1
|
Bobrowicz M, Kubacz M, Slusarczyk A, Winiarska M. CD37 in B Cell Derived Tumors-More than Just a Docking Point for Monoclonal Antibodies. Int J Mol Sci 2020; 21:ijms21249531. [PMID: 33333768 PMCID: PMC7765243 DOI: 10.3390/ijms21249531] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/20/2022] Open
Abstract
CD37 is a tetraspanin expressed prominently on the surface of B cells. It is an attractive molecular target exploited in the immunotherapy of B cell-derived lymphomas and leukemia. Currently, several monoclonal antibodies targeting CD37 as well as chimeric antigen receptor-based immunotherapies are being developed and investigated in clinical trials. Given the unique role of CD37 in the biology of B cells, it seems that CD37 constitutes more than a docking point for monoclonal antibodies, and targeting this molecule may provide additional benefit to relapsed or refractory patients. In this review, we aimed to provide an extensive overview of the function of CD37 in B cell malignancies, providing a comprehensive view of recent therapeutic advances targeting CD37 and delineating future perspectives.
Collapse
MESH Headings
- Antibodies, Monoclonal/therapeutic use
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antineoplastic Agents, Immunological/therapeutic use
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Humans
- Immunotherapy/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Lymphoma, B-Cell/drug therapy
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Tetraspanins/immunology
- Tetraspanins/metabolism
Collapse
|
2
|
Witkowska M, Smolewski P, Robak T. Investigational therapies targeting CD37 for the treatment of B-cell lymphoid malignancies. Expert Opin Investig Drugs 2018; 27:171-177. [PMID: 29323537 DOI: 10.1080/13543784.2018.1427730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION While chemotherapy still remains a cornerstone of oncologic therapy, immunotherapy with monoclonal antibodies has steadily improved the treatment strategy for several hematologic malignancies. New treatment options need to be developed for relapsed and refractory non-Hodgkin lymphoma (NHL) patients. Currently, novel agents targeting specific molecules on the surface of lymphoma cells, such as anti-CD37 antibodies, are under considerable investigation. Here we report on anti-CD37 targeting for the treatment of patients with B-cell NHL. AREAS COVERED CD37 seems to be the perfect therapeutic target in patients with NHL. The CD37 antigen is abundantly expressed in B-cells, but is absent on normal stem cells and plasma cells. It is hoped that anti-CD37 monoclonal antibodies will increase the efficacy and reduce toxicity in patients with both newly diagnosed and relapsed and refractory disease. Recent clinical trials have shown promising outcomes for these agents, administered both as monotherapy and in combination with standard chemotherapeutics. EXPERT OPINION The development of new therapeutic options might help to avoid cytotoxic chemotherapy entirely in some clinical settings. This article presents the latest state of the art on the new treatment strategies in NHL patients. It also discusses recently approved agents and available clinical trial data.
Collapse
Affiliation(s)
- Magdalena Witkowska
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Piotr Smolewski
- a Department of Experimental Hematology , Medical University of Lodz , Lodz , Poland
| | - Tadeusz Robak
- b Department of Hematology , Medical University of Lodz , Lodz , Poland
| |
Collapse
|
3
|
Hicks SW, Lai KC, Gavrilescu LC, Yi Y, Sikka S, Shah P, Kelly ME, Lee J, Lanieri L, Ponte JF, Sloss CM, Romanelli A. The Antitumor Activity of IMGN529, a CD37-Targeting Antibody-Drug Conjugate, Is Potentiated by Rituximab in Non-Hodgkin Lymphoma Models. Neoplasia 2017; 19:661-671. [PMID: 28753442 PMCID: PMC5540712 DOI: 10.1016/j.neo.2017.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/15/2017] [Accepted: 06/15/2017] [Indexed: 02/03/2023] Open
Abstract
Naratuximab emtansine (IMGN529) is an investigational antibody-drug conjugate consisting of a CD37-targeting antibody conjugated to the maytansine-derived microtuble disruptor, DM1. IMGN529 has shown promising preclinical and clinical activity in non-Hodgkin lymphoma, including diffuse large B-cell lymphoma (DLBCL). Due to the aggressive nature of the disease, DLBCL is often treated with combination therapies to maximize clinical outcomes; therefore, we investigated the potential of combining IMGN529 with both standard-of-care and emerging therapies against multiple oncology-relevant targets and pathways. The strongest enhancement in potency was seen with anti-CD20 antibodies, including rituximab. The combination of IMGN529 and rituximab was more potent than either agent alone, and this combinatorial benefit was associated with increased apoptotic induction and cell death. Additional studies revealed that rituximab treatment increased the internalization and degradation of the CD37-targeting antibody moiety of IMGN529. The combination of IMGN529 and rituximab was highly efficacious in multiple xenograft models, with superior antitumor efficacy seen compared to either agent alone or treatment with R-CHOP therapy. These findings suggest a novel mechanism whereby the potency of IMGN529 can be enhanced by CD20 binding, which results in the increased internalization and degradation of IMGN529 leading to the generation of greater amounts of cytotoxic catabolite. Overall, these data provide a biological rationale for the enhanced activity of IMGN529 in combination with rituximab and support the ongoing clinical evaluation of IMGN529 in combination with rituximab in patients with relapsed and/or refractory DLBCL.
Collapse
Affiliation(s)
| | | | | | - Yong Yi
- ImmunoGen, Inc., Waltham, MA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Robak T, Hellmann A, Kloczko J, Loscertales J, Lech-Maranda E, Pagel JM, Mato A, Byrd JC, Awan FT, Hebart H, Garcia-Marco JA, Hill BT, Hallek M, Eisenfeld AJ, Stromatt SC, Jaeger U. Randomized phase 2 study of otlertuzumab and bendamustine versus bendamustine in patients with relapsed chronic lymphocytic leukaemia. Br J Haematol 2016; 176:618-628. [PMID: 27977057 PMCID: PMC5324531 DOI: 10.1111/bjh.14464] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/20/2016] [Indexed: 11/27/2022]
Abstract
Otlertuzumab (TRU‐016) is a humanized anti‐CD37 protein therapeutic that triggers direct caspase‐independent apoptosis of malignant B cells and induces antibody‐dependent cell‐mediated cytotoxicity. Patients with relapsed chronic lymphocytic leukaemia (CLL) received either otlertuzumab (20 mg/kg) weekly by IV infusion for two 28‐day cycles then every 14 days for four 28‐day cycles and IV bendamustine (70 mg/m2) on Days 1 and 2 of each cycle for up to six 28‐day cycles or bendamustine alone. Thirty‐two patients were treated with otlertuzumab and bendamustine and 33 with bendamustine alone. Overall response rate according to the International Workshop on Chronic Lymphocytic Leukaemia criteria was 69% in the otlertuzumab and bendamustine arm and 39% in the bendamustine alone arm (P = 0·025). Median progression‐free survival (PFS) was 15·9 months in the otlertuzumab and bendamustine arm and 10·2 months in the bendamustine alone arm (P = 0·0192). There was a higher incidence of pyrexia (34% vs. 12%) and neutropenia (59% vs. 39%) with the combination but this did not result in a higher incidence of severe (grade 3/4) infections (13% vs. 27%). This combination significantly increased the response rate and prolonged the PFS over single agent bendamustine in patients with relapsed or refractory CLL.
Collapse
Affiliation(s)
- Tadeusz Robak
- Department of Haematology, Medical University of Lodz and Copernicus Memorial Hospital, Lodz, Poland
| | - Andrzej Hellmann
- Department of Hematology, Medical University of Gdansk, Gdansk, Poland
| | - Janusz Kloczko
- Department of Haematology, Medical University of Bialystok, Bialystok, Poland
| | | | - Ewa Lech-Maranda
- Department of Haematology, Institute of Haematology and Transfusion Medicine, Warsaw, Poland.,Department of Haematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - John M Pagel
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA, USA
| | - Anthony Mato
- Center for CLL, University of Pennsylvania and Hackensack University, Philadelphia, PA, USA
| | - John C Byrd
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Farrukh T Awan
- Division of Hematology, The Ohio State University, Columbus, OH, USA
| | - Holger Hebart
- Department of Haematology/Oncology, Stauferklinikum Schwaebisch Gmuend, Mutlangen, Germany
| | | | - Brian T Hill
- Department of Hematologic Oncology and Blood Disorders, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Michael Hallek
- Department I of Internal Medicine, Centre of Integrated Oncology Koln and Cluster of Excellence on Cellular Stress Responses in Aging (CECAD) University of Cologne, Cologne, Germany.,German CLL Study Group
| | | | | | - Ulrich Jaeger
- German CLL Study Group.,Department of Medicine I, Division of Haematology and Haemostaseology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Korycka-Wołowiec A, Wołowiec D, Robak T. The safety profile of monoclonal antibodies for chronic lymphocytic leukemia. Expert Opin Drug Saf 2016; 16:185-201. [PMID: 27880061 DOI: 10.1080/14740338.2017.1264387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Monoclonal antibodies (MoAbs), non-chemotherapeutic agents targeting the antigens present on chronic lymphocytic leukemia (CLL) lymphocytes, are being implemented increasingly more often as treatment options. Areas covered: This article reviews the similarities and differences in the structure, mechanism of action, efficacy and safety profile of commercially-available MoAbs and prevents new agents potentially useful for CLL treatment. Publications in English before June 2016 were surveyed on the MEDLINE database for articles. Proceedings of the American Society of Hematology held during the last five years were also included. Expert opinion: MoAbs, especially those targeting CD20, are highly effective biological options for first-line and salvage treatment of CLL, particularly in chemoimmunotherapy, and possibly also as maintenance therapy. Treatment with MoAbs is associated with reduced risk of such adverse events as cytopenias, infections and secondary neoplasias and is generally well tolerated. Depending on antibody type, the most common adverse events are usually transient and limited to grade 1 and 2 infusion-related reactions. In addition to commercially available MoAbs, several other antibodies exist which are targeted against different antigens studied in the clinical trials.
Collapse
Affiliation(s)
| | - Dariusz Wołowiec
- b Department of Hematology , Medical University of Wroclaw , Wroclaw , Poland
| | - Tadeusz Robak
- a Department of Hematology Medical , University of Lodz , Lodz , Poland
| |
Collapse
|
6
|
Epigenetics changes caused by the fusion of human embryonic stem cell and ovarian cancer cells. Biosci Rep 2016; 36:BSR20160104. [PMID: 27377320 PMCID: PMC5025808 DOI: 10.1042/bsr20160104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
To observe the effect of gene expression and tumorigenicity in hybrid cells of human embryonic stem cells (hESCs) and ovarian cancer cells in vitro and in vivo using a mouse model, and to determine its feasibility in reprogramming tumour cells growth and apoptosis, for a potential exploration of the role of hESCs and tumour cells fusion in the management of ovarian cancer. Stable transgenic hESCs (H1) and ovarian cancer cell line OVCAR-3 were established before fusion, and cell fusion system was established to analyse the related indicators. PTEN expression in HO-H1 cells was higher than those in the parental stem cells and lower than those in parental tumour cells; the growth of OV-H1 (RFP+GFP) hybrid cells with double fluorescence expressions were obviously slower than that of human embryonic stem cells and OVCAR-3 ovarian cancer cells. The apoptosis signal of the OV-H1 hybrid cells was significantly higher than that of the hESCs and OVCAR-3 ovarian cancer cells. In vivo results showed that compared with 7 days, 28 days and 35 days after inoculation of OV-H1 hybrid cells; also, apoptotic cell detection indicated that much stronger apoptotic signal was found in OV-H1 hybrid cells inoculated mouse. The hESCs can inhibit the growth of OVCAR-3 cells in vitro by suppressing p53 and PTEN expression to suppress the growth of tumour that may be achieved by inducing apoptosis of OVCAR-3 cells. The change of epigenetics after fusion of ovarian cancer cells and hESCs may become a novel direction for treatment of ovarian cancer.
Collapse
|
7
|
Soleimanpour S, Hassannia T, Motiee M, Amini AA, Rezaee SAR. Fcγ1 fragment of IgG1 as a powerful affinity tag in recombinant Fc-fusion proteins: immunological, biochemical and therapeutic properties. Crit Rev Biotechnol 2016; 37:371-392. [PMID: 27049690 DOI: 10.3109/07388551.2016.1163323] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Affinity tags are vital tools for the production of high-throughput recombinant proteins. Several affinity tags, such as the hexahistidine tag, maltose-binding protein, streptavidin-binding peptide tag, calmodulin-binding peptide, c-Myc tag, glutathione S-transferase and FLAG tag, have been introduced for recombinant protein production. The fragment crystallizable (Fc) domain of the IgG1 antibody is one of the useful affinity tags that can facilitate detection, purification and localization of proteins and can improve the immunogenicity, modulatory effects, physicochemical and pharmaceutical properties of proteins. Fcγ recombinant forms a group of recombinant proteins called Fc-fusion proteins (FFPs). FFPs are widely used in drug discovery, drug delivery, vaccine design and experimental research on receptor-ligand interactions. These fusion proteins have become successful alternatives to monoclonal antibodies for drug developments. In this review, the physicochemical, biochemical, immunological, pharmaceutical and therapeutic properties of recombinant FFPs were discussed as a new generation of bioengineering strategies.
Collapse
Affiliation(s)
- Saman Soleimanpour
- a Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Tahereh Hassannia
- b Internal medicine Department, Arash Hospital, the College of Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Mahdieh Motiee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| | - Abbas Ali Amini
- d Department of Immunology, faculty of medicine, Kurdistan University of Medical Sciences , Sanandaj, Iran
| | - S A R Rezaee
- c Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences , Mashhad, Iran
| |
Collapse
|
8
|
Robak T, Blonski JZ, Robak P. Antibody therapy alone and in combination with targeted drugs in chronic lymphocytic leukemia. Semin Oncol 2016; 43:280-90. [DOI: 10.1053/j.seminoncol.2016.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Krause G, Baki I, Kerwien S, Knödgen E, Neumann L, Göckeritz E, Landwehr T, Heider KH, Hallek M. Cytotoxicity of the CD37 antibody BI 836826 against chronic lymphocytic leukaemia cells in combination with chemotherapeutic agents or PI3K inhibitors. Br J Haematol 2015; 173:791-4. [DOI: 10.1111/bjh.13635] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Günter Krause
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| | - Imaan Baki
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
| | - Susan Kerwien
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| | - Eva Knödgen
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| | - Lars Neumann
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| | - Elisa Göckeritz
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| | - Thomas Landwehr
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
| | | | - Michael Hallek
- Department I of Internal Medicine; Centre of Integrated Oncology Köln Bonn; University of Cologne; Cologne Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-associated Diseases (CECAD Cologne); Cologne Germany
| |
Collapse
|
10
|
Robak P, Smolewski P, Robak T. Emerging immunological drugs for chronic lymphocytic leukemia. Expert Opin Emerg Drugs 2015; 20:423-47. [PMID: 26153226 DOI: 10.1517/14728214.2015.1046432] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Over the last few years, several new immunological drugs, particularly monoclonal antibodies (mAbs), immunomodulatory drugs and B-cell receptor (BCR) pathway inhibitors have been developed and investigated in chronic lymphocytic leukemia (CLL). This article summarizes recent discoveries regarding their mechanism of action, pharmacological properties, clinical activity and toxicity, as well as the emerging role of these agents in CLL. AREAS COVERED A literature review of mAbs, BCR pathway inhibitors and immunomodulating drugs was conducted of the MEDLINE database via PubMed for articles in English. Publications from 2000 through February 2015 were scrutinized. The search terms used were alemtuzumab, BI 836826, duvelisib ibrutinib, idelalisib, lenalidomide, monoclonal antibodies, MEDI-551, MOR208, obinutuzumab, ocaratuzumab, ofatumumab, ONO-4059, otlertuzumab, spebrutinib, veltuzumab and XmAb5574 in conjunction with CLL. Conference proceedings from the previous 5 years of the American Society of Hematology, European Hematology Association, American Society of Clinical Oncology, and ACR/ARHP Annual Scientific Meetings were searched manually. Additional relevant publications were obtained by reviewing the references from the chosen articles. EXPERT OPINION The use of mAbs, BCR inhibitors and immunomodulating drugs is a promising new strategy for chemotherapy-free treatment of CLL. However, definitive data from ongoing and future clinical trials will aid in better defining the status of immunological drugs in the treatment of this disease.
Collapse
Affiliation(s)
- Pawel Robak
- a Medical University of Lodz, Departments of Experimental Hematology and Hematology, Copernicus Memorial Hospital , 93-510 Lodz, Ul. Ciolkowskiego 2, Poland +48 42 689 51 91 ; +48 42 689 51 92 ;
| | | | | |
Collapse
|