitivity of the fluorescence camera used, and the degree of background signal. Using a porcine model the ability to perform robot-assisted radical prostatectomy under fluorescence guidance using the bimodal or rather hybrid PSMA tracer (99mTc-EuK-(SO3)Cy5-mas3) was studied, while employing the tracer in a microdosing regime. This was followed by ex vivo evaluation in surgical specimens obtained from prostate cancer patients. Results T50% blood and T50% urine were reached at 85 min and 390 min, in, respectively, blood and urine. Surgical fluorescence imaging allowed visualization of the prostate gland based on the basal PSMA-expression in porcine prostate. Together, in vivo visualization of the prostate and urinary excretion suggests at least an interval of > 7 h between tracer administration and surgery. Confocal microscopy of excised tissues confirmed tracer uptake in kidney and prostate, which was confirmed with PSMA IHC. No fluorescence was detected in other excised tissues. Tumor identification based on ex vivo fluorescence imaging of human prostate cancer specimens correlated with PSMA IHC. Conclusion Intraoperative PSMA-mediated fluorescence imaging with a microdosing approach was shown to be feasible. Furthermore, EuK‐(SO3)Cy5‐mas3 allowed tumor identification in human prostate samples, underlining the translational potential of this novel tracer. Trial registration Approval for use of biological material for research purposes was provided by the Translational Research Board of the Netherlands Cancer Institute-Antoni van Leeuwenhoek hospital (NKI-AvL) under reference IRBm19-273 (22/10/2019).
Collapse
Affiliation(s)
- Paolo Dell'Oglio
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Danny M van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Matthias N van Oosterom
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | | | - Fabian Hensbergen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | - Mick M Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands
| | | | - Elise Bekers
- Department of Pathology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Martin Pool
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pim van Leeuwen
- Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tobias Maurer
- Martini-Klinik, Universit¨Atsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Fijs W B van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands.,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC, Leiden, The Netherlands. .,Department of Urology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Buckle T, van Willigen DM, Welling MM, van Leeuwen FW. Pre-clinical development of fluorescent tracers and translation towards clinical application. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Millet-Boureima C, Selber-Hnatiw S, Gamberi C. Drug discovery and chemical probing in Drosophila. Genome 2020; 64:147-159. [PMID: 32551911 DOI: 10.1139/gen-2020-0037] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flies are increasingly utilized in drug discovery and chemical probing in vivo, which are novel technologies complementary to genetic probing in fundamental biological studies. Excellent genetic conservation, small size, short generation time, and over one hundred years of genetics make Drosophila an attractive model for rapid assay readout and use of analytical amounts of compound, enabling the experimental iterations needed in early drug development at a fraction of time and costs. Here, we describe an effective drug-testing pipeline using adult flies that can be easily implemented to study several disease models and different genotypes to discover novel molecular insight, probes, quality lead compounds, and develop novel prototype drugs.
Collapse
Affiliation(s)
- Cassandra Millet-Boureima
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Susannah Selber-Hnatiw
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada.,Biology Department, Concordia University, Montreal, QC H4B 1R6, Canada
| |
Collapse
|
9
|
Gundle KR, Deutsch GB, Goodman HJ, Pollack SM, Thompson MJ, Davis JL, Lee MY, Ramirez DC, Kerwin W, Bertout JA, Grenley MO, Sottero KHW, Beirne E, Frazier J, Dey J, Ellison M, Klinghoffer RA, Maki RG. Multiplexed Evaluation of Microdosed Antineoplastic Agents In Situ in the Tumor Microenvironment of Patients with Soft Tissue Sarcoma. Clin Cancer Res 2020; 26:3958-3968. [PMID: 32299817 DOI: 10.1158/1078-0432.ccr-20-0614] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE A persistent issue in cancer drug development is the discordance between robust antitumor drug activity observed in laboratory models and the limited benefit frequently observed when patients are treated with the same agents in clinical trials. Difficulties in accurately modeling the complexities of human tumors may underlie this problem. To address this issue, we developed Comparative In Vivo Oncology (CIVO), which enables in situ investigation of multiple microdosed drugs simultaneously in a patient's tumor. This study was designed to test CIVO's safety and feasibility in patients with soft tissue sarcoma (STS). PATIENTS AND METHODS We conducted a single arm, prospective, 13-patient pilot study. Patients scheduled for incisional biopsy or tumor resection were CIVO-injected 1 to 3 days prior to surgery. Saline or microdoses of anticancer agents were percutaneously injected into the tumor in a columnar fashion through each of eight needles. Following excision, drug responses were evaluated in the injected tissue. RESULTS The primary objective was met, establishing CIVO's feasibility and safety. Device-related adverse events were limited to transient grade 1 nonserious events. In addition, biomarker evaluation of localized tumor response to CIVO microinjected drugs by IHC or with NanoString GeoMx Digital Spatial Profiler demonstrated consistency with known mechanisms of action of each drug, impact on the tumor microenvironment, and historic clinical activity. CONCLUSIONS These results are an advance toward use of CIVO as a translational research tool for early evaluation of investigational agents and drug combinations in a novel approach to phase 0 trials.See related commentary by Sleijfer and Lolkema, p. 3897.
Collapse
Affiliation(s)
- Kenneth R Gundle
- Department of Orthopaedics & Rehabilitation, Oregon Health & Science University, Portland, Oregon.,Operative Care Division, Portland VA Medical Center, Portland, Oregon
| | - Gary B Deutsch
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Howard J Goodman
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | - Seth M Pollack
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Division of Oncology, University of Washington, Seattle, Washington
| | - Matthew J Thompson
- Department of Orthopaedics and Sports Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Jessica L Davis
- Department of Pathology, Oregon Health & Science University, Portland, Oregon
| | - Mee-Young Lee
- Northwell Health Cancer Institute, Monter Cancer Center, North New Hyde Park, New York
| | - Daniel C Ramirez
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York
| | | | | | | | | | | | | | - Joyoti Dey
- Presage Biosciences, Inc., Seattle, Washington
| | | | | | - Robert G Maki
- Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, New York.,Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
10
|
Sanai N. Phase 0 Clinical Trial Strategies for the Neurosurgical Oncologist. Neurosurgery 2020; 85:E967-E974. [PMID: 31245813 PMCID: PMC6855937 DOI: 10.1093/neuros/nyz218] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/08/2019] [Indexed: 12/04/2022] Open
Abstract
In an era of escalating drug discovery costs, shifting priorities within the pharmaceutical industry, and longstanding challenges in central nervous system drug delivery, surgical trials offer an avenue to identify promising agents with demonstrable tumor penetration and molecular effects. The rise of pharmacodynamic- and pharmacokinetic-driven clinical trials, including phase 0 study designs, creates an opportunity for the neurosurgical oncologist to engage drug development for brain tumor patients directly. Here, we review the phase 0 clinical trial mechanism as well as its current and future applications within neurosurgical oncology.
Collapse
Affiliation(s)
- Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
11
|
Quintela-Fandino M, Morales S, Cortés-Salgado A, Manso L, Apala JV, Muñoz M, Gasol Cudos A, Salla Fortuny J, Gion M, Lopez-Alonso A, Cortés J, Guerra J, Malón D, Caleiras E, Mulero F, Mouron S. Randomized Phase 0/I Trial of the Mitochondrial Inhibitor ME-344 or Placebo Added to Bevacizumab in Early HER2-Negative Breast Cancer. Clin Cancer Res 2019; 26:35-45. [DOI: 10.1158/1078-0432.ccr-19-2023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/09/2019] [Accepted: 10/03/2019] [Indexed: 11/16/2022]
|
12
|
Quintela-Fandino M, Apala JV, Malon D, Mouron S, Hornedo J, Gonzalez-Cortijo L, Colomer R, Guerra J. Nintedanib plus letrozole in early breast cancer: a phase 0/I pharmacodynamic, pharmacokinetic, and safety clinical trial of combined FGFR1 and aromatase inhibition. Breast Cancer Res 2019; 21:69. [PMID: 31126332 PMCID: PMC6534834 DOI: 10.1186/s13058-019-1152-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The combined use of a FGFR1 blocker and aromatase inhibitors is appealing for treating breast cancer patients with FGFR1 amplification. However, no pharmacodynamic studies have addressed the effects of this combined target modulation. We conducted a phase 0/I clinical trial in an adjuvant setting, with the goal of obtaining pharmacodynamic proof of the effects of combined aromatase and FGFR1 inhibition and to establish the RP2D for nintedanib combined with letrozole. PATIENTS AND METHODS Women with early-stage luminal breast cancer were eligible for enrollment in the study. Dose level 1 was nintedanib (150 mg/bid) plus letrozole (2.5 mg/day) administered for a single 28-day cycle (DLT assessment period), followed by a classic 3 + 3 schedule. FGF23 and 17-B-estradiol levels were determined on days 0 and 15; pharmacokinetic parameters were assessed on days 1 and 28. Patients were allowed to continue treatment for 6 cycles. The primary study endpoint was a demonstration of FGFR1 modulation (defined as a 25% increase in the plasma FGF23 level). RESULTS A total of 19 patients were enrolled in the study (10 in the expansion cohort following dose escalation). At the RP2D (nintedanib 200 mg/bid plus letrozole 2.5 mg/day), we observed a 55% mean increase in the plasma FGF23 level, and 81.2% of the patients had no detectable level of 17-B-estradiol in their plasma (87.5% of the patients treated with letrozole alone). Nintedanib and letrozole displayed a pharmacokinetic interaction that led to three- and twofold increases in their respective plasma concentrations. Most G3 toxic events (5 out of 6: 2 diarrhea and 3 hypertransaminasemia) occurred subsequent to the DLT assessment period. CONCLUSION Combined treatment with nintedanib (200 mg/bid) plus letrozole (2.5 mg/day) effectively suppressed FGFR1 and aromatase activity, and these respective doses can be used as starting doses in any subsequent trials. However, drug-drug interactions may produce tolerability issues when these drugs are co-administered for an extended time period (e.g., 6 months). Patients enrolled in future trials with these drugs should be carefully monitored for their FGF23 levels and signs of toxicity, and those findings should guide individualized treatment decisions. TRIAL REGISTRATION This trial was registered at www.clinicaltrials.gov under reg. # NCT02619162, on December 2, 2015.
Collapse
Affiliation(s)
- Miguel Quintela-Fandino
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
- Medical Oncology, Hospital Universitario Quiron, Pozuelo de Alarcon, Spain
| | - Juan V. Apala
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Diego Malon
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| | - Silvana Mouron
- Breast Cancer Clinical Research Unit, CNIO–Spanish National Cancer Research Center, Melchor Fernandez Almagro, 3, 28029 Madrid, Spain
| | - Javier Hornedo
- Medical Oncology, Hospital Universitario Quiron, Pozuelo de Alarcon, Spain
| | | | - Ramon Colomer
- Medical Oncology, Hospital Universitario La Princesa, Madrid, Spain
| | - Juan Guerra
- Medical Oncology, Hospital Universitario de Fuenlabrada, Fuenlabrada, Spain
| |
Collapse
|
13
|
Debie P, Devoogdt N, Hernot S. Targeted Nanobody-Based Molecular Tracers for Nuclear Imaging and Image-Guided Surgery. Antibodies (Basel) 2019; 8:E12. [PMID: 31544818 PMCID: PMC6640687 DOI: 10.3390/antib8010012] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/29/2018] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
Molecular imaging is paving the way towards noninvasive detection, staging, and treatment follow-up of diseases such as cancer and inflammation-related conditions. Monoclonal antibodies have long been one of the staples of molecular imaging tracer design, although their long blood circulation and high nonspecific background limits their applicability. Nanobodies, unique antibody-binding fragments derived from camelid heavy-chain antibodies, have excellent properties for molecular imaging as they are able to specifically find their target early after injection, with little to no nonspecific background. Nanobody-based tracers using either nuclear or fluorescent labels have been heavily investigated preclinically and are currently making their way into the clinic. In this review, we will discuss different important factors in nanobody-tracer design, as well as the current state of the art regarding their application for nuclear and fluorescent imaging purposes. Furthermore, we will discuss how nanobodies can also be exploited for molecular therapy applications such as targeted radionuclide therapy and photodynamic therapy.
Collapse
Affiliation(s)
- Pieterjan Debie
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Nick Devoogdt
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
14
|
GAWAI AA, SHAIKH F, GADEKAR M, DEOKAR N, KOLHE S, BIYANI KR. A Review on: Phase '0' Clinical Trials or Exploratory Investigational New Drug. Turk J Pharm Sci 2017; 14:84-89. [PMID: 32454598 PMCID: PMC7227998 DOI: 10.4274/tjps.63935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 10/06/2016] [Indexed: 12/01/2022]
Abstract
In a move to speed up the development of new medicines, the Food and Drug Administration announced in January 2006 the creation of the exploratory Investigational New Drug (IND), the so-called phase '0' clinical trials. This guidance is intended to clarify what preclinical and clinical approaches, as well as chemistry, manufacturing, and controls information, should be considered when planning exploratory studies in humans, including studies of closely related drugs or therapeutic biological products, under an IND application (21 CFR 312). Existing regulations allow a great deal of flexibility in the amount of data that needs to be submitted with an IND application, depending on the goals of the proposed investigation, the specific human testing proposed, and the expected risks. The agency believes that sponsors have not taken full advantage of that flexibility and often provide more supporting information in INDs than is required by regulations. This guidance is intended to clarify what manufacturing controls, preclinical testing, and clinical approaches can be considered when planning limited, early exploratory IND studies in humans.
Collapse
Affiliation(s)
- Ashish A. GAWAI
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| | - Faisal SHAIKH
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| | - Mangesh GADEKAR
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| | - Nitin DEOKAR
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| | - Shivanand KOLHE
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| | - K. R. BIYANI
- Anuradha College Of Pharmacy, Department Of Pharmaceutical Chemistry, Maharashtra, India
| |
Collapse
|
15
|
Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, Terwisscha van Scheltinga AGT, Jansen L, de Vries J, Lub-de Hooge MN, Schröder CP, Jorritsma-Smit A, Linssen MD, de Boer E, van der Vegt B, Nagengast WB, Elias SG, Oliveira S, Witkamp AJ, Mali WPTM, Van der Wall E, van Diest PJ, de Vries EGE, Ntziachristos V, van Dam GM. Tumor-Specific Uptake of Fluorescent Bevacizumab-IRDye800CW Microdosing in Patients with Primary Breast Cancer: A Phase I Feasibility Study. Clin Cancer Res 2016; 23:2730-2741. [PMID: 28119364 DOI: 10.1158/1078-0432.ccr-16-0437] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
Purpose: To provide proof of principle of safety, breast tumor-specific uptake, and positive tumor margin assessment of the systemically administered near-infrared fluorescent tracer bevacizumab-IRDye800CW targeting VEGF-A in patients with breast cancer.Experimental Design: Twenty patients with primary invasive breast cancer eligible for primary surgery received 4.5 mg bevacizumab-IRDye800CW as intravenous bolus injection. Safety aspects were assessed as well as tracer uptake and tumor delineation during surgery and ex vivo in surgical specimens using an optical imaging system. Ex vivo multiplexed histopathology analyses were performed for evaluation of biodistribution of tracer uptake and coregistration of tumor tissue and healthy tissue.Results: None of the patients experienced adverse events. Tracer levels in primary tumor tissue were higher compared with those in the tumor margin (P < 0.05) and healthy tissue (P < 0.0001). VEGF-A tumor levels also correlated with tracer levels (r = 0.63, P < 0.0002). All but one tumor showed specific tracer uptake. Two of 20 surgically excised lumps contained microscopic positive margins detected ex vivo by fluorescent macro- and microscopy and confirmed at the cellular level.Conclusions: Our study shows that systemic administration of the bevacizumab-IRDye800CW tracer is safe for breast cancer guidance and confirms tumor and tumor margin uptake as evaluated by a systematic validation methodology. The findings are a step toward a phase II dose-finding study aimed at in vivo margin assessment and point to a novel drug assessment tool that provides a detailed picture of drug distribution in the tumor tissue. Clin Cancer Res; 23(11); 2730-41. ©2016 AACR.
Collapse
Affiliation(s)
- Laetitia E Lamberts
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Maximillian Koch
- Technische Universität München & Helmholtz Zentrum, München, Germany
| | - Johannes S de Jong
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Arthur L L Adams
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Jürgen Glatz
- Technische Universität München & Helmholtz Zentrum, München, Germany
| | - Mariëtte E G Kranendonk
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anton G T Terwisscha van Scheltinga
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Liesbeth Jansen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jakob de Vries
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Marjolijn N Lub-de Hooge
- Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Carolien P Schröder
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Annelies Jorritsma-Smit
- Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Matthijs D Linssen
- Hospital and Clinical Pharmacy, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Esther de Boer
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bert van der Vegt
- Department of Pathology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Wouter B Nagengast
- Department of Gastroenterology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Sjoerd G Elias
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Sabrina Oliveira
- Division of Cell Biology of the Department of Biology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Arjen J Witkamp
- Department of Surgery, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Willem P Th M Mali
- Department of Radiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elsken Van der Wall
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Paul J van Diest
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Elisabeth G E de Vries
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | | | - Gooitzen M van Dam
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Intensive Care, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
16
|
Evrard S. Repenser la recherche clinique en chirurgie oncologique. De l’opéra-comique au contrôle qualité. Bull Cancer 2016; 103:87-95. [DOI: 10.1016/j.bulcan.2015.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/12/2015] [Indexed: 12/14/2022]
|
17
|
Abstract
Clinical trials for companion animals are becoming more common and more accessible to pet owners as veterinary oncologists seek to expand their knowledge of tumor biology in companion animal species and improve the way they diagnose and treat cancer for these animals. Many owners enroll their pets because they wish to participate in clinical cancer research that may ultimately benefit pets and people. Understanding the goals, benefits, and risks of clinical trials participation provides the knowledge needed by primary care veterinarians to counsel their clients as to whether clinical trial participation is a good choice for them and their pets.
Collapse
|
18
|
Abstract
Advances in nanomedicine are providing sophisticated functions to precisely control the behavior of nanoscale drugs and diagnostics. Strategies that coopt protease activity as molecular triggers are increasingly important in nanoparticle design, yet the pharmacokinetics of these systems are challenging to understand without a quantitative framework to reveal nonintuitive associations. We describe a multicompartment mathematical model to predict strategies for ultrasensitive detection of cancer using synthetic biomarkers, a class of activity-based probes that amplify cancer-derived signals into urine as a noninvasive diagnostic. Using a model formulation made of a PEG core conjugated with protease-cleavable peptides, we explore a vast design space and identify guidelines for increasing sensitivity that depend on critical parameters such as enzyme kinetics, dosage, and probe stability. According to this model, synthetic biomarkers that circulate in stealth but then activate at sites of disease have the theoretical capacity to discriminate tumors as small as 5 mm in diameter-a threshold sensitivity that is otherwise challenging for medical imaging and blood biomarkers to achieve. This model may be adapted to describe the behavior of additional activity-based approaches to allow cross-platform comparisons, and to predict allometric scaling across species.
Collapse
|
19
|
Barker FG. Brain Tumor Clinical Trials. Neurosurgery 2015; 62 Suppl 1:141-5. [DOI: 10.1227/neu.0000000000000782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Liu SV, Miller VA, Lobbezoo MW, Giaccone G. Genomics-based early-phase clinical trials in oncology: Recommendations from the task force on Methodology for the Development of Innovative Cancer Therapies. Eur J Cancer 2014; 50:2747-51. [DOI: 10.1016/j.ejca.2014.07.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 07/29/2014] [Indexed: 10/24/2022]
|
21
|
Warren AD, Gaylord ST, Ngan KC, Dumont Milutinovic M, Kwong GA, Bhatia SN, Walt DR. Disease detection by ultrasensitive quantification of microdosed synthetic urinary biomarkers. J Am Chem Soc 2014; 136:13709-14. [PMID: 25198059 PMCID: PMC4183649 DOI: 10.1021/ja505676h] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The delivery of exogenous agents can enable noninvasive disease monitoring, but existing low-dose approaches require complex infrastructure. In this paper, we describe a microdose-scale injectable formulation of nanoparticles that interrogate the activity of thrombin, a key regulator of clotting, and produce urinary reporters of disease state. We establish a customized single molecule detection assay that enables urinary discrimination of thromboembolic disease in mice using doses of the nanoparticulate diagnostic agents that fall under regulatory guidelines for "microdosing."
Collapse
Affiliation(s)
- Andrew D Warren
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Building 76-453, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | |
Collapse
|
22
|
Lejeune S, Lacombe D. Towards personalized medicine in the EU: what is needed to facilitate the complex international clinical research? Per Med 2013; 10:849-857. [PMID: 29776285 DOI: 10.2217/pme.13.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cancer is a major health problem in developed countries. Despite important progress, cancer remains a fatal disease. In Europe, cancer care is becoming less and less sustainable because it is not cost effective. Better treatments should be made available to patients. The biology of the disease should be known. Drug development should be based on methodologically robust clinical trials testing drugs selected on the grounds of convincing preclinical evidence. Personalized medicine will be established only if sophisticated clinical research is conducted, maximizing the use of recent technologies. Modern clinical research will request a strong partnership between industry and academics, with close contact with regulators and payers. European legal framework should be streamlined and simplified in order to become researcher friendly.
Collapse
Affiliation(s)
- Stéphane Lejeune
- European Organisation for Research & Cancer, 83 Avenue Emmanuel Mounier, 1200 Brussels, Belgium.
| | - Denis Lacombe
- European Organisation for Research & Cancer, 83 Avenue Emmanuel Mounier, 1200 Brussels, Belgium
| |
Collapse
|
23
|
Walker AJ, Alcorn S, Narang A, Nugent K, Wild AT, Herman JM, Tran PT. Radiosensitizers in pancreatic cancer--preclinical and clinical exploits with molecularly targeted agents. Curr Probl Cancer 2013; 37:301-12. [PMID: 24331186 PMCID: PMC3868005 DOI: 10.1016/j.currproblcancer.2013.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There has been an explosion in the number of molecularly targeted agents engineered to inhibit specific molecular pathways driving the tumorigenic phenotype in cancer cells. Some of these molecularly targeted agents have demonstrated robust clinical effects, but few result in meaningful durable responses. Therapeutic radiation is used to treat a majority of cancer patients with recent technologic and pharmacologic enhancements, leading to improvements in the therapeutic ratio for cancer care. Radiotherapy has a very specific role in select cases of postoperative and locally advanced pancreatic cancer patients, but control of metastatic disease still appears to be the major limiting factor behind improvements in cure. Recent rapid autopsy pathologic findings suggest a sub-group of advanced pancreatic cancer patients where death is caused from local disease progression and who would thus benefit from improved local control. One promising approach is to combine molecularly targeted agents with radiotherapy to improve tumor response rates and likelihood of durable local control. We review suggested recommendations on the investigation of molecularly targeted agents as radiosensitizers from preclinical studies to implementation in phase I–II clinical trials. We then discuss a select set of molecularly targeted therapies that we believe show promise as radiosensitizers in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Amanda J. Walker
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Sara Alcorn
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Amol Narang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Aaron T. Wild
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | - Joseph M. Herman
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology, and Surgery, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401 N Broadway Street Baltimore, MD 21231, , Phone (410) 502-3823, Fax (410) 502-1419
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Oncology, and Urology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 401 N Broadway Street Baltimore, MD 21231, , Phone (410) 614-3880, Fax (410) 502-1419
| |
Collapse
|
24
|
Molecularly targeted agents as radiosensitizers in cancer therapy--focus on prostate cancer. Int J Mol Sci 2013; 14:14800-32. [PMID: 23863691 PMCID: PMC3742274 DOI: 10.3390/ijms140714800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/12/2022] Open
Abstract
As our understanding of the molecular pathways driving tumorigenesis improves and more druggable targets are identified, we have witnessed a concomitant increase in the development and production of novel molecularly targeted agents. Radiotherapy is commonly used in the treatment of various malignancies with a prominent role in the care of prostate cancer patients, and efforts to improve the therapeutic ratio of radiation by technologic and pharmacologic means have led to important advances in cancer care. One promising approach is to combine molecularly targeted systemic agents with radiotherapy to improve tumor response rates and likelihood of durable control. This review first explores the limitations of preclinical studies as well as barriers to successful implementation of clinical trials with radiosensitizers. Special considerations related to and recommendations for the design of preclinical studies and clinical trials involving molecularly targeted agents combined with radiotherapy are provided. We then apply these concepts by reviewing a representative set of targeted therapies that show promise as radiosensitizers in the treatment of prostate cancer.
Collapse
|
25
|
Fuloria NK, Fuloria S, Vakiloddin S. Phase zero trials: a novel approach in drug development process. Ren Fail 2013; 35:1044-53. [PMID: 23829822 DOI: 10.3109/0886022x.2013.810543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The objective of this review is to explore the concept of phase 0, its contribution and also its practical guidance in drug development process. The process of drug development is protracted, complicated and requires lot of money. Phase 0 focuses on the aspect of microdosing, which determines the relation between PK & PD profile of drug; also selection of lead compound. Concept of phase 0 balances the planning of study scale between animal and human being, and creates a new way of defining phase I. Time is not too far when advance techniques and methods will be developed for the phase 0 studies to make it convenient and widely applicable in the design and development of majority of drugs. CONCLUSION Although studies are yet to be done for phase 0 trial, it can be recognized that phase 0 trials would provide an opportunity to generate essential human PK and PD data much earlier in a drug development process, which could be a major advantage in design and decision making for further clinical development of an agent.
Collapse
Affiliation(s)
- Neeraj Kumar Fuloria
- Department of Pharmaceutical Quality Assurance, Anuradha College of Pharmacy, Chikhli District, Buldana, Maharashtra, India.
| | | | | |
Collapse
|
26
|
Burock S, Meunier F, Lacombe D. How can innovative forms of clinical research contribute to deliver affordable cancer care in an evolving health care environment? Eur J Cancer 2013; 49:2777-83. [PMID: 23777742 DOI: 10.1016/j.ejca.2013.05.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022]
Abstract
As health care costs are constantly rising and governments are reforming their healthcare systems there is an urgent need to reshape the European clinical research landscape. To bridge the translational gap extensive research to understand the mechanism of the agents and of the disease has to be performed and the real benefit of drugs needs to be assessed independently. Furthermore, meaningful data for reimbursement strategies will be a major goal of future clinical trials as well. Therefore, a new integrated model of clinical cancer research is needed to optimise the R&D process. Strategies to ensure that we can gather robust and relevant data about the effectiveness of various healthcare interventions have to be developed to provide optimal patient care within the limits of a healthcare budget.
Collapse
Affiliation(s)
- Susen Burock
- EORTC Headquarters, Avenue E. Mounier 83/11, 1200 Brussels, Belgium
| | | | | |
Collapse
|
27
|
Premkumar DR, Jane EP, Foster KA, Pollack IF. Survivin inhibitor YM-155 sensitizes tumor necrosis factor- related apoptosis-inducing ligand-resistant glioma cells to apoptosis through Mcl-1 downregulation and by engaging the mitochondrial death pathway. J Pharmacol Exp Ther 2013; 346:201-10. [PMID: 23740602 DOI: 10.1124/jpet.113.204743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Induction of apoptosis by the death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising antitumor therapy. However, not all tumor cells are sensitive to TRAIL, highlighting the need for strategies to overcome TRAIL resistance. Inhibitor of apoptosis family member survivin is constitutively activated in various cancers and blocks apoptotic signaling. Recently, we demonstrated that YM-155 [3-(2-methoxyethyl)-2-methyl-4,9-dioxo-1-(pyrazin-2-ylmethyl)-4,9-dihydro-3H-naphtho[2,3-d]imidazol-1-ium bromide], a small molecule inhibitor, downregulates not only survivin in gliomas but also myeloid cell leukemia sequence 1 (Mcl-1), and it upregulates proapoptotic Noxa levels. Because Mcl-1 and survivin are critical mediators of resistance to various anticancer therapies, we questioned whether YM-155 could sensitize resistant glioma cells to TRAIL. To address this hypothesis, we combined YM-155 with TRAIL and examined the effects on cell survival and apoptotic signaling. TRAIL or YM-155 individually induced minimal killing in highly resistant U373 and LNZ308 cell lines, but combining TRAIL with YM-155 triggered a synergistic proapoptotic response, mediated through mitochondrial dysfunction via activation of caspases-8, -9, -7, -3, poly-ADP-ribose polymerase, and Bid. Apoptosis induced by combination treatments was blocked by caspase-8 and pan-caspase inhibitors. In addition, knockdown of Mcl-1 by RNA interference overcame apoptotic resistance to TRAIL. Conversely, silencing Noxa by RNA interference reduced the combined effects of YM-155 and TRAIL on apoptosis. Mechanistically, these findings indicate that YM-155 plays a role in counteracting glioma cell resistance to TRAIL-induced apoptosis by downregulating Mcl-1 and survivin and amplifying mitochondrial signaling through intrinsic and extrinsic apoptotic pathways. The significantly enhanced antitumor activity of the combination of YM-155 and TRAIL may have applications for therapy of malignant glioma.
Collapse
Affiliation(s)
- Daniel R Premkumar
- Department of Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | |
Collapse
|
28
|
|
29
|
Methodology for the Development of Innovative Cancer Therapies Task Force addresses methodological issues in the clinical development of innovative cancer therapies. ACTA ACUST UNITED AC 2012. [DOI: 10.4155/cli.11.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
|
31
|
Abstract
Currently in oncology a novel agent entering development has only 5% chance of making it to commercial use. One of the ways to mitigate this problem would be to conduct exploratory or 'phase 0' clinical trials, conducted before phase 1 dose-escalation safety and tolerance studies. These phase 0 studies are a first administration of the novel agent to humans, at limited doses, on a small number of patients and over a short period. The objectives are to validate preclinical development and to acquire pharmacokinetic and pharmacodynamic data in order to better justify the scientific rational. In this article, we focus on phase 0 trials and their usefulness for the development of new drugs in oncology. We performed a literature review of questions related to phase 0 trials in articles published during 2006 to 2009. Thirty articles on phase 0 clinical trials have been published. The affected fields are oncology and pharmacology. Phase 0 clinical trials are discussed in the literature in terms of theoretical issues and from academic, pharmaceutical industry and patient point of views. If phase 0 clinical trials are a future prospect for drug development against cancer, the clinical applications of these trials need to be specified.
Collapse
|
32
|
Cummings JL. Biomarkers in Alzheimer's disease drug development. Alzheimers Dement 2011; 7:e13-44. [PMID: 21550318 DOI: 10.1016/j.jalz.2010.06.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 06/01/2010] [Accepted: 06/03/2010] [Indexed: 12/27/2022]
Abstract
Developing new therapies for Alzheimer's disease (AD) is critically important to avoid the impending public health disaster imposed by this common disorder. Means must be found to prevent, delay the onset, or slow the progression of AD. These goals will be achieved by identifying disease-modifying therapies and testing them in clinical trials. Biomarkers play an increasingly important role in AD drug development. In preclinical testing, they assist in decisions to develop an agent. Biomarkers in phase I provide insights into toxic responses and drug metabolism and in Phase II proof-of-concept trials they facilitate go/no-go decisions and dose finding. Biomarkers can play a role in identifying presymptomatic patients or specific patient subgroups. They can provide evidence of target engagement before clinical changes can be expected. Brain imaging can serve as a primary outcome in Phase II trials and as a key secondary outcome in Phase III trials. Magnetic resonance imaging is currently best positioned for use in large multicenter clinical trials. Cerebrospinal fluid (CSF) measures of amyloid beta protein (Aβ), tau protein, and hyperphosphorylated tau (p-tau) protein are sensitive and specific to the diagnosis of AD and may serve as inclusion criteria and possibly as outcomes in clinical trials targeting relevant pathways. Plasma measures of Aβ are of limited diagnostic value but may provide important information as a measure of treatment response. A wide variety of measures of detectable products of cellular processes are being developed as possible biomarkers accessible in the cerebrospinal fluid and plasma or serum. Surrogate markers that can function as outcomes in pivotal trials and reliably predict clinical outcomes are needed to facilitate primary prevention trials of asymptomatic persons where clinical measures may be of limited value. Fit-for-purpose biomarkers are increasingly available to guide AD drug development decisions.
Collapse
Affiliation(s)
- Jeffrey L Cummings
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic Neurological Institute, Las Vegas, NV, USA.
| |
Collapse
|
33
|
Gupta UC, Bhatia S, Garg A, Sharma A, Choudhary V. Phase 0 clinical trials in oncology new drug development. Perspect Clin Res 2011; 2:13-22. [PMID: 21584177 PMCID: PMC3088951 DOI: 10.4103/2229-3485.76285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Research focus of pharmaceutical industry has expanded to a larger extent in last few decades putting many more new molecules, particularly targeted agents, for the clinical development. On the other hand, researchers are facing serious challenges due to high failure rates of new molecules in clinical studies. The United States Food and Drug Administration (FDA) in combination with academia and industry experts identified many factors responsible for failures of new molecules, and with a vision of taking traditional drug development model toward an innovative paradigm shift, issued regulatory guidance on conduct of exploratory investigational new drug (exploratory IND) studies, often called as phase 0 clinical trials, requiring reduced preclinical testing, which has special relevance to life-threatening diseases such as cancer. Phase 0 trials, utilizing much lower drug doses, provide an opportunity to explore the clinical behavior of new molecules very early in the drug development pathway, helping to identify the promising candidates and eliminating non-promising molecules, thus improving the efficiency of overall drug development with significant savings of resources. Being non-therapeutic in nature, these studies, however, pose certain ethical challenges requiring careful study designing and informed consent process. This article reviews the insights and perspectives for the feasibility, utility, planning, designing and conduct of phase 0 clinical trials, in addition to ethical issues and industrial perspective focused at oncology new drug development.
Collapse
Affiliation(s)
- Umesh Chandra Gupta
- Clinical Research and Medical Services, Fresenius Kabi Oncology Ltd., Gurgaon, Delhi
| | | | - Amit Garg
- Medical Services, Merck Serono, Mumbai, Maharashtra
| | - Amit Sharma
- Clinical Research and Medical Services, Fresenius Kabi Oncology Ltd., Gurgaon, Delhi
| | - Vaibhav Choudhary
- Clinical Research and Medical Services, Fresenius Kabi Oncology Ltd., Gurgaon, Delhi
| |
Collapse
|
34
|
Pocard M, Soria JC, Aldaz-Carroll L, Bellet D. Phase 0 clinical trials in oncology: an exploratory methodology for constructing a study with patients undergoing surgery for metastatic disease. J Clin Oncol 2010; 28:4551-3. [PMID: 20837954 DOI: 10.1200/jco.2010.29.2870] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Khanna C, London C, Vail D, Mazcko C, Hirschfeld S. Guiding the optimal translation of new cancer treatments from canine to human cancer patients. Clin Cancer Res 2009; 15:5671-7. [PMID: 19737961 DOI: 10.1158/1078-0432.ccr-09-0719] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
On June 20, 2008, a meeting entitled "Translation of new cancer treatments from canine to human cancer patients," sponsored by the National Cancer Institute in Bethesda, Maryland, was convened to discuss the potential value, opportunity, risks, and rewards of an integrated and comparative drug development path for new cancer therapeutics that includes naturally occurring cancers in pet animals. A summary of this meeting and subsequent discussion are provided here to afford clarity on the conduct of these studies so as to optimize the opportunities provided by this novel drug development and modeling strategy.
Collapse
Affiliation(s)
- Chand Khanna
- School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | | | | | | | |
Collapse
|
36
|
Greil R. The Dark Side of the Moon - the Side Effects of Therapy in a Dynamic Era of Breast Cancer Management. Breast Care (Basel) 2009; 4:144-147. [PMID: 20847873 PMCID: PMC2931000 DOI: 10.1159/000225388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Richard Greil
- Universitätsklinik für Innere Medizin III mit Hämatologie, internistische Onkologie, Hämostaseologie, Infektiologie und Rheumatologie, Onkologisches Zentrum, Paracelsus Medizinische Privatuniversität Salzburg, Austria
| |
Collapse
|
37
|
Schellens JHM. Phase 0 (zero) clinical trials: more than zero benefit? Eur J Cancer 2009; 45:728-9. [PMID: 19231159 DOI: 10.1016/j.ejca.2009.01.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
|