1
|
Caetano-Pinto P, Stahl SH. Renal Organic Anion Transporters 1 and 3 In Vitro: Gone but Not Forgotten. Int J Mol Sci 2023; 24:15419. [PMID: 37895098 PMCID: PMC10607849 DOI: 10.3390/ijms242015419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Organic anion transporters 1 and 3 (OAT1 and OAT3) play a crucial role in kidney function by regulating the secretion of multiple renally cleared small molecules and toxic metabolic by-products. Assessing the activity of these transporters is essential for drug development purposes as they can significantly impact drug disposition and safety. OAT1 and OAT3 are amongst the most abundant drug transporters expressed in human renal proximal tubules. However, their expression is lost when cells are isolated and cultured in vitro, which is a persistent issue across all human and animal renal proximal tubule cell models, including primary cells and cell lines. Although it is well known that the overall expression of drug transporters is affected in vitro, the underlying reasons for the loss of OAT1 and OAT3 are still not fully understood. Nonetheless, research into the regulatory mechanisms of these transporters has provided insights into the molecular pathways underlying their expression and activity. In this review, we explore the regulatory mechanisms that govern the expression and activity of OAT1 and OAT3 and investigate the physiological changes that proximal tubule cells undergo and that potentially result in the loss of these transporters. A better understanding of the regulation of these transporters could aid in the development of strategies, such as introducing microfluidic conditions or epigenetic modification inhibitors, to improve their expression and activity in vitro and to create more physiologically relevant models. Consequently, this will enable more accurate assessment for drug development and safety applications.
Collapse
Affiliation(s)
- Pedro Caetano-Pinto
- Department of Urology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Simone H. Stahl
- CVRM Safety, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 310 Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, UK;
| |
Collapse
|
2
|
Zhang L, Yu X, Wu Y, Fu H, Xu P, Zheng Y, Wen L, Yang X, Zhang F, Hu M, Wang H, Liu X, Qiao J, Peng C, Gao R, Saffery R, Fu Y, Qi H, Tong C, Kilby MD, Baker PN. Gestational Diabetes Mellitus-Associated Hyperglycemia Impairs Glucose Transporter 3 Trafficking in Trophoblasts Through the Downregulation of AMP-Activated Protein Kinase. Front Cell Dev Biol 2021; 9:722024. [PMID: 34796169 PMCID: PMC8593042 DOI: 10.3389/fcell.2021.722024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
AMP-activated protein kinase (AMPK) is an important regulator of glucose metabolism, and glucose transporter 3 (GLUT3) is an efficient glucose transporter in trophoblasts. Whether placental AMPK and GLUT3 respond accordingly to gestational diabetes mellitus (GDM) remains uncertain. Here, we explored the regulatory role of AMPK in the GLUT3-dependent uptake of glucose by placental trophoblasts and the viability of the cells. In this study, the level of glycolysis in normal and GDM-complicated placentas was assessed by LC-MS/MS. The trophoblast hyperglycemia model was induced by the incubation of HTR8/SVneo cells with a high glucose concentration. GDM animal models were generated with db/ + mice and C57BL/6J mice fed a high-fat diet, and AMPK was manipulated by the oral administration of metformin. The uptake of glucose by trophoblasts was assessed using 2-NBDG or 2-deoxy-D-[3H] glucose. The results showed that GDM is associated with impaired glycolysis, AMPK activity, GLUT3 expression in the plasma membrane (PM) and cell survival in the placenta. Hyperglycemia induced similar changes in trophoblasts, and these changes were rescued by AMPK activation. Both hyperglycemic db/ + and high-fat diet-induced GDM mice exhibited a compromised AMPK–GLUT3 axis and suppressed cell viability in the placenta as well as excessive fetal growth, and all of these effects were partially alleviated by metformin. Taken together, our findings support the notion that AMPK activation upregulates trophoblast glucose uptake by stimulating GLUT3 translocation, which is beneficial for viability. Thus, the modulation of glucose metabolism in trophoblasts by targeting AMPK might ameliorate the adverse intrauterine environment caused by GDM.
Collapse
Affiliation(s)
- Li Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xinyang Yu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Huijia Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School, Houston, TX, United States.,Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX, United States
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiaotao Yang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Fumei Zhang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hao Wang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Juan Qiao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China
| | - Rufei Gao
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Richard Saffery
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Department of Paediatrics, Cancer, Disease and Developmental Epigenetics, Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | - Yong Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing, China.,International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Mark D Kilby
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
| | - Philip N Baker
- International Collaborative Laboratory of Reproduction and Development of the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China.,College of Life Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
3
|
Song A, Zhang C, Meng X. Mechanism and application of metformin in kidney diseases: An update. Biomed Pharmacother 2021; 138:111454. [PMID: 33714781 DOI: 10.1016/j.biopha.2021.111454] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 01/08/2023] Open
Abstract
Metformin is an oral antihyperglycemic drug widely used to treat type 2 diabetes mellitus (T2DM), acting via indirect activation of 5' Adenosine monophosphate-activated Protein Kinase (AMPK). Beyond the anti-diabetic effect, accumulative pieces of evidence have revealed that metformin also everts a beneficial effect in diverse kidney diseases. In various acute kidney diseases (AKI) animal models, metformin protects renal tubular cells from inflammation, apoptosis, reactive oxygen stress (ROS), endoplasmic reticulum (ER) stress, epithelial-mesenchymal transition (EMT) via AMPK activation. In diabetic kidney disease (DKD), metformin also alleviates podocyte loss, mesangial cells apoptosis, and tubular cells senescence through AMPK-mediated signaling pathways. Besides, metformin inhibits cystic fibrosis transmembrane conductance regulator (CFTR)-mediated fluids secretion and the mammalian target of rapamycin (mTOR)-involved cyst formation negatively regulated by AMPK in autosomal dominant polycystic kidney disease (APDKD). Furthermore, metformin also contributes to the alleviation of urolithiasis and renal cell carcinoma (RCC). As the common pathway for chronic kidney disease (CKD) progressing towards end-stage renal disease (ESRD), renal fibrosis is ameliorated by metformin, to a great extent dependent on AMPK activation. However, clinical data are not always consistent with preclinical data, some clinical investigations showed the unmeaningful even detrimental effect of metformin on T2DM patients with kidney diseases. Most importantly, metformin-associated lactic acidosis (MALA) is a vital issue restricting the application of metformin. Thus, we conclude the application of metformin in kidney diseases and uncover the underlying molecular mechanisms in this review.
Collapse
Affiliation(s)
- Anni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xianfang Meng
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Borys AM, Seweryn M, Gołąbek T, Bełch Ł, Klimkowska A, Totoń-Żurańska J, Machlowska J, Chłosta P, Okoń K, Wołkow PP. Patterns of gene expression characterize T1 and T3 clear cell renal cell carcinoma subtypes. PLoS One 2019; 14:e0216793. [PMID: 31150395 PMCID: PMC6544217 DOI: 10.1371/journal.pone.0216793] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/29/2019] [Indexed: 12/21/2022] Open
Abstract
Renal carcinoma is the 20th most common cancer worldwide. Clear cell renal cell carcinoma is the most frequent type of renal cancer. Even in patients diagnosed at an early stage, characteristics of disease progression remain heterogeneous. Up-to-date molecular classifications stratify the ccRCC samples into two clusters. We analyzed gene expression in 23 T1 or T3 ccRCC samples. Unsupervised clustering divided this group into three clusters, two of them contained pure T1 or T3 samples while one contained a mixed group. We defined a group of 36 genes that discriminate the mixed cluster. This gene set could be associated with tumor classification into a higher stage and it contained significant number of genes coding for molecular transporters, channel and transmembrane proteins. External data from TCGA used to test our findings confirmed that the expression levels of those 36 genes varied significantly between T1 and T3 tumors. In conclusion, we found a clustering pattern of gene expression, informative for heterogeneity among T1 and T3 tumors of clear cell renal cell carcinoma.
Collapse
Affiliation(s)
- Agnieszka M Borys
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Michał Seweryn
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Gołąbek
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Łukasz Bełch
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Klimkowska
- Chair of Pathomorphology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Julita Machlowska
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Chłosta
- Chair and Department of Urology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Okoń
- Chair of Pathomorphology, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Medical Faculty, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
5
|
Amin S, Lux A, O'Callaghan F. The journey of metformin from glycaemic control to mTOR inhibition and the suppression of tumour growth. Br J Clin Pharmacol 2018; 85:37-46. [PMID: 30290005 DOI: 10.1111/bcp.13780] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 09/26/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of the effect of metformin on human health is increasing. In addition to its ability to improve the control of hyperglycaemia, metformin has been shown to reduce the burden o,f ageing via effects on damaged DNA and the process of apoptosis. Studies have shown that metformin may reduce the risk of cardiovascular disease through influences on body weight, blood pressure, cholesterol levels and the progression of atherosclerosis. Studies also suggest that metformin may be beneficial for neuro-psychiatric disorders, cognitive impairment and in reducing the risk of dementia, erectile dysfunction and Duchenne muscular dystrophy. In vivo and in vitro studies have shown that metformin has anti-cancer properties, and population studies have suggested that metformin may reduce the risk of cancer or improve cancer prognosis. It is thought that it exerts its anti-cancer effect through the inhibition of the mammalian target of rapamycin (mTOR) signalling pathway. Because of its effect on the mTOR pathway, there may be a role for metformin in slowing or reversing growth of life-threatening hamartomas in tuberous sclerosis complex.
Collapse
Affiliation(s)
- Sam Amin
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Andrew Lux
- Paediatric Neurologist, University Hospitals Bristol, Upper Maudlin Street Centre Level 6, Bristol, BS28AE, UK
| | - Finbar O'Callaghan
- Institute of Child Health, University College London, London, WC1N 1EH, UK
| |
Collapse
|
6
|
Gaziev A, Abdullaev S, Minkabirova G, Kamenskikh K. X-rays and metformin cause increased urinary excretion of cell-free nuclear and mitochondrial DNA in aged rats. J Circ Biomark 2017; 5:1849454416670782. [PMID: 28936265 PMCID: PMC5548319 DOI: 10.1177/1849454416670782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/01/2016] [Indexed: 11/18/2022] Open
Abstract
Activation of cell death in mammals can be assessed by an increase of an amount of cell-free DNA (cf-DNA) in urine or plasma. We investigated the excretion of cf nuclear DNA (nDNA) and cf mitochondrial DNA (mtDNA) in the urine of rats 3 and 24 months in age after X-irradiation and metformin administration. Analyses showed that prior to treatment, the amount of cf-nDNA was 40% higher and cf-mtDNA was 50% higher in the urine of aged rats compared to that of young animals. At 12 h after irradiation, the content of cf-nDNA and cf-mtDNA in the urine of young rats was increased by 200% and 460%, respectively, relative to the control, whereas in the urine of aged rats, it was 250% and 720% higher. After 6 h following metformin administration, the amount of cf-nDNA and cf-mtDNA in the urine of young rats was elevated by 25% and 55% and by 50% and 160% in the urine of aged rats. Thus, these preliminary data suggest that X-rays and metformin cause a significant increase of cf-DNA in the urine of older rats caused by the active cell death in tissues. These results also suggest that metformin possibly initiates the death of the cells containing structural and functional abnormalities.
Collapse
Affiliation(s)
- Azhub Gaziev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Serazhutdin Abdullaev
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Gulchachak Minkabirova
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| | - Kristina Kamenskikh
- Institute of Theoretical and Experimental Biophysics, RAS, Pushino, Moscow Region, Russia
| |
Collapse
|
7
|
Ikhlas S, Ahmad M. Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sci 2017; 185:53-62. [DOI: 10.1016/j.lfs.2017.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/15/2017] [Accepted: 07/26/2017] [Indexed: 12/19/2022]
|
8
|
Assessment of Response of Kidney Tumors to Rapamycin and Atorvastatin in Tsc1 +/- Mice. Transl Oncol 2017; 10:793-799. [PMID: 28844017 PMCID: PMC5570581 DOI: 10.1016/j.tranon.2017.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/21/2022] Open
Abstract
Atorvastatin is widely used to lower blood cholesterol and to reduce risk of cardiovascular disease–associated complications. Epidemiological investigations and preclinical studies suggest that statins such as atorvastatin have antitumor activity for various types of cancer. Tuberous sclerosis (TSC) is a tumor syndrome caused by TSC1 or TSC2 mutations that lead to aberrant activation of mTOR and tumor formation in multiple organs. Previous studies have demonstrated that atorvastatin selectively suppressed growth and proliferation of mouse Tsc2 null embryonic fibroblasts through inhibition of mTOR. However, atorvastatin alone did not reduce tumor burden in the liver and kidneys of Tsc2+/− mice as assessed by histological analysis, and no combination therapy of rapamycin and atorvastatin has been tried. In this study, we used T2-weighted magnetic resonance imaging to track changes in tumor number and size in the kidneys of a Tsc1+/− mouse model and to assess the efficacy of rapamycin and atorvastatin alone and as a combination therapy. We found that rapamycin alone or rapamycin combined with atorvastatin significantly reduced tumor burden, while atorvastatin alone did not. Combined therapy with rapamycin and atorvastatin appeared to be more effective for treating renal tumors than rapamycin alone, but the difference was not statistically significant. We conclude that combined therapy with rapamycin and atorvastatin is unlikely to provide additional benefit over rapamycin as a single agent in the treatment of Tsc-associated renal tumors.
Collapse
|
9
|
Chang MY, Ma TL, Hung CC, Tian YC, Chen YC, Yang CW, Cheng YC. Metformin Inhibits Cyst Formation in a Zebrafish Model of Polycystin-2 Deficiency. Sci Rep 2017; 7:7161. [PMID: 28769124 PMCID: PMC5541071 DOI: 10.1038/s41598-017-07300-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common kidney disease caused by mutations in PKD1 or PKD2. Metformin reduces cyst growth in mouse models of PKD1. However, metformin has not been studied in animal models of PKD2, and the cellular mechanism underlying its effectiveness is not entirely clear. This study investigated the effects of metformin on cyst formation in a zebrafish model of polycystin-2 deficiency resulting from morpholino knockdown of pkd2. We added metformin (2.5 to 20 mM) to the embryo media between 4 and 48 hours post fertilisation and observed pronephric cyst formation by using the wt1b promoter-driven GFP signal in Tg(wt1b:GFP) pkd2 morphants. Metformin inhibited pronephric cyst formation by 42–61% compared with the untreated controls. Metformin also reduced the number of proliferating cells in the pronephric ducts, the degree of dorsal body curvature, and the infiltration of leukocytes surrounding the pronephros. Moreover, metformin treatment increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced autophagy in the pronephros. Our data suggest that metformin reduces cyst formation through activation of the AMPK pathway and modulation of defective cellular events such as proliferation and autophagy. These results also imply that metformin could have therapeutic potential for ADPKD treatment.
Collapse
Affiliation(s)
- Ming-Yang Chang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsu-Lin Ma
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Cheng-Chieh Hung
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yung-Chang Chen
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center and Department of Nephrology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Yi-Chuan Cheng
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.
| |
Collapse
|
10
|
van der Mijn JC, Panka DJ, Geissler AK, Verheul HM, Mier JW. Novel drugs that target the metabolic reprogramming in renal cell cancer. Cancer Metab 2016; 4:14. [PMID: 27418963 PMCID: PMC4944519 DOI: 10.1186/s40170-016-0154-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/30/2016] [Indexed: 02/07/2023] Open
Abstract
Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.
Collapse
Affiliation(s)
- Johannes C van der Mijn
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA ; Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands ; Department of Internal Medicine, OLVG; Jan van Tooropstraat 164, 1061 AE Amsterdam, The Netherlands
| | - David J Panka
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Andrew K Geissler
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| | - Henk M Verheul
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - James W Mier
- Department of Hematology/Oncology, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Ave, Boston, MA 02215 USA
| |
Collapse
|
11
|
Li LP, Song FF, Weng YY, Yang X, Wang K, Lei HM, Ma J, Zhou H, Jiang HD. Role of OCT2 and MATE1 in renal disposition and toxicity of nitidine chloride. Br J Pharmacol 2016; 173:2543-54. [PMID: 27324234 DOI: 10.1111/bph.13537] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Nitidine chloride (NC), a benzophenanthridine alkaloid, has various biological properties including anticancer and analgesic activities. The aim of the present study was to evaluate the role of organic cation transporter 2 (OCT2) and multidrug and toxin extrusion 1 (MATE1) in the renal disposition and nephrotoxicity of NC. EXPERIMENTAL APPROACH MDCK cells stably expressing human OCT2 and/or hMATE1 were used to investigate the OCT2- and MATE1-mediated transport of NC. In addition, the accumulation of NC and its potential toxicity were studied in rat primary-cultured proximal tubular (rPCPT) cells and in rats in vivo. KEY RESULTS NC was found to be a high-affinity substrate of both OCT2 and MATE1 with high cytotoxicity in MDCK-hOCT2/hMATE1 and MDCK-hOCT2 compared to mock cells. The OCT2 inhibitors, cimetidine and (+)-tetrahydropalmatine ((+)-THP), significantly reduced NC accumulation and cytotoxicity in MDCK-hOCT2, MDCK-hOCT2/hMATE1 and rPCPT cells. Severe kidney damage with high levels of blood urea nitrogen and lactate dehydrogenase (LDH), reduced levels of alkaline phosphatase (ALP) and pathological changes were found in rats after 20 days of successive i.v. doses of NC (5 mg·kg(-1) ·day(-1) ). Concomitantly, the concentration of NC in the kidney reached similar high levels at 2 h after the last dose of the 20 day treatment as those observed at 0.5 h after a single i.v. dose of 5 mg·kg(-1) . CONCLUSIONS AND IMPLICATIONS Our data indicate that NC-induced nephrotoxicity might be mainly attributed to OCT2-mediated extensive renal uptake and weak tubular secretion by MATE1.
Collapse
Affiliation(s)
- L P Li
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - F F Song
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Y Y Weng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - X Yang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - K Wang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - H M Lei
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - J Ma
- Center for Drug Safety Evaluation And Research, Zhejiang University, Hangzhou, Zhejiang, China
| | - H Zhou
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - H D Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Gallagher EJ, LeRoith D. Obesity and Diabetes: The Increased Risk of Cancer and Cancer-Related Mortality. Physiol Rev 2015; 95:727-48. [PMID: 26084689 DOI: 10.1152/physrev.00030.2014] [Citation(s) in RCA: 476] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Obesity and type 2 diabetes are becoming increasingly prevalent worldwide, and both are associated with an increased incidence and mortality from many cancers. The metabolic abnormalities associated with type 2 diabetes develop many years before the onset of diabetes and, therefore, may be contributing to cancer risk before individuals are aware that they are at risk. Multiple factors potentially contribute to the progression of cancer in obesity and type 2 diabetes, including hyperinsulinemia and insulin-like growth factor I, hyperglycemia, dyslipidemia, adipokines and cytokines, and the gut microbiome. These metabolic changes may contribute directly or indirectly to cancer progression. Intentional weight loss may protect against cancer development, and therapies for diabetes may prove to be effective adjuvant agents in reducing cancer progression. In this review we discuss the current epidemiology, basic science, and clinical data that link obesity, diabetes, and cancer and how treating obesity and type 2 diabetes could also reduce cancer risk and improve outcomes.
Collapse
Affiliation(s)
| | - Derek LeRoith
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
13
|
Harrach S, Ciarimboli G. Role of transporters in the distribution of platinum-based drugs. Front Pharmacol 2015; 6:85. [PMID: 25964760 PMCID: PMC4408848 DOI: 10.3389/fphar.2015.00085] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Platinum derivatives used as chemotherapeutic drugs such as cisplatin and oxaliplatin have a potent antitumor activity. However, severe side effects such as nephro-, oto-, and neurotoxicity are associated with their use. Effects and side effects of platinum-based drugs are in part caused by their transporter-mediated uptake in target and non target cells. In this mini review, the transport systems involved in cellular handling of platinum derivatives are illustrated, focusing on transporters for cisplatin. The copper transporter 1 seems to be of particular importance for cisplatin uptake in tumor cells, while the organic cation transporter (OCT) 2, due to its specific organ distribution, may play a major role in the development of undesired cisplatin side effects. In polarized cells, e.g., in renal proximal tubule cells, apically expressed transporters, such as multidrug and toxin extrusion protein 1, mediate secretion of cisplatin and in this way contribute to the control of its toxic effects. Specific inhibition of cisplatin uptake transporters such as the OCTs may be an attractive therapeutic option to reduce its toxicity, without impairing its antitumor efficacy.
Collapse
Affiliation(s)
- Saliha Harrach
- Experimental Nephrology, Medical Clinic D, University of Münster, University Hospital MünsterMünster, Germany
| | - Giuliano Ciarimboli
- Experimental Nephrology, Medical Clinic D, University of Münster, University Hospital MünsterMünster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, University Hospital MünsterMünster, Germany
| |
Collapse
|
14
|
Madera D, Vitale-Cross L, Martin D, Schneider A, Molinolo AA, Gangane N, Carey TE, McHugh JB, Komarck CM, Walline HM, William WN, Seethala RR, Ferris RL, Gutkind JS. Prevention of tumor growth driven by PIK3CA and HPV oncogenes by targeting mTOR signaling with metformin in oral squamous carcinomas expressing OCT3. Cancer Prev Res (Phila) 2015; 8:197-207. [PMID: 25681087 DOI: 10.1158/1940-6207.capr-14-0348] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Most squamous cell carcinomas of the head and neck (HNSCC) exhibit a persistent activation of the PI3K-mTOR signaling pathway. We have recently shown that metformin, an oral antidiabetic drug that is also used to treat lipodystrophy in HIV-infected (HIV(+)) individuals, diminishes mTOR activity and prevents the progression of chemically induced experimental HNSCC premalignant lesions. Here, we explored the preclinical activity of metformin in HNSCCs harboring PIK3CA mutations and HPV oncogenes, both representing frequent HNSCC alterations, aimed at developing effective targeted preventive strategies. The biochemical and biologic effects of metformin were evaluated in representative HNSCC cells expressing mutated PIK3CA or HPV oncogenes (HPV(+)). The oral delivery of metformin was optimized to achieve clinical relevant blood levels. Molecular determinants of metformin sensitivity were also investigated, and their expression levels were examined in a large collection of HNSCC cases. We found that metformin inhibits mTOR signaling and tumor growth in HNSCC cells expressing mutated PIK3CA and HPV oncogenes, and that these activities require the expression of organic cation transporter 3 (OCT3/SLC22A3), a metformin uptake transporter. Coexpression of OCT3 and the mTOR pathway activation marker pS6 were observed in most HNSCC cases, including those arising in HIV(+) patients. Activation of the PI3K-mTOR pathway is a widespread event in HNSCC, including HPV(-) and HPV(+) lesions arising in HIV(+) patients, all of which coexpress OCT3. These observations may provide a rationale for the clinical evaluation of metformin to halt HNSCC development from precancerous lesions, including in HIV(+) individuals at risk of developing HPV(-) associated cancers.
Collapse
Affiliation(s)
- Dmitri Madera
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Lynn Vitale-Cross
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Daniel Martin
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, School of Dentistry and Greenebaum Cancer Center, Program in Oncology, University of Maryland, Baltimore, Maryland
| | - Alfredo A Molinolo
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Thomas E Carey
- Department of Otolaryngology-Head Neck Surgery, and the Head and Neck SPORE Tissue Core, University of Michigan, Ann Arbor, Michigan
| | - Jonathan B McHugh
- Department of Otolaryngology-Head Neck Surgery, and the Head and Neck SPORE Tissue Core, University of Michigan, Ann Arbor, Michigan
| | - Christine M Komarck
- Department of Otolaryngology-Head Neck Surgery, and the Head and Neck SPORE Tissue Core, University of Michigan, Ann Arbor, Michigan
| | - Heather M Walline
- Department of Otolaryngology-Head Neck Surgery, and the Head and Neck SPORE Tissue Core, University of Michigan, Ann Arbor, Michigan
| | - William N William
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Raja R Seethala
- University of Pittsburgh School of Medicine, Pathology Program, Pittsburgh, Philadelphia
| | - Robert L Ferris
- Otolaryngology, Immunology, Cancer Immunology Program, University of Pittsburgh School of Medicine, Pittsburgh, Philadelphia
| | - J Silvio Gutkind
- Molecular Carcinogenesis Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH, Bethesda, Maryland.
| |
Collapse
|
15
|
Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev 2015; 95:83-123. [PMID: 25540139 PMCID: PMC4281586 DOI: 10.1152/physrev.00025.2013] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The organic anion transporter (OAT) subfamily, which constitutes roughly half of the SLC22 (solute carrier 22) transporter family, has received a great deal of attention because of its role in handling of common drugs (antibiotics, antivirals, diuretics, nonsteroidal anti-inflammatory drugs), toxins (mercury, aristolochic acid), and nutrients (vitamins, flavonoids). Oats are expressed in many tissues, including kidney, liver, choroid plexus, olfactory mucosa, brain, retina, and placenta. Recent metabolomics and microarray data from Oat1 [Slc22a6, originally identified as NKT (novel kidney transporter)] and Oat3 (Slc22a8) knockouts, as well as systems biology studies, indicate that this pathway plays a central role in the metabolism and handling of gut microbiome metabolites as well as putative uremic toxins of kidney disease. Nuclear receptors and other transcription factors, such as Hnf4α and Hnf1α, appear to regulate the expression of certain Oats in conjunction with phase I and phase II drug metabolizing enzymes. Some Oats have a strong selectivity for particular signaling molecules, including cyclic nucleotides, conjugated sex steroids, odorants, uric acid, and prostaglandins and/or their metabolites. According to the "Remote Sensing and Signaling Hypothesis," which is elaborated in detail here, Oats may function in remote interorgan communication by regulating levels of signaling molecules and key metabolites in tissues and body fluids. Oats may also play a major role in interorganismal communication (via movement of small molecules across the intestine, placental barrier, into breast milk, and volatile odorants into the urine). The role of various Oat isoforms in systems physiology appears quite complex, and their ramifications are discussed in the context of remote sensing and signaling.
Collapse
Affiliation(s)
- Sanjay K Nigam
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Kevin T Bush
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Gleb Martovetsky
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Sun-Young Ahn
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Henry C Liu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Erin Richard
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Vibha Bhatnagar
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Wu
- Departments of Pediatrics, Medicine, Cellular and Molecular Medicine, Bioengineering, and Family and Preventative Medicine, University of California, San Diego, La Jolla, California
| |
Collapse
|
16
|
Saxena A, Sampson JR. Phenotypes associated with inherited and developmental somatic mutations in genes encoding mTOR pathway components. Semin Cell Dev Biol 2014; 36:140-6. [PMID: 25263008 DOI: 10.1016/j.semcdb.2014.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/12/2014] [Accepted: 09/18/2014] [Indexed: 11/29/2022]
Abstract
Mutations affecting the genes that encode upstream components in the mammalian (or mechanistic) target of rapamycin signalling pathway are associated with a group of rare inherited and developmental disorders that show overlapping clinical features. These include predisposition to a variety of benign or malignant tumours, localized overgrowth, developmental abnormalities of the brain, neurodevelopmental disorders and epilepsy. Many of these features have been linked to hyperactivation of signalling via mammalian target of rapamycin complex 1, suggesting that inhibitors of this complex such as rapamycin and its derivatives may offer new opportunities for therapy. In this review we describe this group of inherited and developmental disorders and discuss recent progress in their treatment via mTORC1 inhibition.
Collapse
Affiliation(s)
- Anurag Saxena
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| | - Julian R Sampson
- Institute of Medical Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
17
|
Repositioning metformin in cancer: genetics, drug targets, and new ways of delivery. Tumour Biol 2014; 35:5101-10. [PMID: 24504677 DOI: 10.1007/s13277-014-1676-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/22/2014] [Indexed: 02/07/2023] Open
Abstract
After sitting many years on the shelves of drug stores as a harmless antidiabetic drug, metformin comes back in the spotlight of the scientific community as a surprisingly effective antineoplastic drug. Metformin targets multiple pathways that play pivotal roles in cancer progression, impacting various cellular processes, such as proliferation, cell death, metabolism, and even the cancer stemness features. The biomolecular characteristics of tumors, such as appropriate expression of organic cation transporters or genetic alterations including p53, K-ras, LKB1, and PI3K may impact metformin's anticancer efficiency. This could indicate a need for tumor genetic profiling in order to identify patients most likely to benefit from metformin treatment. Considering that the majority of experimental models suggest that higher, supra-clinical doses of metformin should be used in order to obtain an antineoplastic effect, new ways of drug delivery could be developed, such as metformin-loaded nanoparticles or incorporation of metformin into microparticles used in transarterial chemoembolization, with the aim of obtaining higher intratumoral drug concentrations and a targeted therapy which will ultimately maximize metformin's efficacy.
Collapse
|