1
|
Fleming JL, Chakravarti A. Recent Advancements and Future Perspectives on Molecular Biomarkers in Adult Lower-Grade Gliomas. Cancer J 2025; 31:e0758. [PMID: 39841423 DOI: 10.1097/ppo.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There has been a significant paradigm shift in the clinical management of lower-grade glioma patients given the recent updates to the 2021 World Health Organization classification along with long-term results from randomized phase III clinical trials. As a result, we are now better able to diagnose and assign patients to the most appropriate treatment course. This review provides a comprehensive summary of the most robust and reliable molecular biomarkers for adult lower-grade gliomas and discusses current challenges facing this patient population that future correlative biology studies combined with advancements in technologies could help overcome.
Collapse
Affiliation(s)
- Jessica L Fleming
- From the Department of Radiation Oncology, Ohio State University Comprehensive Cancer Center, Columbus, OH
| | | |
Collapse
|
2
|
Zhou Z, Liao J, Wang Y, Zhou M. A ferroptosis-associated prognostic model correlated with immune landscape and radiotherapy response in low-grade gliomas (LGGs). J Neuroimmunol 2024; 396:578444. [PMID: 39357132 DOI: 10.1016/j.jneuroim.2024.578444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/11/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024]
Abstract
Despite receiving comprehensive treatment, the prognosis for low-grade gliomas (LGGs) patients varies considerably. Recent studies have focused extensively on ferroptosis, across a range of tumor types. Nevertheless, methodologies to evaluate the efficacy of radiotherapy for LGGs, from the perspective of ferroptosis-related genes (FRGs), remain strikingly rare. In this study, we conducted a retrospective study on the transcriptional profiles of LGG patients from the public databases and a local cohort. An FRG model was developed and validated, exhibits heightened robustness when contrasted with the traditional ssGSEA model. Patients demonstrating higher FRG scores were identified as a high-risk group, displaying a worse prognosis. By incorporating the FRG score alongside other prognosis-associated clinical indicators, we formulated an enhanced nomogram to achieve a higher level of prediction performance. Additionally, among LGG patients receiving radiotherapy, a poorer prognosis was observed in the high-risk group. Further investigation revealed that samples from the high-risk group generally exhibit a TME in an immuno-suppressive state. Collectively, we developed an FRG model and a robust nomogram for LGG prognostication. This study suggests that a high FRG score, indicative of an immunosuppressive TME, could potentially lead to a less favorable prognosis for certain LGG patients receiving radiotherapy.
Collapse
Affiliation(s)
- Zhaoming Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jing Liao
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yinghui Wang
- Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Meijuan Zhou
- Jiangmen Central Hospital, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China; Department of Radiation Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Ye S, Yang B, Yang L, Wei W, Fu M, Yan Y, Wang B, Li X, Liang C, Zhao W. Stemness subtypes in lower-grade glioma with prognostic biomarkers, tumor microenvironment, and treatment response. Sci Rep 2024; 14:14758. [PMID: 38926605 PMCID: PMC11208487 DOI: 10.1038/s41598-024-65717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Our research endeavors are directed towards unraveling the stem cell characteristics of lower-grade glioma patients, with the ultimate goal of formulating personalized treatment strategies. We computed enrichment stemness scores and performed consensus clustering to categorize phenotypes. Subsequently, we constructed a prognostic risk model using weighted gene correlation network analysis (WGCNA), random survival forest regression analysis as well as full subset regression analysis. To validate the expression differences of key genes, we employed experimental methods such as quantitative Polymerase Chain Reaction (qPCR) and assessed cell line proliferation, migration, and invasion. Three subtypes were assigned to patients diagnosed with LGG. Notably, Cluster 2 (C2), exhibiting the poorest survival outcomes, manifested characteristics indicative of the subtype characterized by immunosuppression. This was marked by elevated levels of M1 macrophages, activated mast cells, along with higher immune and stromal scores. Four hub genes-CDCA8, ORC1, DLGAP5, and SMC4-were identified and validated through cell experiments and qPCR. Subsequently, these validated genes were utilized to construct a stemness risk signature. Which revealed that Lower-Grade Glioma (LGG) patients with lower scores were more inclined to demonstrate favorable responses to immune therapy. Our study illuminates the stemness characteristics of gliomas, which lays the foundation for developing therapeutic approaches targeting CSCs and enhancing the efficacy of current immunotherapies. By identifying the stemness subtype and its correlation with prognosis and TME patterns in glioma patients, we aim to advance the development of personalized treatments, enhancing the ability to predict and improve overall patient prognosis.
Collapse
Affiliation(s)
- Shengda Ye
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Liu Yang
- Department of Neurosurgery, Central Theater General Hospital of the Chinese People's Liberation Army, Wuhan, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mingyue Fu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Yan
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Wang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan, China.
| | - Chen Liang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Hospital of Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Clinical Study Center of Hubei Province, Wuhan, China.
- Hubei Key Laboratory of Tumor Biological Behavior, Wuhan, China.
| | - Wenyuan Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Habeeb M, Vengateswaran HT, You HW, Saddhono K, Aher KB, Bhavar GB. Nanomedicine facilitated cell signaling blockade: difficulties and strategies to overcome glioblastoma. J Mater Chem B 2024; 12:1677-1705. [PMID: 38288615 DOI: 10.1039/d3tb02485g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal type of brain tumor with complex and diverse molecular signaling pathways involved that are in its development and progression. Despite numerous attempts to develop effective treatments, the survival rate remains low. Therefore, understanding the molecular mechanisms of these pathways can aid in the development of targeted therapies for the treatment of glioblastoma. Nanomedicines have shown potential in targeting and blocking signaling pathways involved in glioblastoma. Nanomedicines can be engineered to specifically target tumor sites, bypass the blood-brain barrier (BBB), and release drugs over an extended period. However, current nanomedicine strategies also face limitations, including poor stability, toxicity, and low therapeutic efficacy. Therefore, novel and advanced nanomedicine-based strategies must be developed for enhanced drug delivery. In this review, we highlight risk factors and chemotherapeutics for the treatment of glioblastoma. Further, we discuss different nanoformulations fabricated using synthetic and natural materials for treatment and diagnosis to selectively target signaling pathways involved in GBM. Furthermore, we discuss current clinical strategies and the role of artificial intelligence in the field of nanomedicine for targeting GBM.
Collapse
Affiliation(s)
- Mohammad Habeeb
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Hariharan Thirumalai Vengateswaran
- Department of Pharmaceutics, Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai-600048, India.
| | - Huay Woon You
- Pusat PERMATA@Pintar Negara, Universiti Kebangsaan 43600, Bangi, Selangor, Malaysia
| | - Kundharu Saddhono
- Faculty of Teacher Training and Education, Universitas Sebelas Maret, 57126, Indonesia
| | - Kiran Balasaheb Aher
- Department of Pharmaceutical Quality Assurance, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| | - Girija Balasaheb Bhavar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule, Maharashtra, 424001, India
| |
Collapse
|
5
|
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome. Commun Biol 2023; 6:1138. [PMID: 37973839 PMCID: PMC10654613 DOI: 10.1038/s42003-023-05459-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/13/2023] [Indexed: 11/19/2023] Open
Abstract
Oncogenic pathways that drive cancer progression reflect both genetic changes and epigenetic regulation. Here we stratified primary tumors from each of 24 TCGA adult cancer types based on the gene expression patterns of epigenetic factors (epifactors). The tumors for five cancer types (ACC, KIRC, LGG, LIHC, and LUAD) separated into two robust clusters that were better than grade or epithelial-to-mesenchymal transition in predicting clinical outcomes. The majority of epifactors that drove the clustering were also individually prognostic. A pan-cancer machine learning model deploying epifactor expression data for these five cancer types successfully separated the patients into poor and better outcome groups. Single-cell analysis of adult and pediatric tumors revealed that expression patterns associated with poor or worse outcomes were present in individual cells within tumors. Our study provides an epigenetic map of cancer types and lays a foundation for discovering pan-cancer targetable epifactors.
Collapse
Affiliation(s)
- Michael W Cheng
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
| | - Mithun Mitra
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hilary A Coller
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Wang H, Wang X, Xu L, Zhang J. RARRES2 is Downregulated in Isocitrate Dehydrogenase 1 Mutant Glioma Patients and Served as an Unfavorable Prognostic Factor of Glioma. World Neurosurg 2023; 176:e610-e622. [PMID: 37271257 DOI: 10.1016/j.wneu.2023.05.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Mutations in isocitrate dehydrogenase 1 (IDH1) induce extensive transcriptional alterations to promote glioma development. However, IDH1 mutation contributes the better clinical outcomes of glioma. Further understanding the transcriptional and DNA methylation changes mediated by IDH1 mutation will provide new therapeutic targets for glioma. METHODS Public glioma cohorts were collected and processed using R software. The transcriptional changes mediated by IDH1 mutation were determined and presented using heatmap. The differentially expressed genes in IDH1 mutant glioma were overlapped using TBtools. The prognostic effects of IDH1 regulated genes were determined by Kaplan-Meier survival analysis. RESULTS Retinoic acid receptor responder 2 (RARRES2) was upregulated in IDH1 wild type lower-grade glioma (LGG) patients, and higher expression levels of RARRES2 were associated with worse clinical outcomes of LGG. Moreover, IDH1 wild type LGG patients with higher expression levels of RARRES2 had even worse overall survival. Compared with LGG, RARRES2 was upregulated in grade IV glioma (glioblastoma multiforme, GBM). Also, RARRES2 represented an unfavorable prognostic factor of glioma. In GBM, RARRES2 was also associated with IDH1 mutation. In both LGG and GBM, IDH1 mutation induced extensive DNA hypermethylation, and more than half genes that were downregulated in IDH1 mutant glioma were contributed by DNA hypermethylation. RARRES2 was also hypermethylated in IDH1 mutant LGG or GBM patients. Furthermore, RARRES2 hypomethylation was an unfavorable prognostic factor in patients with LGG. CONCLUSIONS RARRES2 was downregulated by IDH1 mutation and served as an unfavorable prognostic factor in glioma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
7
|
Gonzalez RD, Small GW, Green AJ, Akhtari FS, Havener TM, Quintanilha JCF, Cipriani AB, Reif DM, McLeod HL, Motsinger-Reif AA, Wiltshire T. RYK Gene Expression Associated with Drug Response Variation of Temozolomide and Clinical Outcomes in Glioma Patients. Pharmaceuticals (Basel) 2023; 16:ph16050726. [PMID: 37242509 DOI: 10.3390/ph16050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Temozolomide (TMZ) chemotherapy is an important tool in the treatment of glioma brain tumors. However, variable patient response and chemo-resistance remain exceptionally challenging. Our previous genome-wide association study (GWAS) identified a suggestively significant association of SNP rs4470517 in the RYK (receptor-like kinase) gene with TMZ drug response. Functional validation of RYK using lymphocytes and glioma cell lines resulted in gene expression analysis indicating differences in expression status between genotypes of the cell lines and TMZ dose response. We conducted univariate and multivariate Cox regression analyses using publicly available TCGA and GEO datasets to investigate the impact of RYK gene expression status on glioma patient overall (OS) and progression-free survival (PFS). Our results indicated that in IDH mutant gliomas, RYK expression and tumor grade were significant predictors of survival. In IDH wildtype glioblastomas (GBM), MGMT status was the only significant predictor. Despite this result, we revealed a potential benefit of RYK expression in IDH wildtype GBM patients. We found that a combination of RYK expression and MGMT status could serve as an additional biomarker for improved survival. Overall, our findings suggest that RYK expression may serve as an important prognostic or predictor of TMZ response and survival for glioma patients.
Collapse
Affiliation(s)
- Ricardo D Gonzalez
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - George W Small
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Farida S Akhtari
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tammy M Havener
- Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Amber B Cipriani
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Reif
- Predictive Toxicology Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC 27709, USA
| | - Howard L McLeod
- Center for Precision Medicine and Functional Genomics, Utah Tech University, St. George, UT 84770, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Tim Wiltshire
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Center for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Wang H, Wang X, Xu L, Zhang J. Co-amplified with PDGFRA, IGFBP7 is a prognostic biomarker correlated with the immune infiltrations of glioma. Cancer Med 2023; 12:4951-4967. [PMID: 36043552 PMCID: PMC9972101 DOI: 10.1002/cam4.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/24/2022] [Accepted: 08/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A subgroup of glioma carry genetic 4q12 amplification including platelet derived growth factor receptor α (PDGFRA) and insulin like growth factor binding protein 7 (IGFBP7). However, the prognosis of PDGFRA and IGFBP7 in glioma is unclear. METHODS The prognosis of PDGFRA and IGFBP7 was determined using cox regression and Kaplan-Meier survival analysis. Pathways associated with IGFBP7 were analyzed through gene set enrichment analysis (GSEA). Immune profiling of glioma was determined using "ESTIMATE" and "TIMER" database. RESULTS PDGFRA amplification or expression was not correlated with the outcomes of glioblastoma (GBM). IGFBP7 but not PDGFRA was over-expressed in GBM. IGFBP7 over-expression was correlated with the unfavorable outcomes of GBM. In lower grade glioma (LGG), PDGFRA over-expression was not correlated with the unfavorable prognosis of LGG, while, IGFBP7 was a prognostic biomarker of LGG. LGG patients with IGFBP7 lower expressions had prolonged clinical overall survival. Combination of IDH mutation, LGG grade and IGFBP7 achieved even better prognostic effects in LGG. Moreover, IGFBP7 was over-expressed in glioma patients with wild type IDH or with high grades. IGFBP7 over-expression was correlated with the unfavorable outcomes of glioma. Furthermore, IGFBP7 was hypo-methylated in GBM or LGG patients without IDH mutations. IGFBP7 hyper-methylation was correlated with the lower overall survival of GBM or LGG. LGG patients with wild type IDH and with IGFBP7 hypo-methylation demonstrated even worse prognosis. IGFBP7 was associated with multiple immune-related signaling pathways in GBM or LGG. The stromal score, immune score and the infiltrations of immune cells were also correlated with IGFBP7 and the prognosis of LGG. CONCLUSIONS IGFBP7 but not PDGFRA served an ideal prognostic marker and therapeutic target of glioma.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Xinrui Wang
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Liangpu Xu
- Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, China
| | - Ji Zhang
- Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
In silico validation of RNA-Seq results can identify gene fusions with oncogenic potential in glioblastoma. Sci Rep 2022; 12:14439. [PMID: 36002559 PMCID: PMC9402576 DOI: 10.1038/s41598-022-18608-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/16/2022] [Indexed: 11/08/2022] Open
Abstract
RNA-Sequencing (RNA-Seq) can identify gene fusions in tumors, but not all these fusions have functional consequences. Using multiple data bases, we have performed an in silico analysis of fusions detected by RNA-Seq in tumor samples from 139 newly diagnosed glioblastoma patients to identify in-frame fusions with predictable oncogenic potential. Among 61 samples with fusions, there were 103 different fusions, involving 167 different genes, including 20 known oncogenes or tumor suppressor genes (TSGs), 16 associated with cancer but not oncogenes or TSGs, and 32 not associated with cancer but previously shown to be involved in fusions in gliomas. After selecting in-frame fusions able to produce a protein product and running Oncofuse, we identified 30 fusions with predictable oncogenic potential and classified them into four non-overlapping categories: six previously described in cancer; six involving an oncogene or TSG; four predicted by Oncofuse to have oncogenic potential; and 14 other in-frame fusions. Only 24 patients harbored one or more of these 30 fusions, and only two fusions were present in more than one patient: FGFR3::TACC3 and EGFR::SEPTIN14. This in silico study provides a good starting point for the identification of gene fusions with functional consequences in the pathogenesis or treatment of glioblastoma.
Collapse
|
10
|
Mao C, Zhuang S, Xia Z, Xiao Z, Huang C, Su Q, Chen J, Liao J. Pan‐cancer analysis of GALNTs expression identifies a prognostic of GALNTs feature in low grade glioma. J Leukoc Biol 2022; 112:887-899. [PMID: 35075694 DOI: 10.1002/jlb.5ma1221-468r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Chengzhou Mao
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Shi‐Min Zhuang
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Zijin Xia
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Zhi‐Wen Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Chun‐Xia Huang
- Guangdong Institute of Gastroenterology The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| | - Qiang Su
- Beijing Friendship Hospital, Capital Medical University Beijing Beijing China
| | - Jun Chen
- Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Engineering & Technology Research Center for Disease‐Model Animals, Laboratory Animal Center, Zhongshan School of Medicine Sun Yat‐sen University Guangzhou Guangdong China
- Center for Precision Medicine Sun Yat‐sen University Guangzhou Guangdong China
| | - Jing Liao
- Department of Otorhinolaryngology Head and Neck Surgery, Department of Thyroid Center/Thyroid Surgery The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
- Guangdong Institute of Gastroenterology The Sixth Affiliated Hospital, Sun Yat‐sen University Guangzhou Guangdong China
| |
Collapse
|
11
|
Yang Z, Gong W, Zhang T, Gao H. Molecular Features of Glioma Determined and Validated Using Combined TCGA and GTEx Data Analyses. Front Oncol 2021; 11:729137. [PMID: 34660294 PMCID: PMC8516354 DOI: 10.3389/fonc.2021.729137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Gliomas are among the most common intracranial tumors which originated from neuroepithelial cells. Increasing evidence has revealed that long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA module regulation and tumor-infiltrating immune cells play important regulatory roles in the occurrence and progression of gliomas. However, the precise underlying molecular mechanisms remain largely unknown. Data on gliomas in The Cancer Genome Atlas lack normal control samples; to overcome this limitation, we combined 665 The Cancer Genome Atlas glioma RNA sequence datasets with 188 Genotype-Tissue Expression normal brain RNA sequences to construct an expression matrix profile after normalization. We systematically analyzed the expression of mRNAs, lncRNAs, and miRNAs between gliomas and normal brain tissues. Kaplan–Meier survival analyses were conducted to screen differentially expressed mRNAs, lncRNAs, and miRNAs. A prognostic miRNA-related competitive endogenous RNA network was constructed, and the core subnetworks were filtered using 6 miRNAs, 3 lncRNAs, and 11 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to investigate the biological functions of significantly dysregulated mRNAs. Co-expression network analysis was performed to analyze and screen the core genes. Furthermore, single-sample Gene Set Enrichment Analysis and immune checkpoint gene expression analysis were performed, as co-expression analysis indicated immune gene dysregulation in glioma. Finally, the expression of representative dysregulated genes was validated in U87 cells at the transcriptional level, establishing a foundation for further research. We identified 7017 mRNAs, 437 lncRNAs, and 9 miRNAs that were differentially expressed in gliomas. Kaplan–Meier survival analysis revealed 5684 mRNAs, 61 lncRNAs, and 7 miRNAs with potential as prognostic signatures in patients with glioma. The hub subnetwork of the competing endogenous RNA network between PART1-hsa-mir-25-SLC12A5/TACC2/BSN/TLN2/ZDHHC8 was screened out. Gene co-expression network, single-sample Gene Set Enrichment Analysis, and immune checkpoint expression analysis demonstrated that tumor-infiltrating immune cells are closely related to gliomas. We identified novel potential biomarkers to predict survival and therapeutic targets for patients with gliomas based on a large-scale sample. Importantly, we filtered pivotal genes that provide valuable information for further exploration of the molecular mechanisms underlying glioma tumorigenesis and progression.
Collapse
Affiliation(s)
- Zijiang Yang
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Weiyi Gong
- Department of Neurosurgery, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Ting Zhang
- Department of Central Laboratory, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| | - Heng Gao
- Department of Neurosurgery, Jiangyin Clinical College of Xuzhou Medical College, Jiangyin, China
| |
Collapse
|
12
|
Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images. Sci Rep 2021; 11:16849. [PMID: 34413349 PMCID: PMC8377095 DOI: 10.1038/s41598-021-95948-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize ResNet-18 as a backbone, were developed and validated on 296 patients from The Cancer Genome Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were performed for hyperparameter tuning, and the out-of-sample predictions were pooled for evaluation. Our models achieved a concordance- (C-) index of 0.715 (95% CI: 0.569, 0.830) for predicting prognosis and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When combined with additional clinical information, the performance metrics increased to 0.784 (95% CI: 0.655, 0.880) and 0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the WHO grade 3 gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a C-index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% CI: 0.721, 0.897). If validated in a prospective study, our method could potentially assist clinicians in managing and treating patients with diffusely infiltrating gliomas.
Collapse
|
13
|
Association of Circadian Clock Gene Expression with Glioma Tumor Microenvironment and Patient Survival. Cancers (Basel) 2021; 13:cancers13112756. [PMID: 34199348 PMCID: PMC8199552 DOI: 10.3390/cancers13112756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/29/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Gliomas are the most common type of malignant primary brain tumors and are classified according to the cell of origin and genetic features, which can help predict the prognosis and treatment sensitivity. Improving the prognosis remains a challenge; however, chronobiology is a promising field for future works, as circadian clock genes are linked to the tumor biology and outcomes in multiple cancers, including glioma. Here, we examined the relationship of circadian clock genes, IDH mutational status, and prognosis in glioma patients by using unsupervised clustering of the expression of 13 clock genes. We further explored the expression of the clock genes across the tumor regions and cell subpopulations, highlighting the importance of the tumor microenvironment in researching circadian rhythms in cancer. Our research is important for understanding how best to target circadian rhythms to improve patient outcomes in neuro-oncology. Abstract Circadian clock genes have been linked to clinical outcomes in cancer, including gliomas. However, these studies have not accounted for established markers that predict the prognosis, including mutations in Isocitrate Dehydrogenase (IDH), which characterize the majority of lower-grade gliomas and secondary high-grade gliomas. To demonstrate the connection between circadian clock genes and glioma outcomes while accounting for the IDH mutational status, we analyzed multiple publicly available gene expression datasets. The unsupervised clustering of 13 clock gene transcriptomic signatures from The Cancer Genome Atlas showed distinct molecular subtypes representing different disease states and showed the differential prognosis of these groups by a Kaplan–Meier analysis. Further analyses of these groups showed that a low period (PER) gene expression was associated with the negative prognosis and enrichment of the immune signaling pathways. These findings prompted the exploration of the relationship between the microenvironment and clock genes in additional datasets. Circadian clock gene expression was found to be differentially expressed across the anatomical tumor location and cell type. Thus, the circadian clock expression is a potential predictive biomarker in glioma, and further mechanistic studies to elucidate the connections between the circadian clock and microenvironment are warranted.
Collapse
|
14
|
Sørensen MD, Nielsen O, Reifenberger G, Kristensen BW. The presence of TIM-3 positive cells in WHO grade III and IV astrocytic gliomas correlates with isocitrate dehydrogenase mutation status. Brain Pathol 2021; 31:e12921. [PMID: 33244787 PMCID: PMC8412096 DOI: 10.1111/bpa.12921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Diffuse gliomas are aggressive brain tumors that respond poorly to immunotherapy including immune checkpoint inhibition. This resistance may arise from an immunocompromised microenvironment and deficient immune recognition of tumor cells because of low mutational burden. The most prominent genetic alterations in diffuse glioma are mutations in the isocitrate dehydrogenase (IDH) genes that generate the immunosuppressive oncometabolite d-2-hydroxyglutarate. Our objective was to explore the association between IDH mutation and presence of cells expressing the immune checkpoint proteins galectin-9 and/or T cell immunoglobulin and mucin-domain containing-3 (TIM-3). Astrocytic gliomas of World Health Organization (WHO) grades III or IV (36 IDH-mutant and 36 IDH-wild-type) from 72 patients were included in this study. A novel multiplex chromogenic immunohistochemistry panel was applied using antibodies against galectin-9, TIM-3, and the oligodendrocyte transcription factor 2 (OLIG2). Validation studies were performed using data from The Cancer Genome Atlas (TCGA) project. IDH mutation was associated with decreased levels of TIM-3+ cells (p < 0.05). No significant association was found between galectin-9 and IDH status (p = 0.10). Most TIM-3+ and galectin-9+ cells resembled microglia/macrophages, and very few TIM-3+ and/or galectin-9+ cells co-expressed OLIG2. The percentage of TIM-3+ T cells was generally low, however, IDH-mutant tumors contained significantly fewer TIM-3+ T cells (p < 0.01) and had a lower interaction rate between TIM-3+ T cells and galectin-9+ microglia/macrophages (p < 0.05). TCGA data confirmed lower TIM-3 mRNA expression in IDH-mutant compared to IDH-wild-type astrocytic gliomas (p = 0.013). Our results show that IDH mutation is associated with diminished levels of TIM-3+ cells and fewer interactions between TIM-3+ T cells and galectin-9+ microglia/macrophages, suggesting reduced activity of the galectin-9/TIM-3 immune checkpoint pathway in IDH-mutant astrocytic gliomas.
Collapse
Affiliation(s)
- Mia D Sørensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Ole Nielsen
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Guido Reifenberger
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Institute of Neuropathology, Heinrich Heine University, Düsseldorf, Germany.,German Cancer Consortium (DKT), partner site Essen/Düsseldorf, Essen, Germany
| | - Bjarne W Kristensen
- Department of Pathology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Ghaffari-Rafi A, Ghaffari-Rafi S, Leon-Rojas J. Role of Temozolomide Regimen on Survival Outcomes in Molecularly Stratified WHO Grade II Gliomas: A Systematic Review. Asian J Neurosurg 2021; 16:14-23. [PMID: 34211862 PMCID: PMC8202389 DOI: 10.4103/ajns.ajns_186_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 09/27/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE/INTRODUCTION Although a critical chemotherapeutic, temozolomide's optimal regimen for 2016 World Health Organization (WHO) Grade II gliomas remains elusive, hence there is utility in not only cataloging survival outcomes of Grade II glioma subtypes against the background of temozolomide regimens, but also quantifying differences in progression-free survival (PFS) and overall survival (OS). MATERIALS AND METHODS A systematic review of MEDLINE, Embase, and Cochrane Central Register of Controlled Trails was conducted by using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis and the Cochrane Handbook of Systemic Reviews of Interventions. RESULTS Each molecular subtype of WHO Grade II glioma had a different temozolomide regimen identified as optimal in prolonging PFS and OS. For PFS, with temozolomide, the 25th, 50th, and 75th percentiles, were as follows (in months), respectively-A-wt II: 6.90, 12.95, and 19.95; A-mt II: 34.45, 36.01, and 39.60; OD II: 37.90, 46.00, and 55.03 (P = 0.016). For OS, the first quartile (25%), median (50%), third quartile (75%), were respectively identified (in months-A-wt II: 21.6 (median; n = 1); A-mt II: 60.6, 85.2, and 109.8; OD II: 86.1, 96.2, and 106.3 (P = 0.37). CONCLUSION For each tumor molecular subtype, a different temozolomide regimen was identified as optimal for prolonging PFS and OS. Furthermore, regardless of temozolomide regimen, A-wt II had a significantly shorter PFS than A-mt II and OD-II. Overall, the data can provide useful prognostic insight to patients when making critical treatment decisions. Moreover, by cataloging and assessing survival outcomes per temozolomide regimen, such may facilitate future clinical trial design.
Collapse
Affiliation(s)
- Arash Ghaffari-Rafi
- John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Shadeh Ghaffari-Rafi
- Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jose Leon-Rojas
- Universidad Internacional del Ecuador, Escuela de Medicina, Quito, Ecuador
| |
Collapse
|
16
|
Esteve-Codina A, Alameda F, Carrato C, Pineda E, Arpí O, Martinez-García M, Mallo M, Gut M, Dabad M, Tortosa A, Del Barco S, Capellades J, Puig J, Gallego O, Pujol T, Oleaga L, Gil-Gil M, de Quintana-Schmidt C, Valduvieco I, Martinez-Cardús A, Bellosillo B, Muñoz-Marmol AM, Esteve A, Domenech M, Camins A, Craven-Bartle J, Villa S, Marruecos J, Domenech S, de la Iglesia N, Balana C. RNA sequencing and Immunohistochemistry Reveal ZFN7 as a Stronger Marker of Survival than Molecular Subtypes in G-CIMP-negative Glioblastoma. Clin Cancer Res 2020; 27:645-655. [PMID: 33106291 DOI: 10.1158/1078-0432.ccr-20-2141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/21/2020] [Accepted: 10/21/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Glioblastoma is the most aggressive brain tumor in adults and has few therapeutic options. The study of molecular subtype classifications may lead to improved prognostic classification and identification of new therapeutic targets. The Cancer Genome Atlas (TCGA) subtype classification has mainly been applied in U.S. clinical trials, while the intrinsic glioma subtype (IGS) has mainly been applied in European trials. EXPERIMENTAL DESIGN From paraffin-embedded tumor samples of 432 patients with uniformly treated, newly diagnosed glioblastoma, we built tissue microarrays for IHC analysis and applied RNA sequencing to the best samples to classify them according to TCGA and IGS subtypes. RESULTS We obtained transcriptomic results from 124 patients. There was a lack of agreement among the three TCGA classificatory algorithms employed, which was not solely attributable to intratumoral heterogeneity. There was overlapping of TCGA mesenchymal subtype with IGS cluster 23 and of TCGA classical subtype with IGS cluster 18. Molecular subtypes were not associated with prognosis, but levels of expression of 13 novel genes were identified as independent prognostic markers in glioma-CpG island methylator phenotype-negative patients, independently of clinical factors and MGMT methylation. These findings were validated in at least one external database. Three of the 13 genes were selected for IHC validation. In particular, high ZNF7 RNA expression and low ZNF7 protein expression were strongly associated with longer survival, independently of molecular subtypes. CONCLUSIONS TCGA and IGS molecular classifications of glioblastoma have no higher prognostic value than individual genes and should be refined before being applied to clinical trials.
Collapse
Affiliation(s)
- Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Oriol Arpí
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Mar Mallo
- Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Avelina Tortosa
- Laboratori de Quimio-resistència i Cáncer, School of Medicine and Health Sciences, University of Barcelona, Department of Fundamental Care and Medical-Surgical Nursing, Bellvitge Biomedical Research Institute (IDIBELL), Bellvitge, Spain
| | - Sonia Del Barco
- Medical Oncology, Institut Catala d'Oncologia (ICO), Hospital Josep Trueta, Girona, Spain
| | | | - Josep Puig
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital Josep Trueta, Girona, Spain
| | - Oscar Gallego
- Medical Oncology, Hospital de Sant Pau, Barcelona, Spain
| | - Teresa Pujol
- Radiology Department, Hospital Clínic, Barcelona, Spain
| | - Laura Oleaga
- Radiology Department, Hospital Clínic, Barcelona, Spain
| | - Miquel Gil-Gil
- Neuro-Oncology Unit & Medical Oncology Department, Institut Catala d'Oncologia (ICO), Institut de Investigació Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Spain
| | | | | | - Anna Martinez-Cardús
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Anna Esteve
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Marta Domenech
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Angels Camins
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital de Bellvitge, Bellvitge, Spain
| | | | - Salvador Villa
- Radiation Therapy Department, Institut Catala d'Oncologia (ICO), Badalona, Spain
| | - Jordi Marruecos
- Radiation Oncology Department, Institut Catala d'Oncologia (ICO), Girona, Spain
| | - Sira Domenech
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Nuria de la Iglesia
- Glioma and Neural Stem Cell Group, Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Carmen Balana
- Institut Catala d'Oncologia (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.
| |
Collapse
|
17
|
Chang YZ, Li GZ, Pang B, Zhang KN, Zhang XH, Wang YZ, Jiang ZL, Chai RC. Transcriptional Characteristics of IDH-Wild Type Glioma Subgroups Highlight the Biological Processes Underlying Heterogeneity of IDH-Wild Type WHO Grade IV Gliomas. Front Cell Dev Biol 2020; 8:580464. [PMID: 33195221 PMCID: PMC7642517 DOI: 10.3389/fcell.2020.580464] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022] Open
Abstract
Isocitric dehydrogenase (IDH)-wild type diffuse gliomas, which have a poorer prognosis than their IDH-mutant counterparts, are also accompanied with high heterogeneity. Here, we aimed to identify the key biological processes associated with the three groups of IDH-wild type diffuse gliomas in 323 patients. By The Consortium to Inform Molecular and Practical Approaches to CNS Tumor Taxonomy (cIMPACT-NOW) update 3 recommendation, the three groups are Group A, diffuse astrocytic glioma, World Health Organization (WHO) grade II/III; Group B, diffuse astrocytic glioma, with one (or more) of the three genetic alterations: TERT promoter mutation, EGFR gene amplification, gain of chromosome 7 combined with loss of chromosome 10, WHO grade IV; and Group C, glioblastoma, WHO grade IV. Consistent with their histologic and genetic molecular features, we successfully identified that biological activities associated with “cell cycle” and “cell mitosis” are significantly elevated in Group B compared with Group A; microenvironment-related hallmarks “angiogenesis” and “hypoxia,” and biological processes of “extracellular matrix,” “immune response,” and “positive regulation of transcriptional activities” were more enriched in Group C than Group B. We also constructed a nine-gene signature from differentially expressed genes among the three groups to further stratify the WHO grade IV gliomas (Groups B and C) whose survival cannot be clearly stratified by current classification systems. This signature was an independent prognosis factor for WHO grade IV gliomas and had better prognostic value than other known factors in both training and validation dataset. In addition, the signature risk score was positively correlated with the amount of infiltrated immune cells, expression of immune checkpoints, and the genes enriched in biological processes of “immune response,” “cell cycle,” and “extracellular matrix.” The bioinformatic analysis results were also validated by immunohistochemistry and patient-derived cell proliferation assay. Overall, our findings revealed the key biological processes underlying the new classifications of IDH-wild type diffuse glioma. Meanwhile, we constructed a signature, which could properly stratify the prognosis, cell proliferation activates, extracellular matrix-mediated biological activities, and immune-microenvironment of IDH-wild type WHO grade IV gliomas.
Collapse
Affiliation(s)
- Yu-Zhou Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guan-Zhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Bo Pang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Xiao-Hui Zhang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| | - Zhong-Li Jiang
- Department of Neurosurgery, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network, Beijing, China
| |
Collapse
|
18
|
Li R, Chen W, Mao P, Wang J, Jing J, Sun Q, Wang M, Yu X. Identification of a three-long non-coding RNA signature for predicting survival of temozolomide-treated isocitrate dehydrogenase mutant low-grade gliomas. Exp Biol Med (Maywood) 2020; 246:187-196. [PMID: 33028081 DOI: 10.1177/1535370220962715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Temozolomide (TMZ) is the major chemotherapy agent in glioma, and isocitrate dehydrogenase (IDH) is a well-known prognostic marker in glioma. O6-methylguanine-DNA methyltransferase promoter methylation (MGMTmethyl) is a predictive biomarker in overall gliomas rather than in IDH mutant gliomas. To discover effective biomarkers that could predict TMZ efficacy in IDH mutant low-grade gliomas (LGGs), we retrieved data of IDH mutant LGGs from TMZ arm of the EORTC22033-26033 trial as the training-set (n = 83), analyzed correlations between long non-coding RNAs (lncRNAs) and progression-free survival (PFS) using Lasso-Cox regression, and created a risk score (RS) to stratify patients. We identified a three-lncRNA signature in TMZ-treated IDH mutant LGGs. All of the three lncRNAs, as well as the RS derived, were significantly correlated with PFS. Patients were classified into high-risk and low-risk groups according to RS. PFS of the high-risk group was significantly worse than that of the low-risk group (P < 0.001). AUCs of the three-, four-, and five-year survival probability predicted by RS were 0.73, 0.79, and 0.76, respectively. The predictive role of the three-lncRNA signature was further validated in an independent testing-set, the TCGA-LGGs, which resulted in a significantly worse PFS (P < 0.001) in the high-risk group. Three-, four-, and five-year survival probabilities predicted by RS were 0.65, 0.69, and 0.84, respectively. Functions of these three lncRNAs involve cell proliferation and differentiation, predicted by their targeting cancer genes. Conclusively, we created a scoring model based on the expression of three lncRNAs, which can effectively predict the survival of IDH mutant LGGs treated with TMZ.
Collapse
Affiliation(s)
- Ruichun Li
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Chen
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Ping Mao
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jia Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiangpeng Jing
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qinli Sun
- Department of Diagnostic Radiology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Maode Wang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xiao Yu
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
19
|
Carrato C, Alameda F, Esteve-Codina A, Pineda E, Arpí O, Martinez-García M, Mallo M, Gut M, Lopez-Martos R, Barco SD, Ribalta T, Capellades J, Puig J, Gallego O, Mesia C, Muñoz-Marmol AM, Archilla I, Arumí M, Blanc JM, Bellosillo B, Menendez S, Esteve A, Bagué S, Hernandez A, Craven-Bartle J, Fuentes R, Vidal N, Aldecoa I, Iglesia NDL, Balana C. Glioblastoma TCGA Mesenchymal and IGS 23 Tumors are Identifiable by IHC and have an Immune-phenotype Indicating a Potential Benefit from Immunotherapy. Clin Cancer Res 2020; 26:6600-6609. [PMID: 32998960 DOI: 10.1158/1078-0432.ccr-20-2171] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Molecular subtype classifications in glioblastoma may detect therapy sensitivities. IHC would potentially allow the identification of molecular subtypes in routine clinical practice. EXPERIMENTAL DESIGN Formalin-fixed, paraffin-embedded tumor samples of 124 uniformly treated, newly diagnosed patients with glioblastoma were submitted to RNA sequencing, IHC, and immune-phenotyping to identify differences in molecular subtypes associated with treatment sensitivities. RESULTS We detected high molecular and IHC overlapping of the The Cancer Genome Atlas (TCGA) mesenchymal subtype with instrinsic glioma subtypes (IGS) cluster 23 and of the TCGA classical subtype with IGS cluster 18. IHC patterns, gene fusion profiles, and immune-phenotypes varied across subtypes. IHC revealed that the TCGA classical subtype was identified by high expression of EGFR and low expression of PTEN, while the mesenchymal subtype was identified by low expression of SOX2 and high expression of two antibodies, SHC1 and TCIRG1, selected on the basis of RNA differential transcriptomic expression. The proneural subtype was identified by frequent positive IDH1 expression and high Olig2 and Ki67 expression. Immune-phenotyping showed that mesenchymal and IGS 23 tumors exhibited a higher positive effector cell score, a higher negative suppressor cell score, and lower levels of immune checkpoint molecules. The cell-type deconvolution analysis revealed that these tumors are highly enriched in M2 macrophages, resting memory CD4+ T cells, and activated dendritic cells, indicating that they may be ideal candidates for immunotherapy, especially with anti-M2 and/or dendritic cell vaccination. CONCLUSIONS There is a subset of tumors, frequently classified as mesenchymal or IGS cluster 23, that may be identified with IHC and could well be optimal candidates for immunotherapy.
Collapse
Affiliation(s)
- Cristina Carrato
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Francesc Alameda
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estela Pineda
- Medical Oncology, Hospital Clínic, Translational Genomics and Targeted Therapeutics in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Oriol Arpí
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | | | - Mar Mallo
- Institut de Recerca Contra la Leucèmia Josep Carreras, Badalona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raquel Lopez-Martos
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sonia Del Barco
- Medical Oncology, Institut Catala d'Oncologia (ICO) Girona, Hospital Josep Trueta, Girona, Spain
| | - Teresa Ribalta
- Pathology Department (Neuropathology), Hospital Clínic, Barcelona, Spain
| | | | - Josep Puig
- Radiology Department, Institut de Diagnòstic per la Imatge, Hospital Josep Trueta, Girona, Spain
| | - Oscar Gallego
- Medical Oncology, Hospital de Sant Pau, Barcelona, Spain
| | - Carlos Mesia
- Neuro-Oncology Unit & Medical Oncology Department, Institut Catala d'Oncologia (ICO), Institut de Investigació Bellvitge (IDIBELL), L'Hospitalet, Barcelona, Spain
| | - Ana M Muñoz-Marmol
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ivan Archilla
- Pathology Department (Neuropathology), Hospital Clínic, Barcelona, Spain
| | - Montserrat Arumí
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Julie Marie Blanc
- Pathology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Beatriz Bellosillo
- Pathology Department, Neuropathology Unit, Hospital del Mar, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Silvia Menendez
- Cancer Research Program, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Anna Esteve
- Institut Catala d'Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | - Silvia Bagué
- Pathology Department, Hospital de Sant Pau, Barcelona, Spain
| | - Ainhoa Hernandez
- Institut Catala d'Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain
| | | | - Rafael Fuentes
- Radiation Therapy Department, Institut Catala d'Oncologia (ICO), Girona, Spain
| | - Noemí Vidal
- Pathology Department, Hospital de Bellvitge. Bellvitge, Spain
| | - Iban Aldecoa
- Pathology Department (Neuropathology), Hospital Clínic, Barcelona, Spain.,Neurological Tissue Bank, Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Nuria de la Iglesia
- Glioma and Neural Stem Cell Group, Translational Genomics and Targeted Therapeutics in Solid Tumors Team, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Carmen Balana
- Institut Catala d'Oncologia (ICO) Badalona, Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Badalona, Spain.
| |
Collapse
|
20
|
Li M, Zhang Z, Li L, Wang X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Commun Biol 2020; 3:505. [PMID: 32917965 PMCID: PMC7486929 DOI: 10.1038/s42003-020-01230-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 08/18/2020] [Indexed: 12/23/2022] Open
Abstract
Intratumor heterogeneity (ITH) is a biomarker of tumor progression, metastasis, and immune evasion. Previous studies evaluated ITH mostly based on DNA alterations. Here, we developed a new algorithm (DEPTH) for quantifying ITH based on mRNA alterations in the tumor. DEPTH scores displayed significant correlations with ITH-associated features (genomic instability, tumor advancement, unfavorable prognosis, immunosuppression, and drug response). Compared to DNA-based ITH scores (EXPANDS, PhyloWGS, MATH, and ABSOLUTE), DEPTH scores had stronger correlations with antitumor immune signatures, cell proliferation, stemness, tumor advancement, survival prognosis, and drug response. Compared to two other mRNA-based ITH scores (tITH and sITH), DEPTH scores showed stronger and more consistent associations with genomic instability, unfavorable tumor phenotypes and clinical features, and drug response. We further validated the reliability and robustness of DEPTH in 50 other datasets. In conclusion, DEPTH may provide new insights into tumor biology and potential clinical implications for cancer prognosis and treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhilan Zhang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Lin Li
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China. .,Cancer Genomics Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China. .,Big Data Research Institute, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
21
|
Franceschi E, Tosoni A, Bartolini S, Minichillo S, Mura A, Asioli S, Bartolini D, Gardiman M, Gessi M, Ghimenton C, Giangaspero F, Lanza G, Marucci G, Novello M, Silini EM, Zunarelli E, Paccapelo A, Brandes AA. Histopathological grading affects survival in patients with IDH-mutant grade II and grade III diffuse gliomas. Eur J Cancer 2020; 137:10-17. [PMID: 32721633 DOI: 10.1016/j.ejca.2020.06.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 05/03/2020] [Accepted: 06/10/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Diffuse grade II and grade III gliomas are actually classified in accordance with the presence of isocitrate dehydrogenase mutation (IDH-mut) and the deletion of both 1p and 19q chromosome arms (1p/19q codel). The role of tumour grading as independent prognostic factor in these group of tumours remains matter of debate. The aim of this study was to determine if grade is an independent prognostic factor and not somehow associated to IDH mutation and 1p/19q status of the tumour. METHODS We analysed 399 consecutive patients with newly diagnosed, histologically proven World Health Organisation (WHO) 2016 grade II or grade III IDH-mut gliomas, assessed by polymerase chain reaction, immunohistochemistry or next-generation sequencing (NGS). RESULTS The analysis included 399 patients with grade II (n = 250, 62.7%) or grade III (n = 149, 37.3%) diffuse gliomas. Median follow-up time was 105.3 months. Median survival was 148.1 months. In multivariate analysis, grade II (hazard ratio [HR] = 0.342, 95% confidence interval [CI]: 0.221-0.531; P < 0.001) and 1p/19q codeletion (HR = 0.440, 95% CI: 0.290-0.668; P < 0.001) were independently associated with a lower risk for death. The difference in survival remained significant (p = 0.006 in astrocytomas, p = 0.014 in oligodendrogliomas) when adjusted for histological subtype. Residual disease after surgery (or biopsy) negatively affected survival (HR: 2.151, 95% CI: 1.375-3.367, P = 0.001). Post-surgical treatment with radiotherapy + adjuvant chemotherapy improved survival compared with follow-up and other treatments (HR: 0.316, 95% CI: 0.156-0.641, P = 0.001). CONCLUSIONS In our study, histopathological grade still affects survival in IDH-mutant WHO grade II and III diffuse gliomas. This effect appears to be independent from molecular features, extension of surgical resection and post-surgical treatments. Therefore, physicians should continue to take into account tumour grade, along their molecular characteristics, for a better clinical and therapeutic management of the patients.
Collapse
Affiliation(s)
- Enrico Franceschi
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy.
| | - Alicia Tosoni
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Santino Minichillo
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonella Mura
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Sofia Asioli
- Section of Anatomic Pathology 'M. Malpighi', Bellaria Hospital, Bologna, Italy; Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | | | - Marco Gessi
- Division of Histopathology, Fondazione Policlinico Universitario "A.Gemelli,", Università Cattolica S.Cuore, Roma, Italy
| | - Claudio Ghimenton
- Department of Pathology, Azienda Ospedaliera Universitaria Integrata Verona, Ospedale Civile Maggiore, Borgo Trento, Verona, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-pathological Sciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Giovanni Lanza
- Department of Pathology, S Anna University Hospital & University of Ferrara, Ferrara, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS, Istituto Neurologico C. Besta, Milan, Italy
| | | | | | | | - Alexandro Paccapelo
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Alba A Brandes
- Department of Medical Oncology, AUSL / IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
22
|
Chai RC, Zhang KN, Chang YZ, Wu F, Liu YQ, Zhao Z, Wang KY, Chang YH, Jiang T, Wang YZ. Systematically characterize the clinical and biological significances of 1p19q genes in 1p/19q non-codeletion glioma. Carcinogenesis 2020; 40:1229-1239. [PMID: 31157866 DOI: 10.1093/carcin/bgz102] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/26/2019] [Accepted: 06/01/2019] [Indexed: 11/13/2022] Open
Abstract
1p/19q codeletion, which leads to the abnormal expression of 1p19q genes in oligodendroglioma, is associated with chemosensitivity and favorable prognosis. Here, we aimed to explore the clinical implications of 1p19q gene expression in 1p/19q non-codel gliomas. We analyzed expression of 1p19q genes in 668 1p/19q non-codel gliomas obtained from The Cancer Genome Atlas (n = 447) and the Chinese Glioma Genome Atlas (n = 221) for training and validation, respectively. The expression of 1p19q genes was significantly correlated with the clinicopathological features and overall survival of 1p/19q non-codel gliomas. Then, we derived a risk signature of 25 selected 1p19q genes that not only had prognosis value in total 1p/19q non-codel gliomas but also had prognosis value in stratified gliomas. The prognosis value of the risk signature was superior than known clinicopathological features in 1p/19q non-codel gliomas and was also highly associated with the following features: loss of CDKN2A/B copy number in mutant-IDH-astrocytoma; telomerase reverse transcriptase (TERT) promoter mutation, combined chromosome 7 gain/chromosome 10 loss and epidermal growth factor receptor amplification in wild-type-IDH-astrocytoma; classical and mesenchymal subtypes in glioblastoma. Furthermore, genes enriched in the biological processes of cell division, extracellular matrix, angiogenesis significantly correlated to the signature risk score, and this is also supported by the immunohistochemistry and cell biology experiments. In conclusion, the expression profile of 1p19q genes is highly associated with the malignancy and prognosis of 1p/19q non-codel gliomas. A 25-1p19q-gene signature has powerfully predictive value for both malignant molecular pathological features and prognosis across distinct subgroups of 1p/19q non-codel gliomas.
Collapse
Affiliation(s)
- Rui-Chao Chai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases
| | - Ke-Nan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yu-Zhou Chang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yu-Qing Liu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Zheng Zhao
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Kuan-Yu Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yuan-Hao Chang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong-Zhi Wang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China.,China National Clinical Research Center for Neurological Diseases.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
23
|
Lynes JP, Nwankwo AK, Sur HP, Sanchez VE, Sarpong KA, Ariyo OI, Dominah GA, Nduom EK. Biomarkers for immunotherapy for treatment of glioblastoma. J Immunother Cancer 2020; 8:e000348. [PMID: 32474411 PMCID: PMC7264836 DOI: 10.1136/jitc-2019-000348] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy is a promising new therapeutic field that has demonstrated significant benefits in many solid-tumor malignancies, such as metastatic melanoma and non-small cell lung cancer. However, only a subset of these patients responds to treatment. Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis of 14.6 months and few treatment advancements over the last 10 years. There are many clinical trials testing immune therapies in GBM, but patient responses in these studies have been highly variable and a definitive benefit has yet to be identified. Biomarkers are used to quantify normal physiology and physiological response to therapies. When extensively characterized and vigorously validated, they have the potential to delineate responders from non-responders for patients treated with immunotherapy in malignancies outside of the central nervous system (CNS) as well as GBM. Due to the challenges of current modalities of radiographic diagnosis and disease monitoring, identification of new predictive and prognostic biomarkers to gauge response to immune therapy for patients with GBM will be critical in the precise treatment of this highly heterogenous disease. This review will explore the current and future strategies for the identification of potential biomarkers in the field of immunotherapy for GBM, as well as highlight major challenges of adapting immune therapy for CNS malignancies.
Collapse
Affiliation(s)
- John P Lynes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony K Nwankwo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah P Sur
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria E Sanchez
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwadwo A Sarpong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Oluwatobi I Ariyo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Gifty A Dominah
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Edjah K Nduom
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
Ghaffari-Rafi A, Samandouras G. Effect of Treatment Modalities on Progression-Free Survival and Overall Survival in Molecularly Subtyped World Health Organization Grade II Diffuse Gliomas: A Systematic Review. World Neurosurg 2020; 133:366-380.e2. [DOI: 10.1016/j.wneu.2019.08.111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/20/2022]
|
25
|
Wang Q, He Z, Chen Y. Comprehensive Analysis Reveals a 4-Gene Signature in Predicting Response to Temozolomide in Low-Grade Glioma Patients. Cancer Control 2019; 26:1073274819855118. [PMID: 31167546 PMCID: PMC6558750 DOI: 10.1177/1073274819855118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Low-grade gliomas (LGGs) are a highly heterogeneous group of slow-growing,
lethal, diffusive brain tumors. Temozolomide (TMZ) is a frequently used primary
chemotherapeutic agent for LGGs. Currently there is no consensus as to the
optimal biomarkers to predict the efficacy of TMZ, which calls for
decision-making for each patient while considering molecular profiles. Low-grade
glioma data sets were retrieved from The Cancer Genome Atlas. Cox regression and
survival analyses were applied to identify clinical features significantly
associated with survival. Subsequently, Ordinal logistic regression,
co-expression, and Cox regression analyses were applied to identify genes that
correlate significantly with response rate, disease-free survival, and overall
survival of patients receiving TMZ as primary therapy. Finally, gene expression
and methylation analyses were exploited to explain the mechanism between these
gene expression and TMZ efficacy in LGG patients. Overall survival was
significantly correlated with age, Karnofsky Performance Status score, and
histological grade, but not with IDH1 mutation status. Using 3
distinct efficacy end points, regression and co-expression analyses further
identified a novel 4-gene signature of ASPM, CCNB1, EXO1, and
KIF23 which negatively correlated with response to TMZ
therapy. In addition, expression of the 4-gene signature was associated with
those of genes involved in homologous recombination. Finally, expression and
methylation profiling identified a largely unknown olfactory receptor
OR51F2 as potential mediator of the roles of the 4-gene
signature in reducing TMZ efficacy. Taken together, these findings propose the
4-gene signature as a novel panel of efficacy predictors of TMZ therapy, as well
as potential downstream mechanisms, including homologous recombination, OR51F2,
and DNA methylation independent of MGMT.
Collapse
Affiliation(s)
- Qi Wang
- 1 Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Zongze He
- 1 Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| | - Yong Chen
- 1 Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan, China
| |
Collapse
|
26
|
Chai RC, Wang N, Chang YZ, Zhang KN, Li JJ, Niu JJ, Wu F, Liu YQ, Wang YZ. Systematically profiling the expression of eIF3 subunits in glioma reveals the expression of eIF3i has prognostic value in IDH-mutant lower grade glioma. Cancer Cell Int 2019; 19:155. [PMID: 31171919 PMCID: PMC6549376 DOI: 10.1186/s12935-019-0867-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
Background Abnormal expression of the eukaryotic initiation factor 3 (eIF3) subunits plays critical roles in tumorigenesis and progression, and also has potential prognostic value in cancers. However, the expression and clinical implications of eIF3 subunits in glioma remain unknown. Methods Expression data of eIF3 for patients with gliomas were obtained from the Chinese Glioma Genome Atlas (CGGA) (n = 272) and The Cancer Genome Atlas (TCGA) (n = 595). Cox regression, the receiver operating characteristic (ROC) curves and Kaplan–Meier analysis were used to study the prognostic value. Gene oncology (GO) and gene set enrichment analysis (GSEA) were utilized for functional prediction. Results In both the CGGA and TCGA datasets, the expression levels of eIF3d, eIF3e, eIF3f, eIF3h and eIF3l highly were associated with the IDH mutant status of gliomas. The expression of eIF3b, eIF3i, eIF3k and eIF3m was increased with the tumor grade, and was associated with poorer overall survival [All Hazard ratio (HR) > 1 and P < 0.05]. By contrast, the expression of eIF3a and eIF3l was decreased in higher grade gliomas and was associated with better overall survival (Both HR < 1 and P < 0.05). Importantly, the expression of eIF3i (located on chromosome 1p) and eIF3k (Located on chromosome 19q) were the two highest risk factors in both the CGGA [eIF3i HR = 2.068 (1.425–3.000); eIF3k HR = 1.737 (1.166–2.588)] and TCGA [eIF3i HR = 1.841 (1.642–2.064); eIF3k HR = 1.521 (1.340–1.726)] databases. Among eIF3i, eIF3k alone or in combination, the expression of eIF3i was the more robust in stratifying the survival of glioma in various pathological subgroups. The expression of eIF3i was an independent prognostic factor in IDH-mutant lower grade glioma (LGG) and could also predict the 1p/19q codeletion status of IDH-mutant LGG. Finally, GO and GSEA analysis showed that the elevated expression of eIF3i was significantly correlated with the biological processes of cell proliferation, mRNA processing, translation, T cell receptor signaling, NF-κB signaling and others. Conclusions Our study reveals the expression alterations during glioma progression, and highlights the prognostic value of eIF3i in IDH-mutant LGG. Electronic supplementary material The online version of this article (10.1186/s12935-019-0867-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rui-Chao Chai
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,4China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Ning Wang
- 2Department of Clinical Laboratory, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020 China
| | - Yu-Zhou Chang
- 3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China
| | - Ke-Nan Zhang
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Jing-Jun Li
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Jun-Jie Niu
- Xiang Fen Centers for Disease Control and Prevention, Xiangfen, 041500 Shanxi China
| | - Fan Wu
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yu-Qing Liu
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| | - Yong-Zhi Wang
- 1Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,3Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, No. 119 Nan Si Huan Xi Road, Fengtai District, Beijing, 100160 China.,4China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100160 China.,Chinese Glioma Genome Atlas Network (CGGA), Beijing, China
| |
Collapse
|
27
|
Tom MC, Cahill DP, Buckner JC, Dietrich J, Parsons MW, Yu JS. Management for Different Glioma Subtypes: Are All Low-Grade Gliomas Created Equal? Am Soc Clin Oncol Educ Book 2019; 39:133-145. [PMID: 31099638 DOI: 10.1200/edbk_238353] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Following the identification of key molecular alterations that provided superior prognostication and led to the updated 2016 World Health Organization (WHO) Central Nervous System (CNS) Tumor Classification, the understanding of glioma behavior has rapidly evolved. Mutations in isocitrate dehydrogenase (IDH) 1 and 2 are present in the majority of adult grade 2 and 3 gliomas, and when used in conjunction with 1p/19q codeletion for classification, the prognostic distinction between grade 2 versus grade 3 is diminished. As such, the previously often used term of "low-grade glioma," which referred to grade 2 gliomas, has now been replaced by the phrase "lower-grade glioma" to encompass both grade 2 and 3 tumors. Additional molecular characterization is ongoing to even further classify this heterogeneous group of tumors. With such a colossal shift in the understanding of lower-grade gliomas, management of disease is being redefined in the setting of emerging molecular-genetic biomarkers. In this article, we review recent progress and future directions regarding the surgical, radiotherapeutic, chemotherapeutic, and long-term management of adult lower-grade gliomas.
Collapse
Affiliation(s)
- Martin C Tom
- 1 Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Daniel P Cahill
- 2 Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Jan C Buckner
- 3 Department of Oncology, Mayo Clinic, Rochester, MN
| | - Jörg Dietrich
- 4 Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Michael W Parsons
- 4 Department of Neurology, Division of Neuro-Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA
| | - Jennifer S Yu
- 1 Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.,5 Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|