1
|
Gan Y, Hu Q, Shen Q, Lin P, Qian Q, Zhuo M, Xue E, Chen Z. Comparison of Intratumoral and Peritumoral Deep Learning, Radiomics, and Fusion Models for Predicting KRAS Gene Mutations in Rectal Cancer Based on Endorectal Ultrasound Imaging. Ann Surg Oncol 2025; 32:3019-3030. [PMID: 39690384 DOI: 10.1245/s10434-024-16697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
MAIN OBJECTIVES We aimed at comparing intratumoral and peritumoral deep learning, radiomics, and fusion models in predicting KRAS mutations in rectal cancer using endorectal ultrasound imaging. METHODS This study included 304 patients with rectal cancer from Fujian Medical University Union Hospital. The patients were randomly divided into a training group (213 patients) and a test group (91 patients) at a 7:3 ratio. Radiomics and deep learning models were established using primary tumor and peritumoral images. In the optimally performing regions-of-interest, two fusion strategies, a feature-based and a decision-based model, were employed to build the fusion models. The Shapley additive explanation (SHAP) method was used to evaluate the significance of features in the optimal radiomics, deep learning, and fusion models. The performance of each model was assessed using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS In the test cohort, both the radiomics and deep learning models exhibited optimal performance with a 10-pixel patch extension, yielding AUC values of 0.824 and 0.856, respectively. The feature-based DLRexpand10_FB model attained the highest AUC (0.896) across all study sets. In addition, the DLRexpand10_FB model demonstrated excellent sensitivity, specificity, and DCA. SHAP analysis underscored the deep learning feature (DL_1) as the most significant factor in the hybrid model. CONCLUSION The feature-based fusion model DLRexpand10_FB can be employed to predict KRAS gene mutations based on pretreatment endorectal ultrasound images of rectal cancer. The integration of peritumoral regions enhanced the predictive performance of both the radiomics and deep learning models.
Collapse
Affiliation(s)
- Yajiao Gan
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qiping Hu
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qingling Shen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Peng Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Qingfu Qian
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Minling Zhuo
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ensheng Xue
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhikui Chen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
2
|
Bastian S, Joerger M, Holer L, Bärtschi D, Guckenberger M, Jochum W, Koeberle D, Siebenhüner AR, Wicki A, Berger MD, Winterhalder RC, Largiadèr CR, Löffler M, Mosna-Firlejczyk K, Maranta AF, Pestalozzi BC, Csajka C, von Moos R. Neoadjuvant Treatment With Regorafenib and Capecitabine Combined With Radiotherapy in Locally Advanced Rectal Cancer: A Multicenter Phase Ib Trial (RECAP)-SAKK 41/16. Clin Colorectal Cancer 2025; 24:82-88.e1. [PMID: 39537446 DOI: 10.1016/j.clcc.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The multi tyrosine kinase inhibitor regorafenib is active in metastatic colorectal cancer. Improvement in clinical outcome by adding regorafenib to long-course chemoradiotherapy (LcCRT) was investigated in molecularly undefined LARC. METHODS Patients with T3-4 and/or N+ but M0 rectal cancer were included. Neoadjuvant LcRCT consisted in capecitabine (C) 825mg/m2 d1-d38 and 28 fractions of 1.8Gy (50.4Gy). Regorafenib was added d1-14 and d22-35 in 3 dose escalation (DE) cohorts (40mg/80mg/120mg). The recommended dose (RD) was used for the expansion (EXP) cohort. Primary endpoints were dose-limiting toxicity (DLT) for DE and pathological response (near-complete regression [npCR] or complete regression [pCR]) for EXP. RESULTS Overall, 25 patients were included. Two DLTs occurred at the regorafenib dose level of 120 mg, thereby establishing the RD at 80mg daily. Among the 19 patients who were treated at the RD, 8 (42.1%; 1-sided 80% confidence interval [CI] (lower bound): 30.7%; 95% CI, 20.3%-66.5%) reached the primary endpoint (5 [26.3%] had npCR and 3 [15.8%] pCR). One additional patient received no surgery due to clinical complete response. All patients had R0 resections and clear circumferential margins. Postoperative complications occurred in 6 patients (35.3%). The most common grade ≥ 3 treatment-related adverse event in the EXP cohort was diarrhea (2 patients). CONCLUSION Adding regorafenib 80 mg to LcCRT in LARC resulted in both primary endpoints being met and yielded an expected pathological response rate. Toxicity was manageable, and postoperative complications were as expected.
Collapse
Affiliation(s)
- Sara Bastian
- Department of Oncology/Hematology, Kantonsspital Graubuenden, Chur, Switzerland.
| | - Markus Joerger
- Department of Medical Oncology/Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lisa Holer
- Swiss Group for Clinical Cancer Research (SAKK), Competence Center, Bern, Switzerland
| | - Daniela Bärtschi
- Swiss Group for Clinical Cancer Research (SAKK), Competence Center, Bern, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, Zurich, Switzerland
| | - Wolfram Jochum
- Institute of Pathology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Dieter Koeberle
- Department of Oncology, Claraspital Basel, Basel; Medical Faculty, University of Bern, Bern, Switzerland
| | - Alexander R Siebenhüner
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Oncology, University Hospital Basel, Basel, Switzerland
| | - Martin D Berger
- Department of Medical Oncology, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Carlo R Largiadèr
- Department of Clinical Chemistry, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melanie Löffler
- Department of Oncology, Claraspital Basel, Basel; Medical Faculty, University of Bern, Bern, Switzerland
| | - Katarzyna Mosna-Firlejczyk
- Department of Radiation Oncology, Claraspital Basel, Basel; Medical Faculty, University of Bern, Switzerland
| | | | - Bernhard C Pestalozzi
- Department of Medical Oncology and Hematology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Chantal Csajka
- Institute of Pharmacy, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Roger von Moos
- Department of Oncology/Hematology, Kantonsspital Graubuenden, Chur, Switzerland
| |
Collapse
|
3
|
Li Y, Cheng X. Enhancing Colorectal Cancer Immunotherapy: The Pivotal Role of Ferroptosis in Modulating the Tumor Microenvironment. Int J Mol Sci 2024; 25:9141. [PMID: 39273090 PMCID: PMC11395055 DOI: 10.3390/ijms25179141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant challenge in oncology, with increasing incidence and mortality rates worldwide, particularly among younger adults. Despite advancements in treatment modalities, the urgent need for more effective therapies persists. Immunotherapy has emerged as a beacon of hope, offering the potential for improved outcomes and quality of life. This review delves into the critical interplay between ferroptosis, an iron-dependent form of regulated cell death, and immunotherapy within the CRC context. Ferroptosis's influence extends beyond tumor cell fate, reshaping the tumor microenvironment (TME) to enhance immunotherapy's efficacy. Investigations into Ferroptosis-related Genes (OFRGs) reveal their pivotal role in modulating immune cell infiltration and TME composition, closely correlating with tumor responsiveness to immunotherapy. The integration of ferroptosis inducers with immunotherapeutic strategies, particularly through novel approaches like ferrotherapy and targeted co-delivery systems, showcases promising avenues for augmenting treatment efficacy. Furthermore, the expression patterns of OFRGs offer novel prognostic tools, potentially guiding personalized and precision therapy in CRC. This review underscores the emerging paradigm of leveraging ferroptosis to bolster immunotherapy's impact, highlighting the need for further research to translate these insights into clinical advancements. Through a deeper understanding of the ferroptosis-immunotherapy nexus, new therapeutic strategies can be developed, promising enhanced efficacy and broader applicability in CRC treatment, ultimately improving patient outcomes and quality of life in the face of this formidable disease.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China;
| | - Xiaofei Cheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
4
|
Lin M, Liu J, Lan C, Qiu M, Huang W, Liao C, Zhang S. Factors associated with pathological complete remission after neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a real-world clinical setting. Front Oncol 2024; 14:1421620. [PMID: 39169941 PMCID: PMC11335664 DOI: 10.3389/fonc.2024.1421620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Objective This study aims to identify factors associated with achieving a pathological complete remission (pCR) in patients with locally advanced rectal cancer (LARC) after neoadjuvant chemoradiotherapy (nCRT). Methods We conducted a cohort analysis of 171 LARC patients who underwent curative resection post-nCRT at the First Affiliated Hospital of Guangxi Medical University between January 2015 and December 2021. The data encompassed clinical and pathological information. Univariate and binary logistic regression multivariate analyses were employed to examine the factors influencing pCR achievement after nCRT. Kappa value tests were utilized to compare clinical staging after nCRT with postoperative pathological staging. Results Postoperative histopathology revealed that of the 171 patients, 40 (23.4%) achieved TRG 0 grade (pCR group), while 131 (76.6%) did not achieve pCR, comprising 36 TRG1, 42 TRG2, and 53 TRG3 cases. Univariate analysis indicated that younger age (p=0.008), reduced tumor occupation of intestinal circumference (p =0.008), specific pathological types (p=0.011), and lower pre-nCRT CEA levels (p=0.003) correlated with pCR attainment. Multivariate analysis identified these factors as independent predictors of pCR: younger age (OR=0.946, p=0.004), smaller tumor occupation of intestinal circumference (OR=2.809, p=0.046), non-mucinous adenocarcinoma pathological type (OR=10.405, p=0.029), and lower pre-nCRT serum CEA levels (OR=2.463, p=0.031). Clinical re-staging post-nCRT compared to postoperative pathological staging showed inconsistent MRI T staging (Kappa=0.012, p=0.718, consistency rate: 35.1%) and marginally consistent MRI N staging (Kappa=0.205, p=0.001, consistency rate: 59.6%). Conclusion LARC patients with younger age, presenting with smaller tumor circumferences in the intestinal lumen, lower pre-nCRT serum CEA levels, and non-mucinous adenocarcinoma are more likely to achieve pCR after nCRT. The study highlights the need for improved accuracy in clinical re-staging assessments after nCRT in LARC.
Collapse
Affiliation(s)
- Minglin Lin
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Junsheng Liu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chongyuan Lan
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Qiu
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Huang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Cun Liao
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| | - Sen Zhang
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, China
| |
Collapse
|
5
|
Pennel K, Dutton L, Melissourgou-Syka L, Roxburgh C, Birch J, Edwards J. Novel radiation and targeted therapy combinations for improving rectal cancer outcomes. Expert Rev Mol Med 2024; 26:e14. [PMID: 38623751 PMCID: PMC11140547 DOI: 10.1017/erm.2024.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
Neoadjuvant radiotherapy (RT) is commonly used as standard treatment for rectal cancer. However, response rates are variable and survival outcomes remain poor, highlighting the need to develop new therapeutic strategies. Research is focused on identifying novel methods for sensitising rectal tumours to RT to enhance responses and improve patient outcomes. This can be achieved through harnessing tumour promoting effects of radiation or preventing development of radio-resistance in cancer cells. Many of the approaches being investigated involve targeting the recently published new dimensions of cancer hallmarks. This review article will discuss key radiation and targeted therapy combination strategies being investigated in the rectal cancer setting, with a focus on exploitation of mechanisms which target the hallmarks of cancer.
Collapse
Affiliation(s)
- Kathryn Pennel
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Louise Dutton
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Lydia Melissourgou-Syka
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- CRUK Scotland Institute, Glasgow, G611BD, UK
| | - Campbell Roxburgh
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
- Academic Unit of Surgery, Glasgow Royal Infirmary, University of Glasgow, Glasgow, G4 0SF, UK
| | - Joanna Birch
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| | - Joanne Edwards
- School of Cancer Sciences, Wolfson Wohl Cancer Research Centre, University of Glasgow, Glasgow, G61 1BD, UK
| |
Collapse
|
6
|
Yang Z, Gao J, Zheng J, Han J, Li A, Liu G, Sun Y, Zhang J, Chen G, Xu R, Zhang X, Liu Y, Bai Z, Deng W, He W, Yao H, Zhang Z. Efficacy and safety of PD-1 blockade plus long-course chemoradiotherapy in locally advanced rectal cancer (NECTAR): a multi-center phase 2 study. Signal Transduct Target Ther 2024; 9:56. [PMID: 38462629 PMCID: PMC10925604 DOI: 10.1038/s41392-024-01762-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Adding PD-1 blockade in the neoadjuvant regimens for locally advanced rectal cancer (LARC) patients with microsatellite stable (MSS) / mismatch repair-proficient (pMMR) tumors is an attractive, but debatable strategy. This phase 2, multicenter, prospective, single-arm study enrolled patients from 6 centers from June 2021 to November 2022. Locally advanced rectal cancer (LARC, cT3-4aN0M0 and cT1-4aN1-2M0) patients aged ≥18 years with the distance from distal border of tumor to anal verge ≤10 cm (identified by Magnetic Resonance Imaging) were qualified for inclusion. The patients received long-course radiotherapy (50 Gy/25 fractions, 2 Gy/fraction, 5 days/week) and three 21-day cycles capecitabine (850-1000 mg/m2, bid, po, day1-14) and three 21-day cycles tislelizumab (200 mg, iv.gtt, day8) as neoadjuvant. Total mesorectal excision (TME) was 6-12 weeks after the end of radiotherapy to achieve radical resection. A total of 50 patients were enrolled in this study. The pathological complete response rate was 40.0% [20/50, 95% confidence interval (CI): 27.61-53.82%], while 15 (30.0%, 95% CI: 19.1-43.75%), 9 (18.0%, 95% CI: 9.77-30.8%), 2 (4.0%, 95% CI: 1.10-13.46%) patients respectively achieved grade 1, 2, and 3 tumor regression. Treatment-related adverse events (TRAEs) occurred in 28 (56.0%) LARC patients, including 26(52.0%) with grade I-II and 2 (4.0%) with grade III (1 with grade 3 immune-related colitis and 1 with grade 3 rash). PD-1 blockade plus long-course chemoradiotherapy (CRT) showed promising therapeutic effects according to pathological complete response rate and is well-tolerated in LARC patients. A larger randomized controlled study is desired to further validate the above findings.
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jianyong Zheng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Rui Xu
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei He
- Department of Thoracic Surgery / Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, China.
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, State Key Lab of Digestive Health, National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
7
|
Ose J, Gigic B, Hardikar S, Lin T, Himbert C, Warby CA, Peoples AR, Lindley CL, Boehm J, Schrotz-King P, Figueiredo JC, Toriola AT, Siegel EM, Li CI, Ulrich A, Schneider M, Shibata D, Ulrich CM. Presurgery Adhesion Molecules and Angiogenesis Biomarkers Are Differently Associated with Outcomes in Colon and Rectal Cancer: Results from the ColoCare Study. Cancer Epidemiol Biomarkers Prev 2022; 31:1650-1660. [PMID: 35667092 PMCID: PMC9509698 DOI: 10.1158/1055-9965.epi-22-0092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Cell-to-cell adhesion and angiogenesis are hallmarks of cancer. No studies have examined associations of adhesion molecules and angiogenesis biomarkers with clinical outcomes in colorectal cancer. METHODS In presurgery serum from n = 426 patients with colorectal cancer (stage I-III), we investigated associations of CRP, SAA, adhesion molecules (sICAM-1, sVCAM-1), and angiogenesis markers (VEGF-A and VEGF-D) with overall survival (OS), disease-free survival (DFS), and risk of recurrence. We computed HRs and 95% confidence intervals; adjusted for age, sex, BMI, stage, site, and study site, stratified by tumor site in exploratory analyses. RESULTS N = 65 (15%) were deceased, and 39 patients (14%) had a recurrence after a median follow-up of 31 months. We observed significant associations of biomarkers with OS, DFS, and risk of recurrence on a continuous scale and comparing top to bottom tertile, with HRs ranging between 1.19 and 13.92. CRP was associated with risk of death and recurrence in patients in the top tertile compared with patients in the bottom tertile, for example, risk of recurrence HRQ3-Q1: 13.92 (1.72-112.56). Significant heterogeneity between biomarkers and clinical outcomes was observed in stratified analysis by tumor site for CRP, SAA, sICAM-1, sVCAM-1, and VEGF-D. VEGF-D was associated with a 3-fold increase in risk of death for rectal cancer (HRlog2: 3.26; 95% CI, 1.58-6.70) compared with no association for colon cancer (HRlog2: 0.78; 95% CI, 0.35-1.73; Pheterogenity = 0.01). CONCLUSIONS Adhesion molecules and angiogenesis biomarkers are independent prognostic markers for colorectal cancer, with differences by tumor site. IMPACT There is need for tailored treatment for colon and rectal cancer.
Collapse
Affiliation(s)
- Jennifer Ose
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Sheetal Hardikar
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Tengda Lin
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | - Caroline Himbert
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Anita R Peoples
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| | | | | | - Petra Schrotz-King
- Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | | | | | - Erin M Siegel
- H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | | | | | - David Shibata
- University of Tennessee Health Science Center, Memphis, TN
| | - Cornelia M Ulrich
- University of Utah, Salt Lake City, UT
- Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
8
|
Schmulenson E, Bovet C, Theurillat R, Decosterd LA, Largiadèr CR, Prost JC, Csajka C, Bärtschi D, Guckenberger M, von Moos R, Bastian S, Joerger M, Jaehde U. Population pharmacokinetic analyses of regorafenib and capecitabine in patients with locally advanced rectal cancer (SAKK 41/16 RECAP). Br J Clin Pharmacol 2022; 88:5336-5347. [PMID: 35831229 DOI: 10.1111/bcp.15461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/19/2022] [Accepted: 07/06/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Locally advanced rectal cancer (LARC) is an area of unmet medical need with one third of patients dying from their disease. With response to neoadjuvant chemo-radiotherapy being a major prognostic factor, trial SAKK 41/16 assessed potential benefits of adding regorafenib to capecitabine-amplified neoadjuvant radiotherapy in LARC patients. METHODS Patients received regorafenib at three dose levels (40/80/120 mg once daily) combined with capecitabine 825 mg/m2 bidaily and local radiotherapy. We developed population pharmacokinetic models from plasma concentrations of capecitabine and its metabolites 5'-deoxy-5-fluorocytidine and 5'-deoxy-5-fluorouridine as well as regorafenib and its metabolites M-2 and M-5 as implemented into SAKK 41/16 to assess potential drug-drug interactions (DDI). After establishing parent-metabolite base models, drug exposure parameters were tested as covariates within the respective models to investigate for potential DDI. Simulation analyses were conducted to quantify their impact. RESULTS Plasma concentrations of capecitabine, regorafenib and metabolites were characterized by one- and two compartment models and absorption was described by parallel first- and zero-order processes and transit compartments, respectively. Apparent capecitabine clearance was 286 L/h (relative standard error [RSE] 14.9%, interindividual variability [IIV] 40.1%) and was reduced by regorafenib cumulative area under the plasma-concentration curve (median reduction of 45.6%) as exponential covariate (estimate -4.10×10-4 , RSE 17.8%). Apparent regorafenib clearance was 1.94 L/h (RSE 12.1%, IIV 38.1%). Simulation analyses revealed significantly negative associations between capecitabine clearance and regorafenib exposure. CONCLUSIONS This work informs the clinical development of regorafenib and capecitabine combination treatment and underlines the importance to study potential DDI with new anticancer drug combinations.
Collapse
Affiliation(s)
- Eduard Schmulenson
- Institute of Pharmacy, Department of Clinical Pharmacy, University of Bonn, Bonn, Germany
| | - Cédric Bovet
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Regula Theurillat
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Laurent Arthur Decosterd
- Laboratory of Clinical Pharmacology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Carlo R Largiadèr
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Jean-Christophe Prost
- Department of Clinical Chemistry, Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Chantal Csajka
- Clinical Pharmaceutical Sciences, Lausanne University, Lausanne, Switzerland
| | | | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | | | - Markus Joerger
- Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Ulrich Jaehde
- Institute of Pharmacy, Department of Clinical Pharmacy, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Abstract
BACKGROUND The prognostic value of the KRAS proto-oncogene mutation in colorectal cancer has been debated. Herein, we analyzed the National Cancer Database (NCDB) to assess the role of KRAS mutation as a prognostic marker in patients with locally advanced rectal cancer (LARC). METHODS We identified LARC patients treated with neoadjuvant chemoradiation from 2004-2015 excluding those with stage I/IV disease and unknown KRAS status. Multivariable logistic regression identified variables associated with KRAS positivity. Propensity adjusted univariable and multivariable analyses identified predictors of survival. RESULTS Of the 784 eligible patients, 506 were KRAS-negative (KRAS -) and 278 were KRAS-positive (KRAS +). Median survival was 63.6 months and 76.3 months for KRAS + and KRAS - patients respectively, with propensity adjusted 3 and 5-year survival of 79.9% vs. 83.6% and 56.7% vs. 61.9% respectively (HR 1.56, p 1.074-2.272). Male sex, no insurance, and KRAS + disease were associated with poorer survival on unadjusted and propensity adjusted multivariable analyses. CONCLUSIONS Our analysis of KRAS + LARC suggest that KRAS + disease is associated with poorer overall survival. Given the inherent limitations of retrospective data, prospective validation is warranted.
Collapse
|
10
|
Yang Z, Zhang X, Zhang J, Gao J, Bai Z, Deng W, Chen G, An Y, Liu Y, Wei Q, Han J, Li A, Liu G, Sun Y, Kong D, Yao H, Zhang Z. Rationale and design of a prospective, multicenter, phase II clinical trial of safety and efficacy evaluation of long course neoadjuvant chemoradiotherapy plus tislelizumab followed by total mesorectal excision for locally advanced rectal cancer (NCRT-PD1-LARC trial). BMC Cancer 2022; 22:462. [PMID: 35477432 PMCID: PMC9044580 DOI: 10.1186/s12885-022-09554-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Long course radiotherapy plus neoadjuvant chemotherapy followed by resection (total mesorectal excision, TME) has accepted widespread recognized in the treatment of locally advanced rectal cancer (LARC). Tislelizumab, an anti-PD1 humanized IgG4 monoclonal antibody, has been demonstrated with clinical activity and is approved for treating recurrent/refractory classical Hodgkin lymphoma and locally advanced/metastatic urothelial carcinoma in China. However, the safety and efficacy of long course (neoadjuvant chemoradiotherapy, NCRT) plus tislelizumab followed by TME for LARC is still uncertain. METHODS This NCRT-PD1-LARC trial will be a prospective, multicenter and phase II clinical trial designed to evaluate the safety and efficacy of LARC patients treated with long course NCRT plus tislelizumab followed by TME. This trial will consecutively enroll 50 stage II/III LARC patients (cT3N0M0 and cT1-3N1-2M0) with the tumor distal location ≤ 7 cm from anal verge at 7 centers in China. The enrolled patients will receive long course radiotherapy (50 Gy/25 f, 2 Gy/f, 5 days/week) and three 21-day cycles capecitabine (1000 mg/m2, bid, po, day1-14) plus three 21-day cycles tislelizumab (200 mg, iv.gtt, day8), followed by TME 6-8 weeks after the end of radiotherapy. The primary efficacy endpoint will be the pathological complete response (pCR) rate, which is defined as absence of viable tumor cells in the primary tumor and lymph nodes. DISCUSSION To our knowledge, this trial is the first multicenter clinical trial in China to assess the safety and efficacy of NCRT plus anti-PD1 therapy followed by TME to treat patients with LARC. NCRT followed by TME was recognized as the most recommended treatment against LARC while could not be completely satisfied in clinic. This study expects to provide a solid basis and encouraging outcomes for this promising combination of radiotherapy, chemotherapy and immunotherapy in LARC. TRIAL REGISTRATION Name of the registry: ClinicalTrials.gov. TRIAL REGISTRATION NUMBER NCT04911517. Date of registration: 23 May 2021. URL of trial registry record: https://www. CLINICALTRIALS gov/ct2/show/NCT04911517?id=BFH-NCRTPD&draw=2&rank=1 .
Collapse
Affiliation(s)
- Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jie Zhang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiale Gao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Zhigang Bai
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Deng
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Guangyong Chen
- Department of Pathology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yongbo An
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qi Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jiagang Han
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ang Li
- Department of General Surgery, Beijing Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Sun
- Department of Anorectal, Tianjin People's Hospital, Tianjin, China
| | - Dalu Kong
- Department of Colorectal Cancer, Key Laboratory of Cancer Prevention and Therapy of Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University & National Clinical Research Center for Digestive Diseases, Beijing, China.
| |
Collapse
|
11
|
Mehta R, Frakes J, Kim J, Nixon A, Liu Y, Howard L, Martinez Jimenez ME, Carballido E, Imanirad I, Sanchez J, Dessureault S, Xie H, Felder S, Sahin I, Hoffe S, Malafa M, Kim R. Phase I Study of Lenvatinib and Capecitabine with External Radiation Therapy in Locally Advanced Rectal Adenocarcinoma. Oncologist 2022; 27:621-e617. [PMID: 35325225 PMCID: PMC9355805 DOI: 10.1093/oncolo/oyac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background Neoadjuvant chemoradiation with fluoropyrimidine followed by surgery and adjuvant chemotherapy has been the standard treatment of locally advanced stages II and III rectal cancer for many years. There is a high risk for disease recurrence; therefore, optimizing chemoradiation strategies remains an unmet need. Based on a few studies, there is evidence of the synergistic effect of VEGF/PDGFR blockade with radiation. Methods In this phase I, dose-escalation and dose-expansion study, we studied 3 different dose levels of lenvatinib in combination with capecitabine-based chemoradiation for locally advanced rectal cancer. Results A total of 20 patients were enrolled, and 19 were eligible for assessment of efficacy. The combination was well tolerated, with an MTD of 24 mg lenvatinib. The downstaging rate for the cohort and the pCR was 84.2% and 37.8%, respectively. Blood-based protein biomarkers TSP-2, VEGF-R3, and VEGF correlated with NAR score and were also differentially expressed between response categories. The NAR, or neoadjuvant rectal score, encompasses cT clinical tumor stage, pT pathological tumor stage, and pN pathological nodal stage and provides a continuous variable for evaluating clinical trial outcomes. Conclusion The combination of lenvatinib with capecitabine and radiation in locally advanced rectal cancer was found to be safe and tolerable, and potential blood-based biomarkers were identified. Clinical Trial Registration NCT02935309
Collapse
Affiliation(s)
- Rutika Mehta
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jessica Frakes
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jongphil Kim
- Department of Biostatistics and Bioinformatics H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Andrew Nixon
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yingmiao Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Lauren Howard
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Maria E Martinez Jimenez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Estrella Carballido
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Iman Imanirad
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Julian Sanchez
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sophie Dessureault
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Seth Felder
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ibrahim Sahin
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sarah Hoffe
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Richard Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
12
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
13
|
Zhang Z, Shen L, Wang Y, Wang J, Zhang H, Xia F, Wan J, Zhang Z. MRI Radiomics Signature as a Potential Biomarker for Predicting KRAS Status in Locally Advanced Rectal Cancer Patients. Front Oncol 2021; 11:614052. [PMID: 34026605 PMCID: PMC8138318 DOI: 10.3389/fonc.2021.614052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/18/2021] [Indexed: 12/21/2022] Open
Abstract
Background and Purpose Locally advanced rectal cancer (LARC) is a heterogeneous disease with little information about KRAS status and image features. The purpose of this study was to analyze the association between T2 magnetic resonance imaging (MRI) radiomics features and KRAS status in LARC patients. Material and Methods Eighty-three patients with KRAS status information and T2 MRI images between 2012.05 and 2019.09 were included. Least absolute shrinkage and selection operator (LASSO) regression was performed to assess the associations between features and gene status. The patients were divided 7:3 into training and validation sets. The C-index and the average area under the receiver operator characteristic curve (AUC) were used for performance evaluation. Results The clinical characteristics of 83 patients in the KRAS mutant and wild-type cohorts were balanced. Forty-two (50.6%) patients had KRAS mutations, and 41 (49.4%) patients had wild-type KRAS. A total of 253 radiomics features were extracted from the T2-MRI images of LARC patients. One radiomic feature named X.LL_scaled_std, a standard deviation value of scaled wavelet-transformed low-pass channel filter, was selected from 253 features (P=0.019). The radiomics-based C-index values were 0.801 (95% CI: 0.772-0.830) and 0.703 (95% CI: 0.620-0.786) in the training and validation sets, respectively. Conclusion Radiomics features could differentiate KRAS status in LARC patients based on T2-MRI images. Further validation in a larger dataset is necessary in the future.
Collapse
Affiliation(s)
- ZhiYuan Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - LiJun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Yan Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiazhou Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Hui Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - JueFeng Wan
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| |
Collapse
|
14
|
Wilson K, Flood M, Narasimhan V, Pham T, Warrier S, Ramsay R, Michael M, Heriot A. Complete pathological response in rectal cancer utilising novel treatment strategies for neo-adjuvant therapy: A systematic review. Eur J Surg Oncol 2021; 47:1862-1874. [PMID: 33814240 DOI: 10.1016/j.ejso.2021.03.245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/07/2021] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Locally advanced rectal cancer is routinely treated with neo-adjuvant long course chemoradiotherapy or short course radiotherapy, followed by total mesorectal excision. Not all patients respond to this treatment and there has been an emergence of novel treatment strategies designed to improve outcomes for these patients. This systematic review aims to assess the current novel neo-adjuvant treatment strategies being utilised in the treatment of patients with rectal cancer and how these impact pathological complete response (pCR) rates. METHODS A systematic review of the literature was performed to evaluate pathological response in patients with rectal cancer receiving novel neo-adjuvant therapy. EMBASE and Medline electronic databases were searched for relevant articles. Articles published between January 2008 and February 2019 were retrieved. Included studies underwent critical appraisal and complete pathological response rates were recorded. RESULTS Of the initial 1074 articles identified, 217 articles fulfilled the inclusion criteria, of these 60 articles (4359 patients) were included. Neo-adjuvant therapy delivered included novel long course chemoradiation therapy, neoadjuvant chemotherapy alone, addition of a biological agent, total neo-adjuvant therapy, novel short course radiation therapy and studies utilising biomarkers to select patients for therapy. Complete pathological response rates ranged from 0 to 60%. CONCLUSION A validated novel neo-adjuvant therapy that significantly increases pCR rates in patients with rectal cancer has not been identified.
Collapse
Affiliation(s)
- K Wilson
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia.
| | - M Flood
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia
| | - V Narasimhan
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia
| | - T Pham
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia
| | - S Warrier
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia
| | - R Ramsay
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Differentiation and Transcription Laboratory, Sir Peter MacCallum Cancer Centre, Australia
| | - M Michael
- Peter MacCallum Cancer Centre, Department of Medical Oncology, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia
| | - A Heriot
- Peter MacCallum Cancer Centre, Department of Surgical Oncology, Australia; Sir Peter MacCallum Dept. of Oncology, University of Melbourne, Australia
| |
Collapse
|
15
|
Passardi A, Rapposelli IG, Scarpi E, Neri E, Parisi E, Ghigi G, Ercolani G, Avanzolini A, Cavaliere D, Rudnas B, Valgiusti M, Barone D, Ferroni F, Frassineti GL, Romeo A. Neoadjuvant treatment (FOLFOX4 plus hypofractionated tomotherapy) for patients with locally advanced rectal cancer: a multicenter phase II trial. Ther Adv Med Oncol 2020; 12:1758835920977139. [PMID: 33343722 PMCID: PMC7727058 DOI: 10.1177/1758835920977139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
AIMS This study aims to evaluate the safety and efficacy of a new neoadjuvant regimen (FOLFOX4 plus hypofractionated tomotherapy) in patients with locally advanced rectal cancer. METHODS Patients with stage II-III rectal cancer were treated with the pre-operative chemoradiotherapy regimen comprising FOLFOX4 (two cycles), TomoTherapy (25 Gy in five consecutive fractions, one fraction per day in 5 days on the clinical target volume at the isodose of 95% of the total dose), FOLFOX4 (two cycles), followed by surgery with total mesorectal excision and adjuvant chemotherapy with FOLFOX4 (eight cycles). The primary endpoint was pathological complete response (pCR). RESULTS Fifty-two patients were enrolled and 50 patients were evaluable. A total of 46 (92%) patients completed chemoradiotherapy according to the study protocol and 49 patients underwent surgery. Overall, 12 patients achieved a pCR (24.5%, 95% CI 12.5-36.5). The most common grade 3 or more adverse events were neutropenia and alteration of the alvus. Adverse reactions due to radiotherapy, mainly grade 1-2 dermatitis, tenesmus, urinary dysfunction and pain, were tolerable and fully reversible. The most important surgical complications included infection, anastomotic leakage and fistula, all resolved with conservative treatment. CONCLUSION FOLFOX and hypofractionated TomoTherapy is effective and safe in patients with locally advanced rectal cancer. Long-term efficacy needs to be further evaluated. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT02000050 (registration date: 26 November 2013) https://clinicaltrials.gov/ct2/show/NCT02000050.
Collapse
Affiliation(s)
- Alessandro Passardi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Ilario Giovanni Rapposelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, Meldola (FC), 47014, Italy
| | - Elisa Neri
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Elisabetta Parisi
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giulia Ghigi
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giorgio Ercolani
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Avanzolini
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Davide Cavaliere
- General and Oncologic Surgery, Morgagni-Pierantoni Hospital, AUSL Romagna, Forlì, Italy
| | - Britt Rudnas
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Domenico Barone
- Radiology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Fabio Ferroni
- Radiology Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Antonino Romeo
- Radiotherapy Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| |
Collapse
|
16
|
Roeder F, Meldolesi E, Gerum S, Valentini V, Rödel C. Recent advances in (chemo-)radiation therapy for rectal cancer: a comprehensive review. Radiat Oncol 2020; 15:262. [PMID: 33172475 PMCID: PMC7656724 DOI: 10.1186/s13014-020-01695-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
The role of radiation therapy in the treatment of (colo)-rectal cancer has changed dramatically over the past decades. Introduced with the aim of reducing the high rates of local recurrences after conventional surgery, major developments in imaging, surgical technique, systemic therapy and radiation delivery have now created a much more complex environment leading to a more personalized approach. Functional aspects including reduction of acute or late treatment-related side effects, sphincter or even organ-preservation and the unsolved problem of still high distant failure rates have become more important while local recurrence rates can be kept low in the vast majority of patients. This review summarizes the actual role of radiation therapy in different subgroups of patients with rectal cancer, including the current standard approach in different subgroups as well as recent developments focusing on neoadjuvant treatment intensification and/or non-operative treatment approaches aiming at organ-preservation.
Collapse
Affiliation(s)
- F Roeder
- Department of Radiotherapy and Radiation Oncology, Paracelsus Medical University, Landeskrankenhaus, Müllner Hautpstrasse 48, 5020, Salzburg, Austria.
| | - E Meldolesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - S Gerum
- Department of Radiotherapy and Radiation Oncology, Paracelsus Medical University, Landeskrankenhaus, Müllner Hautpstrasse 48, 5020, Salzburg, Austria
| | - V Valentini
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - C Rödel
- Department of Radiotherapy, University of Frankfurt, Frankfurt, Germany
| |
Collapse
|
17
|
Marti FEM, Jayson GC, Manoharan P, O'Connor J, Renehan AG, Backen AC, Mistry H, Ortega F, Li K, Simpson KL, Allen J, Connell J, Underhill S, Misra V, Williams KJ, Stratford I, Jackson A, Dive C, Saunders MP. Novel phase I trial design to evaluate the addition of cediranib or selumetinib to preoperative chemoradiotherapy for locally advanced rectal cancer: the DREAMtherapy trial. Eur J Cancer 2019; 117:48-59. [PMID: 31229949 DOI: 10.1016/j.ejca.2019.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND The DREAMtherapy (Dual REctal Angiogenesis MEK inhibition radiotherapy) trial is a novel intertwined design whereby two tyrosine kinase inhibitors (cediranib and selumetinib) were independently evaluated with rectal chemoradiotherapy (CRT) in an efficient manner to limit the extended follow-up period often required for radiotherapy studies. PATIENTS AND METHODS Cediranib or selumetinib was commenced 10 days before and then continued with RT (45 Gy/25#/5 wks) and capecitabine (825 mg/m2 twice a day (BID)). When three patients in the cediranib 15-mg once daily (OD) cohort were in the surveillance period, recruitment to the selumetinib cohort commenced. This alternating schedule was followed throughout. Three cediranib (15, 20 and 30 mg OD) and two selumetinib cohorts (50 and 75 mg BID) were planned. Circulating and imaging biomarkers of inflammation/angiogenesis were evaluated. RESULTS In case of cediranib, dose-limiting diarrhoea, fatigue and skin reactions were seen in the 30-mg OD cohort, and therefore, 20 mg OD was defined as the maximum tolerated dose. Forty-one percent patients achieved a clinical or pathological complete response (7/17), and 53% (9/17) had an excellent clinical or pathological response (ECPR). Significantly lower level of pre-treatment plasma tumour necrosis factor alpha (TNFα) was found in patients who had an ECPR. In case of selumetinib, the 50-mg BID cohort was poorly tolerated (fatigue and diarrhoea); a reduced dose cohort of 75-mg OD was opened which was also poorly tolerated, and further recruitment was abandoned. Of the 12 patients treated, two attained an ECPR (17%). CONCLUSIONS This novel intertwined trial design is an effective way to independently investigate multiple agents with radiotherapy. The combination of cediranib with CRT was well tolerated with encouraging efficacy. TNFα emerged as a potential predictive biomarker of response and warrants further evaluation.
Collapse
Affiliation(s)
| | - G C Jayson
- The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - P Manoharan
- The Christie NHS Foundation Trust, Manchester, UK; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - J O'Connor
- The Christie NHS Foundation Trust, Manchester, UK; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - A G Renehan
- The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - A C Backen
- The Christie NHS Foundation Trust, Manchester, UK; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - H Mistry
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - F Ortega
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - K Li
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - K L Simpson
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - J Allen
- The Christie NHS Foundation Trust, Manchester, UK
| | - J Connell
- The Christie NHS Foundation Trust, Manchester, UK
| | - S Underhill
- The Christie NHS Foundation Trust, Manchester, UK
| | - V Misra
- The Christie NHS Foundation Trust, Manchester, UK
| | - K J Williams
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - I Stratford
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PT, UK
| | - A Jackson
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
| | - C Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - M P Saunders
- The Christie NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
18
|
Yamashita K, Matsuda T, Hasegawa H, Mukohyama J, Arimoto A, Tanaka T, Yamamoto M, Matsuda Y, Kanaji S, Nakamura T, Sumi Y, Suzuki S, Kakeji Y. Recent advances of neoadjuvant chemoradiotherapy in rectal cancer: Future treatment perspectives. Ann Gastroenterol Surg 2019; 3:24-33. [PMID: 30697607 PMCID: PMC6345659 DOI: 10.1002/ags3.12213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) has been widely used as a multidisciplinary approach for stage II/III rectal cancer. However, its safety and efficacy are controversial because previous studies have shown conflicting outcomes. The present review aimed to elucidate the benefits and limitations of nCRT for patients with rectal cancer. Future perspectives of nCRT are also described. No recent randomized trials have been able to show a survival benefit, although many studies have demonstrated good local control with the use of fluoropyrimidine (e.g. 5-fluorouracil [FU] or capecitabine)-based nCRT. Addition of oxaliplatin (OX) to FU-based nCRT might improve overall survival by preventing distant metastasis, as shown in recent meta-analyses. However, control of adverse effects is an important concern with this treatment. New treatment strategies such as nonoperative management (watch and wait policy) and total neoadjuvant therapy (TNT) are promising, but the establishment of reliable diagnostic methods of metastasis is essential. Development of new biomarkers is also necessary to select patients who are more likely to benefit from nCRT.
Collapse
Affiliation(s)
- Kimihiro Yamashita
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Takeru Matsuda
- Division of Minimally Invasive SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Hiroshi Hasegawa
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Junko Mukohyama
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Akira Arimoto
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Tomoko Tanaka
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Masashi Yamamoto
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshiko Matsuda
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Shingo Kanaji
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Tetsu Nakamura
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yasuo Sumi
- Division of International Clinical Cancer ResearchDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Satoshi Suzuki
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yoshihiro Kakeji
- Division of Gastrointestinal SurgeryDepartment of SurgeryKobe University Graduate School of MedicineKobeJapan
| |
Collapse
|
19
|
Clifford R, Govindarajah N, Parsons JL, Gollins S, West NP, Vimalachandran D. Systematic review of treatment intensification using novel agents for chemoradiotherapy in rectal cancer. Br J Surg 2018; 105:1553-1572. [PMID: 30311641 PMCID: PMC6282533 DOI: 10.1002/bjs.10993] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND With the well established shift to neoadjuvant treatment for locally advanced rectal cancer, there is increasing focus on the use of radiosensitizers to improve the efficacy and tolerability of radiotherapy. There currently exist few randomized data exploring novel radiosensitizers to improve response and it is unclear what the clinical endpoints of such trials should be. METHODS A qualitative systematic review was performed according to the PRISMA guidelines using preset search criteria across the PubMed, Cochrane and Scopus databases from 1990 to 2017. Additional results were generated from the reference lists of included papers. RESULTS A total of 123 papers were identified, of which 37 were included; a further 60 articles were obtained from additional referencing to give a total of 97 articles. Neoadjuvant radiosensitization for locally advanced rectal cancer using fluoropyrimidine-based chemotherapy remains the standard of treatment. The oral derivative capecitabine has practical advantages over 5-fluorouracil, with equal efficacy, but the addition of a second chemotherapeutic agent has yet to show a consistent significant efficacy benefit in randomized clinical assessment. Preclinical and early-phase trials are progressing with promising novel agents, such as small molecular inhibitors and nanoparticles. CONCLUSION Despite extensive research and promising preclinical studies, a definite further agent in addition to fluoropyrimidines that consistently improves response rate has yet to be found.
Collapse
Affiliation(s)
- R. Clifford
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - N. Govindarajah
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - J. L. Parsons
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
| | - S. Gollins
- North Wales Cancer Treatment Centre, Glan Clwyd HospitalBodelwyddanUK
| | - N. P. West
- Leeds Institute of Cancer and Pathology, University of LeedsLeedsUK
| | - D. Vimalachandran
- Institute of Cancer Medicine, University of LiverpoolLiverpoolUK
- Department of Colorectal SurgeryCountess of Chester NHS Foundation TrustChesterUK
| |
Collapse
|