1
|
Shen C, Peng C, Zhang S, Li R, Liu S, Kuang Y, Su F, Liu Y, Liang L, Xiao Y, Xu H. Eukaryotic translation initiation factor 6-mediated ribosome biogenesis promotes synovial aggression and inflammation by increasing the translation of SP1 in rheumatoid arthritis. Int Immunopharmacol 2024; 142:113164. [PMID: 39288622 DOI: 10.1016/j.intimp.2024.113164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Fibroblast-like synoviocytes (FLSs) play critical roles in synovial inflammation and aggression in rheumatoid arthritis (RA). Here, we explored the role of eukaryotic translation initiation factor 6 (eIF6) in regulating the biological behaviors of FLSs from patients with RA. METHODS FLSs were isolated from the synovial tissues of RA patients. Gene expression was assessed via RT-qPCR, and protein expression was evaluated via Western blotting or immunohistochemistry. Proliferation and nascent peptide synthesis were evaluated via EdU incorporation and HPG labeling, respectively. Cell migration and invasion were observed via Transwell assays. Polysome profiling was conducted to analyze the distribution of ribosomes and combined mRNAs. The in vivo effect of eIF6 inhibition was evaluated in a collagen-induced arthritis (CIA) rat model. RESULTS We found that eIF6 expression was elevated in FLSs and synovial tissues from RA patients compared to those from healthy controls and osteoarthritis patients. Knockdown of eIF6 inhibited the migration, invasion, inflammation, and proliferation of FLSs from patients with RA. Mechanistically, eIF6 knockdown downregulated ribosome biogenesis in FLSs from with RA, leading to a decrease in the proportion of polysome-associated specificity protein 1 (SP1) mRNA and a subsequent reduction in the translation initiation efficiency of SP1 mRNA. Thus, eIF6 controls SP1 expression through translation-mediated mechanisms. Interestingly, intra-articular eIF6 siRNA treatment attenuated symptoms and histological manifestations in CIA rats. CONCLUSIONS Our findings suggest that an increase in synovial eIF6 might contribute to rheumatoid synovial inflammation and aggression and that targeting eIF6 may have therapeutic potential in RA patients.
Collapse
Affiliation(s)
- Chuyu Shen
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Chenxi Peng
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Shuoyang Zhang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Ruiru Li
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Suling Liu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yu Kuang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Fan Su
- Department of Geriatrics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Yingli Liu
- Department of Medical Ultrasonics, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Liuqin Liang
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Youjun Xiao
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China
| | - Hanshi Xu
- Department of Rheumatology and Immunology, the First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Er Road, Guangzhou 510080, Guangdong Province, PR China.
| |
Collapse
|
2
|
Sehrawat U. Exploiting Translation Machinery for Cancer Therapy: Translation Factors as Promising Targets. Int J Mol Sci 2024; 25:10835. [PMID: 39409166 PMCID: PMC11477148 DOI: 10.3390/ijms251910835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Eukaryotic protein translation has slowly gained the scientific community's attention for its advanced and powerful therapeutic potential. However, recent technical developments in studying ribosomes and global translation have revolutionized our understanding of this complex multistep process. These developments have improved and deepened the current knowledge of mRNA translation, sparking excitement and new possibilities in this field. Translation factors are crucial for maintaining protein synthesis homeostasis. Since actively proliferating cancer cells depend on protein synthesis, dysregulated protein translation is central to tumorigenesis. Translation factors and their abnormal expressions directly affect multiple oncogenes and tumor suppressors. Recently, small molecules have been used to target translation factors, resulting in translation inhibition in a gene-specific manner, opening the door for developing translation inhibitors that can lead to novel chemotherapeutic drugs for treating multiple cancer types caused by dysregulated translation machinery. This review comprehensively summarizes the involvement of translation factors in tumor progression and oncogenesis. Also, it sheds light on the evolution of translation factors as novel drug targets for developing future therapeutic drugs for treating cancer.
Collapse
Affiliation(s)
- Urmila Sehrawat
- Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
3
|
Huang CG, Zhou XQ, Zheng AF, Luo X, Shen J, Xiao ZG, Yang ZH, Dai Q. eIF6 Promotes Gastric Cancer Proliferation and Invasion by Regulating Cell Cycle. Dig Dis Sci 2024; 69:3249-3260. [PMID: 38987443 PMCID: PMC11415431 DOI: 10.1007/s10620-024-08464-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024]
Abstract
OBJECTIVE To investigate the role and function of eIF6 in gastric cancer (GC). METHODS The expression level of eIF6 in GC tissues and normal tissues was detected in different high-throughput sequencing cohorts. Survival analysis, gene differential analysis, and enrichment analysis were performed in the TCGA cohort. Biological networks centered on eIF6 were constructed through two different databases. Immunohistochemistry (IHC) and Western blot were used to detect protein expression of eIF6, and qRT-PCR was used to detect eIF6 mRNA expression. The correlation between the expression of eIF6 in GC tissues and clinicopathological parameters of GC was analyzed. siRNA knockout of eIF6 was used to study the proliferation, migration, and invasion. The effects of eIF6 on cell cycle and Cyclin B1 were detected by flow cytometry and Western blot. RESULTS eIF6 was significantly overexpressed in GC tissues and predicted poor prognosis. In addition, 113 differentially expressed genes were detected in cancer-related biological pathways and functions by differential analysis. Biological networks revealed interactions of genes and proteins with eIF6. The expression intensity of eIF6 in cancer tissues was higher than that in adjacent tissues (P = 0.0001), confirming the up-regulation of eIF6 expression in GC tissues. The expression level of eIF6 was statistically significant with pTNM stage (P = 0.006). siRNA knockout of eIF6 significantly reduced the proliferation, colony formation, migration, and invasion ability of GC cells. Silencing of eIF6 also inhibited the cell cycle of GC cells in G2/M phase and decreased the expression level of CyclinB1. CONCLUSION Our study suggests that eIF6 is up-regulated in GC and may promote the proliferation, migration, and invasion of GC by regulating cell cycle.
Collapse
Affiliation(s)
- Cong-Gai Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, People's Republic of China
| | - Xiao-Qing Zhou
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - An-Fu Zheng
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Xing Luo
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Shen
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Zhan-Gang Xiao
- Department of Pharmacy, Southwest Medical University, Luzhou, People's Republic of China
| | - Zhi-Hui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Precision Pathology Diagnosis for Serious Diseases Key Laboratory of LuZhou, Luzhou, People's Republic of China
| | - Qiong Dai
- Department of Human Anatomy, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Lee JS, Dan T, Zhang H, Cheng Y, Rehfeld F, Brugarolas J, Mendell JT. An ultraconserved snoRNA-like element in long noncoding RNA CRNDE promotes ribosome biogenesis and cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604857. [PMID: 39091767 PMCID: PMC11291168 DOI: 10.1101/2024.07.23.604857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cancer cells frequently upregulate ribosome production to support tumorigenesis. While small nucleolar RNAs (snoRNAs) are critical for ribosome biogenesis, the roles of other classes of noncoding RNAs in this process remain largely unknown. Here we performed CRISPRi screens to identify essential long noncoding RNAs (lncRNAs) in renal cell carcinoma (RCC) cells. This revealed that an alternatively-spliced isoform of lncRNA Colorectal Neoplasia Differentially Expressed containing an ultraconserved element (UCE), referred to as CRNDE UCE, is required for RCC cell proliferation. CRNDE UCE localizes to the nucleolus and promotes 60S ribosomal subunit biogenesis. The UCE of CRNDE functions as an unprocessed C/D box snoRNA that directly interacts with ribosomal RNA precursors. This facilitates delivery of eIF6, a key 60S biogenesis factor, which binds to CRNDE UCE through a sequence element adjacent to the UCE. These findings highlight the functional versatility of snoRNA sequences and expand the known mechanisms through which noncoding RNAs orchestrate ribosome biogenesis.
Collapse
Affiliation(s)
- Jong-Sun Lee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tu Dan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujing Cheng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Frederick Rehfeld
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Kidney Cancer Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
5
|
Yu M, Pan Y, Li H, Liu X, Chen Z, Chen H, Ma S, Zeng W. N6-methyladenosine methylation regulatory pattern of pulmonary lymphoepithelioma-like carcinoma based on exosomal transcriptome analysis. Mol Carcinog 2023; 62:1846-1859. [PMID: 37589421 DOI: 10.1002/mc.23619] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Pulmonary lymphoepithelioma-like carcinoma (pLELC) is a rare malignancy that lacks specific biomarkers. N6-methyladenosine (m6 A) is the most widespread internal modification of messenger RNA (mRNA), and its dysregulation is involved in the development of many cancers. However, the expression of m6 A genes in pLELC and their roles are unknown. We obtained an exosomal transcriptome data set of patients diagnosed with pLELC and healthy controls using RNA sequencing and identified differentially expressed genes (DEGs) in the two groups using R software. The differential expression of the 37 m6 A genes in the two sets of samples was further analyzed, and receiver operating characteristic (ROC) curves were plotted for each gene to identify their grouping ability. The STRING database was used to construct a protein-protein interaction network for m6 A genes. An mRNA-miRNA regulatory network of m6 A-related DEGs was constructed using the miRNet database, and a prediction score formula was established. A nomogram was constructed based on the candidate m6 A genes and prediction scores. The expression of key genes was determined through the immunohistochemical (IHC) staining of clinical tissue sections. Using ROC curves, nine m6 A genes were revealed to have classification efficacy in both groups of samples. We screened seven m6 A-related DEGs (MAN2C1, HNRNPCL1, FUS, EIF6, DIP2A, COA3, and BUD13) that were beneficial for grouping and constructed nomogram models. Through IHC, we identified FUS and EIF6 as being possibly involved in the occurrence and development of pLELC. The m6 A gene expression patterns in pLELC-derived exosomes were significantly different from those in healthy controls. We screened several key genes to facilitate the development of diagnostic markers for pulmonary lymphoepithelioma.
Collapse
Affiliation(s)
- Mengge Yu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Yiyun Pan
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Huahua Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiaomei Liu
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Zhengcong Chen
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Hailong Chen
- Department of Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| | - Shudong Ma
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Wen Zeng
- Department of Surgical Oncology, Ganzhou Cancer Hospital, Gannan Medical University, Ganzhou, Jiangxi, P.R. China
| |
Collapse
|
6
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
7
|
Rubio A, Garland GD, Sfakianos A, Harvey RF, Willis AE. Aberrant protein synthesis and cancer development: The role of canonical eukaryotic initiation, elongation and termination factors in tumorigenesis. Semin Cancer Biol 2022; 86:151-165. [PMID: 35487398 DOI: 10.1016/j.semcancer.2022.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
In tumourigenesis, oncogenes or dysregulated tumour suppressor genes alter the canonical translation machinery leading to a reprogramming of the translatome that, in turn, promotes the translation of selected mRNAs encoding proteins involved in proliferation and metastasis. It is therefore unsurprising that abnormal expression levels and activities of eukaryotic initiation factors (eIFs), elongation factors (eEFs) or termination factors (eRFs) are associated with poor outcome for patients with a wide range of cancers. In this review we discuss how RNA binding proteins (RBPs) within the canonical translation factor machinery are dysregulated in cancers and how targeting such proteins is leading to new therapeutic avenues.
Collapse
Affiliation(s)
- Angela Rubio
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Gavin D Garland
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Aristeidis Sfakianos
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Robert F Harvey
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Rd, Cambridge CB2 1QR, UK.
| |
Collapse
|
8
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
9
|
Fu L, Wang Z, Jiang F, Wei G, Sun L, Guo C, Wu J, Zhu J. High Expression of EIF4G2 Mediated by the TUG1/Hsa-miR-26a-5p Axis Is Associated with Poor Prognosis and Immune Infiltration of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9342283. [PMID: 36157241 PMCID: PMC9507702 DOI: 10.1155/2022/9342283] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022]
Abstract
Objective Eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) is involved in the occurrence and development of various tumors. However, the effect of EIF4G2 in gastric cancer (GC) has not been fully explored. The purpose of this study was to explore the function and mechanism of EIF4G2 in GC. Methods The Tumor Immune Estimation Resource 2.0 database was used to analyze EIF4G2 expression in various cancers and the relationship between EIF4G2 expression and tumor-infiltrating immune cells. Gene Expression Profiling Interactive Analysis was utilized to assess the EIF4G2 expression level and its effect on survival in GC. UALCAN was conducted to analyze EIF4G2 expression in various subgroups of GC. The Kaplan-Meier plotter was employed for survival analysis. Receiver operator characteristic (ROC) curve analysis was applied to evaluate the diagnostic role of EIF4G2 in GC. LinkedOmics was used to identify the co-expressed genes and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. The Tumor-Immune System Interaction database was employed to analyze the correlation between EIF4G2 expression and tumor-infiltrating lymphocytes. The starBase web platform was used to predict the upstream microRNAs and long noncoding RNAs. Results EIF4G2 expression was upregulated in GC tissues compared to normal controls. High expression of EIF4G2 indicated poor prognosis in GC. ROC analysis revealed that EIF4G2 had good diagnostic ability to distinguish GC from normal tissues. Immune infiltration analysis indicated that EIF4G2 expression may be involved in the modulation of tumor immune infiltration in GC. Finally, we determined that the Taurine Upregulated 1 (TUG1)/hsa-miR-26a-5p/EIF4G2 axis was the most likely regulatory pathway involved in GC development. Conclusions EIF4G2 was upregulated in GC and elevated expression of EIF4G2 indicated unfavorable prognosis. Moreover, EIF4G2 expression may be involved in the regulation of tumor immune cell infiltration. The TUG1/hsa-miR-26a-5p axis is a likely upstream regulatory mechanism of EIF4G2 in GC. EIF4G2 may thus serve as a prognosis biomarker and present a new therapeutic target.
Collapse
Affiliation(s)
- Liu Fu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Zhe Wang
- Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Fengxiang Jiang
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Guohua Wei
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Longe Sun
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Chuanyong Guo
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jianye Wu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| | - Jianhuan Zhu
- Department of Gastroenterology, Putuo People's Hospital, Tongji University, Shanghai 200060, China
| |
Collapse
|
10
|
Gao Y, Yuan L, Zeng J, Li F, Li X, Tan F, Liu X, Wan H, Kui X, Liu X, Ke C, Pei Z. eIF6 is potential diagnostic and prognostic biomarker that associated with 18F-FDG PET/CT features and immune signatures in esophageal carcinoma. Lab Invest 2022; 20:303. [PMID: 35794622 PMCID: PMC9258187 DOI: 10.1186/s12967-022-03503-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/24/2022] [Indexed: 11/25/2022]
Abstract
Background Although eukaryotic initiation factor 6 (eIF6) is a novel therapeutic target, data on its importance in the development of esophageal carcinoma (ESCA) remains limited. This study evaluated the correlation between eIF6 expression and metabolic analysis using fluorine-18 fluorodeoxyglucose (18F-FDG) -Positron emission tomography (PET) and immune gene signatures in ESCA. Methods This study employed The Cancer Genome Atlas (TCGA) to analyze the expression and prognostic value of eIF6, as well as its relationship with the immune gene signatures in ESCA patients. The qRT-PCR and Western blot analyses were used to profile the expression of eIF6 in ESCA tissues and different ESCA cell lines. The expression of tumor eIF6 and glucose transporter 1 (GLUT1) was examined using immunohistochemical tools in fifty-two ESCA patients undergoing routine 18F-FDG PET/CT before surgery. In addition, the cellular responses to eIF6 knockdown in human ESCA cells were assessed via the MTS, EdU, flow cytometry and wound healing assays. Results Our data demonstrated that compared with the normal esophageal tissues, eIF6 expression was upregulated in ESCA tumor tissues and showed a high diagnostic value with an area under curve of 0.825 for predicting ESCA. High eIF6 expression was significantly correlated with shorter overall survival of patients with esophagus adenocarcinoma (p = 0.038), but not in squamous cell carcinoma of the esophagus (p = 0.078). In addition, tumor eIF6 was significantly associated with 18F-FDG PET/CT parameters: maximal and mean standardized uptake values (SUVmax and SUVmean) and total lesion glycolysis (TLG) (rho = 0.458, 0.460, and 0.300, respectively, p < 0.01) as well as GLUT1 expression (rho = 0.453, p < 0.001). A SUVmax cutoff of 18.2 led to prediction of tumor eIF6 expression with an accuracy of 0.755. Functional analysis studies demonstrated that knockdown of eIF6 inhibited ESCA cell growth and migration, and fueled cell apoptosis. Moreover, the Bulk RNA gene analysis revealed a significant inverse association between eIF6 and the tumor-infiltrating immune cells (macrophages, T cells, or Th1 cells) and immunomodulators in the ESCA microenvironment. Conclusion Our study suggested that eIF6 might serve as a potential prognostic biomarker associated with metabolic variability and immune gene signatures in ESCA tumor microenvironment.
Collapse
|
11
|
Tang Y, Luo J, Yang Y, Liu S, Zheng H, Zhan Y, Fan S, Wen Q. Overexpression of p-4EBP1 associates with p-eIF4E and predicts poor prognosis for non-small cell lung cancer patients with resection. PLoS One 2022; 17:e0265465. [PMID: 35737644 PMCID: PMC9223369 DOI: 10.1371/journal.pone.0265465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 03/01/2022] [Indexed: 12/09/2022] Open
Abstract
Eukaryotic initiation factor 4E (eIF4E) and its phosphorylated form (p-eIF4E) play a crucial role in the protein synthesis, both are under regulation of eIF4E-binding protein 1 (4EBP1) and mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs). This study aims to explore the potential prognostic significance of p-4EBP1 and p-eIF4E in NSCLC patients. The expression of p-4EBP1 and p-eIF4E in NSCLC patients was detected by immunohistochemistry (IHC) staining in tissue microarrays (TMAs) containing 354 NSCLC and 53 non-cancerous lung tissues (Non-CLT). The overexpression percentage of p-4EBP1 and p-eIF4E in lung squamous cell carcinoma (SCC) and adenocarcinoma (ADC) was significantly higher than that of Non-CLT. P-4EBP1 expression in patients with advanced clinical stage was higher than that in early stage. Expression of p-4EBP1 had a positive relationship with p-eIF4E expression both in lung SCC and ADC. NSCLC patients with high expression of p-4EBP1 and p-eIF4E alone or in combination had a lower survival rate than that of other phenotypes. For NSCLC patients, p-4EBP1 is an independent poor prognostic factor as well as clinical stage, LNM and pathological grade. Overexpression of p-4EBP1 and p-eIF4E might be novel prognostic marker for NSCLC, who possesses potential application value for NSCLC targeted therapy.
Collapse
Affiliation(s)
- Yaoxiang Tang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
12
|
Zhang F, Waheed S, Armato U, Wu J, Zhang C, Li Z. eIF6 as a Promising Diagnostic and Prognostic Biomarker for Poorer Survival of Cutaneous Melanoma. Front Oncol 2022; 12:848346. [PMID: 35707354 PMCID: PMC9189357 DOI: 10.3389/fonc.2022.848346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Background Skin cutaneous melanoma (SKCM) is the deadliest skin cancer and has the most rapidly increasing incidences among all cancer types. Previous research elucidated that melanoma can only be successfully treated with surgical abscission in the early stage. Therefore, reliable and specific biomarkers are crucial to melanoma diagnosis since it often looks like nevi in the clinical manifestations. Moreover, identifying key genes contributing to melanoma progression is also highly regarded as a potential strategy for melanoma therapy. In this respect, translation initiator eIF6 has been proved as a pro-tumor factor in several cancers. However, the role of eIF6 in the skin cutaneous melanoma progression and its potential as a prognostic marker is still unexplored. Methods The immunochemical analysis of clinical specimens were served to assess eIF6 expression levels. Gene Expression Profiling Interactive Analysis (GEPIA) database consultations allowed us to find the survival rates of the eIF6-overexpressed patients. eIF6 cellular effects were evaluated in an eIF6-overexpressed A375 cell line constructed with a lentivirus. The analysis of down-stream effectors or pathways was conducted using C-Bioportal and STRING databases. Results Our results revealed that eIF6 was highly over-expressed in melanomas compared to normal skin specimens, and thus the abnormally high level of eIF6 can be a diagnostic marker for melanoma. The in silica analysis indicated that patients with eIF6 over-expression had lower survival rates than that low-expression in SKCM. Meanwhile, similar results also could be found in the other four types of cancers. In vitro, over-expression of eIF6 increased the proliferation and migration of melanoma cells. Correspondingly, pan-cancer clustering analysis indicated the expression level of intermediate filament proteins was correlated with that of eIF6 expression. In our study, all over-expressed keratin proteins, in accordance with over-expressed eIF6, had a negative correlation with melanoma prognosis. Moreover, the decreased methylation level of keratin genes suggested a new potential regulation mode of eIF6. Conclusions The up-regulated eIF6 could be a potential diagnostic and prognostic biomarker of melanoma. This study also provides insights into the potential role of eIF6 in pan-cancer epigenetic regulation.
Collapse
Affiliation(s)
- Fangyingnan Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zhibin Li, ; Chao Zhang,
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Zhibin Li, ; Chao Zhang,
| |
Collapse
|
13
|
Zhao Z, Chu W, Zheng Y, Wang C, Yang Y, Xu T, Yang X, Zhang W, Ding X, Li G, Zhang H, Zhou J, Ye J, Wu H, Song X, Wu Y. Cytoplasmic eIF6 promotes OSCC malignant behavior through AKT pathway. Cell Commun Signal 2021; 19:121. [PMID: 34922580 PMCID: PMC8684100 DOI: 10.1186/s12964-021-00800-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/30/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6), also known as integrin β4 binding protein, is involved in ribosome formation and mRNA translation, acting as an anti-association factor. It is also essential for the growth and reproduction of cells, including tumor cells. Yet, its role in oral squamous cell carcinoma (OSCC) remains unclear. METHODS The expression characteristics of eIF6 in 233 samples were comprehensively analyzed by immunohistochemical staining (IHC). Effects of eIF6 over-expression and knockdown on cell proliferation, migration and invasion were determined by CCK-8, wound healing and Transwell assays. Western blot, immunofluorescence (IF) and co-immunoprecipitation (co-IP) were performed for mechanical verification. RESULTS We found that cytoplasmic eIF6 was abnormally highly expressed in OSCC tissues, and its expression was associated with tumor size and the clinical grade. Amplification of eIF6 promoted the growth, migration and invasion capabilities of OSCC cell lines in vitro and tumor growth in vivo. Through Western blot analysis, we further discovered that eIF6 significantly promotes epithelial-mesenchymal transformation (EMT) in OSCC cells, while depletion of eIF6 can reverse this process. Mechanistically, eIF6 promoted tumor progression by activating the AKT signaling pathway. By performing co-immunoprecipitation, we discovered a direct interaction between endogenous eIF6 and AKT protein in the cytoplasm. CONCLUSION These results demonstrated that eIF6 could be a new therapeutic target in OSCC, thus providing a new basis for the prognosis of OSCC patients in the future. Video abstract.
Collapse
Affiliation(s)
- Zechen Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Weiming Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu People’s Republic of China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral Maxillofacial and Head and Neck Oncology, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, National Center of Stomatology, Shanghai, 200011 China
| | - Chao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yuemei Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Teng Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Stomatology, The Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu People’s Republic of China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Gang Li
- Department of Stomatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu People’s Republic of China
| | - Hongchuang Zhang
- Department of Stomatology, Xuzhou No.1 Peoples Hospital, Xuzhou, Jiangsu People’s Republic of China
| | - Junbo Zhou
- Department of Stomatology, Nanjing Integrated Traditional Chinese and Western Medicine Hospital, Nanjing, Jiangsu People’s Republic of China
| | - Jinhai Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Heming Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, No.1, Shanghai Road, Gulou District, Nanjing, Jiangsu 210029 People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu People’s Republic of China
| |
Collapse
|
14
|
Xiaoli L, Fengbin H, Shihui H, Xi N, Sheng L, Zhou W, Xueqin R, Jiafu W. Detection of genomic structure variants associated with wrinkled skin in Xiang pig by next generation sequencing. Aging (Albany NY) 2021; 13:24710-24739. [PMID: 34837693 PMCID: PMC8660620 DOI: 10.18632/aging.203711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.
Collapse
Affiliation(s)
- Liu Xiaoli
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Hu Fengbin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Huang Shihui
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Niu Xi
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Li Sheng
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Zhou
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Ran Xueqin
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| | - Wang Jiafu
- Institute of Agro-Bioengineering, Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Science and College of Animal Science, Guizhou University, Guiyang 550025, China
| |
Collapse
|
15
|
Role of RONS and eIFs in Cancer Progression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5522054. [PMID: 34285764 PMCID: PMC8275427 DOI: 10.1155/2021/5522054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/19/2021] [Accepted: 05/14/2021] [Indexed: 12/05/2022]
Abstract
Various research works have piled up conflicting evidence questioning the effect of oxidative stress in cancer. Reactive oxygen and nitrogen species (RONS) are the reactive radicals and nonradical derivatives of oxygen and nitrogen. RONS can act as a double-edged weapon. On the one hand, RONS can promote cancer initiation through activating certain signal transduction pathways that direct proliferation, survival, and stress resistance. On the other hand, they can mitigate cancer progression via their resultant oxidative stress that causes many cancer cells to die, as some recent studies have proposed that high RONS levels can limit the survival of cancer cells during certain phases of cancer development. Similarly, eukaryotic translation initiation factors are key players in the process of cellular transformation and tumorigenesis. Dysregulation of such translation initiation factors in the form of overexpression, downregulation, or phosphorylation is associated with cancer cell's altering capability of survival, metastasis, and angiogenesis. Nonetheless, eIFs can affect tumor age-related features. Data shows that alternating the eukaryotic translation initiation apparatus can impact many downstream cellular signaling pathways that directly affect cancer development. Hence, researchers have been conducting various experiments towards a new trajectory to find novel therapeutic molecular targets to improve the efficacy of anticancer drugs as well as reduce their side effects, with a special focus on oxidative stress and initiation of translation to harness their effect in cancer development. An increasing body of scientific evidence recently links oxidative stress and translation initiation factors to cancer-related signaling pathways. Therefore, in this review, we present and summarize the recent findings in this field linking certain signaling pathways related to tumorigeneses such as MAPK and PI3K, with either RONS or eIFs.
Collapse
|
16
|
Sun L, Liu S, Wang X, Zheng X, Chen Y, Shen H. eIF6 promotes the malignant progression of human hepatocellular carcinoma via the mTOR signaling pathway. J Transl Med 2021; 19:216. [PMID: 34016142 PMCID: PMC8139032 DOI: 10.1186/s12967-021-02877-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Eukaryotic translation initiation factor 6 (eIF6) has a crucial function in the maturation of 60S ribosomal subunits, and it controls the initiation of protein translation. Although emerging studies indicate that eIF6 is aberrantly expressed in various types of cancers, the functions and underlying molecular mechanisms of eIF6 in the pathological progression of hepatocellular carcinoma (HCC) remain unclear. This study aimed to evaluate the potential diagnostic and prognostic value of eIF6 in patients with HCC. METHODS HCC samples enrolled from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and our cohort were used to explore the role and mechanism of eIF6 in HCC. The diagnostic power of eIF6 was verified by receiver operating characteristic curve (ROC) analysis and its prognostic value was assessed by Kaplan-Meier analysis, and then related biological functions of eIF6 were determined in vitro and in vivo cancer models. In addition, potential molecular mechanism of eIF6 in HCC was unveiled by the gene set enrichment analysis and western blot assay. RESULTS We demonstrated that eIF6 expression was markedly increased in HCC, and elevated eIF6 expression correlated with pathological progression of HCC. Besides, eIF6 served as not only a new diagnostic biomarker but also an independent risk factor for OS in HCC patients. Functional studies indicated that the deletion of eIF6 displayed tumor-suppressor activity in HCC cells. Furthermore, we found that eIF6 could activate the mTOR-related signaling pathway and regulate the expression level of its target genes, such as CCND1, CDK4, CDK6, MYC, CASP3 and CTNNBL1, and these activities promoted proliferation and invasion of HCC cells. CONCLUSIONS The findings of this study provided a novel basis for understanding the potential role of eIF6 in promoting tumor growth and invasion, and exploited a promising strategy for improving diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Liping Sun
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaopai Wang
- Department of Pathology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China
| | - Xuefeng Zheng
- Department of Anatomy, Neuroscience Laboratory for Cognitive and Developmental Disorders, Medical College of Jinan University, Guangzhou, China
| | - Ya Chen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hong Shen
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Yang L, Zhang R, Guo G, Wang G, Wen Y, Lin Y, Zhang X, Yu X, Huang Z, Zhao D, Zhang L. Development and validation of a prediction model for lung adenocarcinoma based on RNA-binding protein. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:474. [PMID: 33850871 PMCID: PMC8039651 DOI: 10.21037/atm-21-452] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background RNA-binding proteins (RBPs) have been found to participate in the development and progression of cancer. This present study aimed to construct a RBP-based prognostic prediction model for lung adenocarcinoma (LUAD). Methods RNA sequencing data and corresponding clinical information were acquired from The Cancer Genome Atlas (TCGA) and served as a training set. The prediction model was validated using the dataset in Gene Expression Omnibus (GEO) databases. Univariate and multivariate Cox regression analyses were conducted to identify the RBPs associated with survival. R software (http://www.r-project.org) was used for analysis in this study. Results Nine hub prognostic RBPs (CIRBP, DARS2, DDX24, GAPDH, LARP6, SNRPE, WDR3, ZC3H12C, ZC3H12D) were identified by univariate Cox regression analysis and multivariate Cox regression analysis. Using a risk score based on the nine-hub RBP model, we separated the LUAD patients into a low-risk group and a high-risk group. The outcomes revealed that patients in the high-risk group had poorer survival than those in the low-risk group. This signature was validated in the GEO database. Further study revealed that the risk score can be an independent prognostic biomarker for LUAD. A nomogram based on the nine hub RBPs was built to quantitatively predict the prognosis of LUAD patients. Conclusions Our nine-gene signature model could be used as a marker to predict the prognosis of LUAD and has potential for use in treatment individualization.
Collapse
Affiliation(s)
- Longjun Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Rusi Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guangran Guo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Gongming Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yingsheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yongbin Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xuewen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Anesthesiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiangyang Yu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zirui Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dechang Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Lanjun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | | |
Collapse
|
18
|
Li S, Shao J, Lou G, Wu C, Liu Y, Zheng M. MiR-144-3p-mediated dysregulation of EIF4G2 contributes to the development of hepatocellular carcinoma through the ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:53. [PMID: 33526055 PMCID: PMC7852102 DOI: 10.1186/s13046-021-01853-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common cancers with high incidence and mortality. However, the underlying mechanisms of HCC still remain unclear. Eukaryotic translation initiation factors (eIFs) have a substantial effect on tumor development. In this study, we were aimed to investigate the role of eukaryotic translation initiation factor 4 gamma 2 (EIF4G2) in HCC. Methods Western blot (WB) of 30 paired HCC tissues and tissue microarrays (TMAs) conducted by immunohistochemistry (IHC) in 89 paired HCC samples were performed to assess EIF4G2 expression. Clone formation, real-time cell analysis (RTCA), wound healing and transwell assays were adopted to evaluate the role of EIF4G2 on HCC cell proliferation, migration and invasion abilities. The function of EIF4G2 in HCC tumor growth was assessed in a xenograft nude mouse model in vivo. The regulation of EIF4G2 by miR-144-3p was performed by luciferase reporter assay and WB. Results The EIF4G2 protein was clearly upregulated in HCC tissues, and high EIF4G2 expression was closely related to HCC prognosis. EIF4G2 silencing could inhibit HCC cell growth and metastasis in vitro, and suppress tumorigenesis in vivo by repressing the ERK signaling pathway. The results of luciferase reporter assays, WB and IHC staining verified that EIF4G2 was negatively regulated by miR-144. And re-expression of EIF4G2 could partially reverse the inhibiting effect of miR-144 in HCC. Conclusion In summary, our study revealed the role of EIF4G2 in HCC development via the activation of the ERK pathway. We also found that EIF4G2 could be negatively regulated by the tumor suppressor miR-144. Our investigations indicated that EIF4G2 might be a promising therapeutic target in HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01853-6.
Collapse
Affiliation(s)
- Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Jiajia Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Chao Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79# Qingchun Road, Hangzhou, 310003, China.
| |
Collapse
|
19
|
Ye C, Liu B, Lu H, Liu J, Rabson AB, Jacinto E, Pestov DG, Shen Z. BCCIP is required for nucleolar recruitment of eIF6 and 12S pre-rRNA production during 60S ribosome biogenesis. Nucleic Acids Res 2021; 48:12817-12832. [PMID: 33245766 PMCID: PMC7736804 DOI: 10.1093/nar/gkaa1114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 01/25/2023] Open
Abstract
Ribosome biogenesis is a fundamental process required for cell proliferation. Although evolutionally conserved, the mammalian ribosome assembly system is more complex than in yeasts. BCCIP was originally identified as a BRCA2 and p21 interacting protein. A partial loss of BCCIP function was sufficient to trigger genomic instability and tumorigenesis. However, a complete deletion of BCCIP arrested cell growth and was lethal in mice. Here, we report that a fraction of mammalian BCCIP localizes in the nucleolus and regulates 60S ribosome biogenesis. Both abrogation of BCCIP nucleolar localization and impaired BCCIP-eIF6 interaction can compromise eIF6 recruitment to the nucleolus and 60S ribosome biogenesis. BCCIP is vital for a pre-rRNA processing step that produces 12S pre-rRNA, a precursor to the 5.8S rRNA. However, a heterozygous Bccip loss was insufficient to impair 60S biogenesis in mouse embryo fibroblasts, but a profound reduction of BCCIP was required to abrogate its function in 60S biogenesis. These results suggest that BCCIP is a critical factor for mammalian pre-rRNA processing and 60S generation and offer an explanation as to why a subtle dysfunction of BCCIP can be tumorigenic but a complete depletion of BCCIP is lethal.
Collapse
Affiliation(s)
- Caiyong Ye
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Bochao Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Huimei Lu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Jingmei Liu
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| | - Arnold B Rabson
- Department of Pharmacology, and The Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Dimitri G Pestov
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, USA
| | - Zhiyuan Shen
- Rutgers Cancer Institute of New Jersey, Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
20
|
Liu H, Qin Y, Zhou N, Ma D, Wang Y. ZNF280A promotes lung adenocarcinoma development by regulating the expression of EIF3C. Cell Death Dis 2021; 12:39. [PMID: 33414445 PMCID: PMC7791122 DOI: 10.1038/s41419-020-03309-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype in non-small cell lung cancer, which is the malignant tumor with the highest mortality and morbidity in the world. Herein, ZNF280A, a member of the zinc finger protein family carrying two consecutive Cys2His2 zinc finger domains, was shown by us to act as a tumor driver in LUAD. The immunohistochemical analysis of ZNF280A in LUAD indicated its positive correlation with tumor grade, pathological stage and lymphatic metastasis, and negative relationship with patients’ survival. A loss-of-function study revealed the inhibition of LUAD development by ZNF280A in vitro and in vivo, whereas ZNF280A overexpression induced opposite effects. Statistical analysis of gene expression profiling in LUAD cells with or without ZNF280A knockdown identified EIF3C as a potential downstream of ZNF280A, which possesses similar regulatory effects on phenotypes of LUAD cells with ZNF280A. Moreover, downregulation of EIF3C in ZNF280A-overexpressed cells could attenuate neutralize the ZNF280A-induced promotion of LUAD. In summary, our study demonstrated that ZNF280A may promote the development of LUAD by regulating cell proliferation, apoptosis, cell cycle, and cell migration and probably via interacting EIF3C.
Collapse
Affiliation(s)
- Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yingzhi Qin
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Na Zhou
- Department of Medical Oncology, Peking Union Medical College Hospital, Beijing, China
| | - Dongjie Ma
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Yingyi Wang
- Department of Medical Oncology, Peking Union Medical College Hospital, Beijing, China.
| |
Collapse
|
21
|
Contribution of miRNAs, tRNAs and tRFs to Aberrant Signaling and Translation Deregulation in Lung Cancer. Cancers (Basel) 2020; 12:cancers12103056. [PMID: 33092114 PMCID: PMC7593945 DOI: 10.3390/cancers12103056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The profiles of miRNAs, tRNA-derived fragments and tRNAs from lung cancer biopsy specimens indicate involvement of gene networks that modulate signaling and translation initiation. The current study highlights the important role of several regulatory small non-coding RNAs in aberrant signaling and translation deregulation in lung cancer. Abstract Transcriptomics profiles of miRNAs, tRNAs or tRFs are used as biomarkers, after separate examination of several cancer cell lines, blood samples or biopsies. However, the possible contribution of all three profiles on oncogenic signaling and translation as a net regulatory effect, is under investigation. The present analysis of miRNAs and tRFs from lung cancer biopsies indicated putative targets, which belong to gene networks involved in cell proliferation, transcription and translation regulation. In addition, we observed differential expression of specific tRNAs along with several tRNA-related genes with possible involvement in carcinogenesis. Transfection of lung adenocarcinoma cells with two identified tRFs and subsequent NGS analysis indicated gene targets that mediate signaling and translation regulation. Broader analysis of all major signaling and translation factors in several biopsy specimens revealed a crosstalk between the PI3K/AKT and MAPK pathways and downstream activation of eIF4E and eEF2. Subsequent polysome profile analysis and 48S pre-initiation reconstitution experiments showed increased global translation rates and indicated that aberrant expression patterns of translation initiation factors could contribute to elevated protein synthesis. Overall, our results outline the modulatory effects that possibly correlate the expression of important regulatory non-coding RNAs with aberrant signaling and translation deregulation in lung cancer.
Collapse
|
22
|
Liu L, Zeng P, Yang S, Yuan Z. Leveraging methylation to identify the potential causal genes associated with survival in lung adenocarcinoma and lung squamous cell carcinoma. Oncol Lett 2020; 20:193-200. [PMID: 32537022 PMCID: PMC7291670 DOI: 10.3892/ol.2020.11564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/21/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the different genetic landscape between lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC) is important for understanding the underlying molecular mechanism, which may facilitate the development of effective and precise treatments. Although previous studies have identified a number of differentially expressed genes (DEGs) responsible for lung cancer, it is unknown which of these genes are causal. The present study integrated DNA methylation, RNA sequencing, clinical characteristics and survival outcomes of patients with LUAD and LUSC from The Cancer Genome Atlas. DEGs were first identified using edgeR by comparing tumor and normal tissue, and differentially methylated probes (DMPs) were assessed using ChAMP. Candidate genes for further time-to-event instrumental variable analysis were selected as the intersecting genes between DEGs and the genes including DMP CpG sites within the transcription start site (TSS1500), with DMPs in TSS1500 region being the instrumental variables. Extensive sensitivity analyses were conducted to assess the robustness of the results. The present study identified 906 DEGs for LUAD, among which 538 also had DMPs in the TSS1500 region. In addition, 1,543 DEGs were identified for LUSC, among which 1,053 also had DMPs in the TSS1500 region. Time-to-event instrumental variable analysis detected eight potential causal genes for LUAD survival, including aryl hydrocarbon receptor nuclear translocator like 2, semaphorin 3G, serum deprivation-response protein, chloride intracellular channel protein 5, LIM zinc finger domain containing 2, epithelial membrane protein 2, carbonic anhydrase 7 and LOC116437. The results also identified that phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 may be a potential causal gene for LUSC. Therefore, the results of the present study suggested that there was molecular heterogeneity between these two lung cancer subtypes. Such analysis framework can be extended to other cancer genomics research.
Collapse
Affiliation(s)
- Lu Liu
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China.,Institute for Medical Dataology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ping Zeng
- Department of Epidemiology and Biostatistics, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Sheng Yang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, P.R. China
| | - Zhongshang Yuan
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong 250012, P.R. China.,Institute for Medical Dataology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
23
|
Li W, Gao LN, Song PP, You CG. Development and validation of a RNA binding protein-associated prognostic model for lung adenocarcinoma. Aging (Albany NY) 2020; 12:3558-3573. [PMID: 32087603 PMCID: PMC7066909 DOI: 10.18632/aging.102828] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
RNA binding proteins (RBPs) dysregulation have been reported in various malignant tumors and associated with the occurrence and development of cancer. However, the role of RBPs in lung adenocarcinoma (LUAD) is poorly understood. We downloaded the RNA sequencing data of LUAD from the Cancer Genome Atlas (TCGA) database and determined the differently expressed RBPs between normal and cancer tissues. The study then systemically investigated the expression and prognostic value of these RBPs by a series of bioinformatics analysis. A total of 223 differently expressed RBPs were identified, including 101 up-regulated and 122 down-regulated RBPs. Eight RBPs (IGF2BP1, IFIT1B, PABPC1, TLR8, GAPDH, PIWIL4, RNPC3, and ZC3H12C) were identified as prognosis related hub gene and used to construct a prognostic model. Further analysis indicated that the patients in the high-risk subgroup had poor overall survival(OS) compared to those in low-risk subgroup based on the model. The area under the curve of the time-dependent receiver operator characteristic curve of the prognostic model are 0.775 in TCGA cohort and 0.814 in GSE31210 cohort, confirming a good prognostic model. We also established a nomogram based on eight RBPs mRNA and internal validation in the TCGA cohort, which displayed a favorable discriminating ability for lung adenocarcinoma.
Collapse
Affiliation(s)
- Wei Li
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Li-Na Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Pei-Pei Song
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Chong-Ge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, China
| |
Collapse
|
24
|
Kong L, Cai FY, Yao XM, Jing M, Fu M, Liu JJ, He SY, Zhang L, Liu XZ, Ju RJ, Li XT. RPV-modified epirubicin and dioscin co-delivery liposomes suppress non-small cell lung cancer growth by limiting nutrition supply. Cancer Sci 2020; 111:621-636. [PMID: 31777993 PMCID: PMC7004549 DOI: 10.1111/cas.14256] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/14/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy for non‐small cell lung cancer (NSCLC) is far from satisfactory, mainly due to poor targeting of antitumor drugs and self‐adaptations of the tumors. Angiogenesis, vasculogenic mimicry (VM) channels, migration, and invasion are the main ways for tumors to obtain nutrition. Herein, RPV‐modified epirubicin and dioscin co‐delivery liposomes were successfully prepared. These liposomes showed ideal physicochemical properties, enhanced tumor targeting and accumulation in tumor sites, and inhibited VM channel formation, tumor angiogenesis, migration and invasion. The liposomes also downregulated VM‐related and angiogenesis‐related proteins in vitro. Furthermore, when tested in vivo, the targeted co‐delivery liposomes increased selective accumulation of drugs in tumor sites and showed extended stability in blood circulation. In conclusion, RPV‐modified epirubicin and dioscin co‐delivery liposomes showed strong antitumor efficacy in vivo and could thus be considered a promising strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Liang Kong
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Min Fu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Jing-Jing Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Si-Yu He
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Lu Zhang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xin-Ze Liu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|
25
|
Pesce E, Miluzio A, Turcano L, Minici C, Cirino D, Calamita P, Manfrini N, Oliveto S, Ricciardi S, Grifantini R, Degano M, Bresciani A, Biffo S. Discovery and Preliminary Characterization of Translational Modulators that Impair the Binding of eIF6 to 60S Ribosomal Subunits. Cells 2020; 9:cells9010172. [PMID: 31936702 PMCID: PMC7017188 DOI: 10.3390/cells9010172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is necessary for the nucleolar biogenesis of 60S ribosomes. However, most of eIF6 resides in the cytoplasm, where it acts as an initiation factor. eIF6 is necessary for maximal protein synthesis downstream of growth factor stimulation. eIF6 is an antiassociation factor that binds 60S subunits, in turn preventing premature 40S joining and thus the formation of inactive 80S subunits. It is widely thought that eIF6 antiassociation activity is critical for its function. Here, we exploited and improved our assay for eIF6 binding to ribosomes (iRIA) in order to screen for modulators of eIF6 binding to the 60S. Three compounds, eIFsixty-1 (clofazimine), eIFsixty-4, and eIFsixty-6 were identified and characterized. All three inhibit the binding of eIF6 to the 60S in the micromolar range. eIFsixty-4 robustly inhibits cell growth, whereas eIFsixty-1 and eIFsixty-6 might have dose- and cell-specific effects. Puromycin labeling shows that eIF6ixty-4 is a strong global translational inhibitor, whereas the other two are mild modulators. Polysome profiling and RT-qPCR show that all three inhibitors reduce the specific translation of well-known eIF6 targets. In contrast, none of them affect the nucleolar localization of eIF6. These data provide proof of principle that the generation of eIF6 translational modulators is feasible.
Collapse
Affiliation(s)
- Elisa Pesce
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Annarita Miluzio
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Lorenzo Turcano
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
| | - Claudia Minici
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Delia Cirino
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Piera Calamita
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Nicola Manfrini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefania Oliveto
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Sara Ricciardi
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Renata Grifantini
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
| | - Massimo Degano
- Biocrystallography Unit, Dept. of Immunology, Transplantation and Infectious Diseases, IRCCS Scientific Institute San Raffaele, Via Olgettina 58, 20132 Milan, Italy; (C.M.); (M.D.)
| | - Alberto Bresciani
- Department of Translational and Discovery Research, IRBM S.p.A., Via Pontina km 30, 600, 00071 Pomezia (Roma), Italy;
- Correspondence: (A.B.); (S.B.)
| | - Stefano Biffo
- National Institute of Molecular Genetics, “Fondazione Romeo ed Enrica Invernizzi”, INGM, Via Francesco Sforza 35, 20122 Milan, Italy; (E.P.); (A.M.); (D.C.); (P.C.); (N.M.); (S.O.); (S.R.); (R.G.)
- DBS, University of Milan, Via Celoria 26, 20133 Milan, Italy
- Correspondence: (A.B.); (S.B.)
| |
Collapse
|
26
|
Pang L, Cheng Y, Zou S, Song J. Long noncoding RNA SNHG7 contributes to cell proliferation, migration, invasion and epithelial to mesenchymal transition in non-small cell lung cancer by regulating miR-449a/TGIF2 axis. Thorac Cancer 2019; 11:264-276. [PMID: 31793741 PMCID: PMC6996990 DOI: 10.1111/1759-7714.13245] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is an intractable malignant lung cancer with high rates of metastasis and mortality. Currently, long noncoding RNA nuclear RNA host gene 7 (SNHG7) is recognized as a biomarker of multiple cancers. However, the role of SNHG7 in NSCLC requires further understanding. Methods The expression of SNHG7, miR‐449a and TGIF2 in NSCLC tumors and cells was examined by quantitative real time polymerase chain reaction (qRT‐PCR). Cell viability was measured by MTT assay. Cell migration and invasion was conducted using transwell assay. Protein expression of TGIF2, vimentin, N‐cadherin and E‐cadherin was detected by western blot. The interaction between miR‐449a and SNHG7 or TGIF2 was determined by luciferase reporter system, RIP and RNA pull‐down assay, respectively. Xenograft mice models were established by subcutaneously injecting A549 cells transfected with sh‐SNHG7 and sh‐control. Results SNHG7 expression was upregulated in NSCLC tumors and cells compared with normal tissues and cells. SNHG7 silencing repressed cell proliferation, migration, invasion and epithelial to mesenchymal transition (EMT) in NSCLC. Consistently, SNHG7 knockdown hindered tumor growth in vivo. The subsequent luciferase reporter system, RIP and RNA pull‐down assay validated the interaction between miR‐449a and SNHG7 or TGIF2. The rescue experiments displayed that miR‐449a inhibitor counteracted SNHG7 silencing induced inhibition on proliferation, migration, invasion and EMT. Similarly, restoration of TGIF2 reversed miR‐449a mediated inhibition on cell progression. In addition, the results indicated that SNHG7 could regulate cell progression by targeting miR‐449a/TGIF2 axis. Conclusion SNHG7 contributed to cell proliferation, migration, invasion and EMT in NSCLC by upregulating TGIF2 via sponging miR‐449a, representing a novel targeted therapy method for NSCLC.
Collapse
Affiliation(s)
- Lingling Pang
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Yun Cheng
- Department of Respiratory Medicine, Yantai Muping District Traditional Chinese Medical Hospital, Yantai, China
| | - Shenchun Zou
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| | - Jie Song
- Department of Respiratory Medicine, Yantai Yuhuangding Hospital, Yantai, China
| |
Collapse
|
27
|
Golob-Schwarzl N, Wodlej C, Kleinegger F, Gogg-Kamerer M, Birkl-Toeglhofer AM, Petzold J, Aigelsreiter A, Thalhammer M, Park YN, Haybaeck J. Eukaryotic translation initiation factor 6 overexpression plays a major role in the translational control of gallbladder cancer. J Cancer Res Clin Oncol 2019; 145:2699-2711. [PMID: 31586263 PMCID: PMC6800842 DOI: 10.1007/s00432-019-03030-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gallbladder cancer (GBC) is a rare neoplasia of the biliary tract with high mortality rates and poor prognosis. Signs and symptoms of GBC are not specific and often arise at late stage of disease. For this reason, diagnosis is typically made when the cancer is already in advanced stages, and prognosis for survival is less than 5 years in 90% of cases. Biomarkers to monitor disease progression and novel therapeutic alternative targets for these tumors are strongly required. Commonly, dysregulated protein synthesis contributes to carcinogenesis and cancer progression. In this case, protein synthesis directs translation of specific mRNAs, and, in turn, promotes cell survival, invasion, angiogenesis, and metastasis of tumors. In eukaryotes, protein synthesis is regulated at its initiation, which is a rate-limiting step involving eukaryotic translation initiation factors (eIFs). We hypothesize that eIFs represent crossroads in the development of GBC, and might serve as potential biomarkers. The study focus was the role of eIF6 (an anti-association factor for the ribosomal subunits) in GBC. METHODS In human GBC samples, the expression of eIF6 was analyzed biochemically at the protein (immunohistochemistry, immunoblot analyses) and mRNA levels (qRT-PCR). RESULTS High levels of eIF6 correlated with shorter overall survival in biliary tract cancer (BTC) patients (n = 28). Immunohistochemical data from tissue microarrays (n = 114) demonstrated significantly higher expression levels of eIF6 in GBC compared to non-neoplastic tissue. Higher eIF6 expression on protein (immunoblot) and mRNA (qRT-PCR) level was confirmed by analyzing fresh frozen GBC patient samples (n = 14). Depletion of eIF6 (using specific siRNA-mediated knockdown) in Mz-ChA-2 and TFK-1 cell lines inhibited cell proliferation and induced apoptosis. CONCLUSION Our data indicates that eIF6 overexpression plays a major role in the translational control of GBC, and indicates its potential as a new biomarker and therapeutic target in GBC.
Collapse
Affiliation(s)
- Nicole Golob-Schwarzl
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Institute of Dermatology and Venerology, Medical University of Graz, Graz, Austria
| | - Christina Wodlej
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Center for Biomarker Research in Medicine, Graz, Austria
| | - Florian Kleinegger
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- Department for Biomedical Research, Core Facility Alternative Biomodels and Preclinical Imaging, Medical University of Graz, Graz, Austria
| | - Margit Gogg-Kamerer
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Johannes Petzold
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ariane Aigelsreiter
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Michael Thalhammer
- Department of General Surgery, Medical University of Graz, Graz, Austria
| | - Young Nyun Park
- Department of Pathology, Yonsei University, College of Medicine Soul, Seoul, South Korea
| | - Johannes Haybaeck
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria.
- Center for Biomarker Research in Medicine, Graz, Austria.
- Department of Pathology, Medical Faculty, Otto-von-Guericke-University, Leipziger Straße 44, 39210, Magdeburg, Germany.
- Department of Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
28
|
Cui K, Liu C, Li X, Zhang Q, Li Y. Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 2019; 39:786-800. [PMID: 31548613 DOI: 10.1038/s41388-019-1026-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
Although rRNA metabolism-related genes have been reported to be associated with human cancer, a systematic assessment of rRNA metabolism-related genes across human cancers is lacking. Thus, we performed a Pan-cancer analysis of rRNA metabolism-related genes across 20 human cancers. Here, we examined mRNA expression, mutation, DNA methylation, copy number variation (CNV) and clinical landscape of rRNA metabolism-related genes in more than 8600 patients across 20 human cancers from The Cancer Genome Atlas (TCGA) dataset. Besides, ten independent Gene Expression Omnibus (GEO) datasets, Cancer Cell Line Encyclopedia (CCLE) dataset and Project Achilles dataset were used to verify our study. A landscape of rRNA metabolism-related genes was established across 20 human cancers. The results suggest that rRNA metabolism-related genes are upregulated in multiple cancers, particularly in digestive and respiratory system cancers. Most of the upregulated genes were driven by CNV gain rather than mutation or DNA hypomethylation. We systematically identified CNV-driven rRNA metabolism-related genes with clinical relevance, including EXOSC8. Finally, functional experiments confirmed the oncogenic roles of EXOSC8 in colorectal carcinoma. Our study highlights the important roles of rRNA metabolism-related genes in tumorigenesis as prognostic biomarkers.
Collapse
Affiliation(s)
- Kaisa Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Cheng Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Xu Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Qiang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China.,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China
| | - Youjun Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, China. .,Medical Research Institute, School of Medicine, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
29
|
The Biological and Clinical Relevance of Inhibitor of Growth (ING) Genes in Non-Small Cell Lung Cancer. Cancers (Basel) 2019; 11:cancers11081118. [PMID: 31390718 PMCID: PMC6721451 DOI: 10.3390/cancers11081118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/17/2019] [Accepted: 08/02/2019] [Indexed: 01/08/2023] Open
Abstract
Carcinogenic mutations allow cells to escape governing mechanisms that commonly inhibit uncontrolled cell proliferation and maintain tightly regulated homeostasis between cell death and survival. Members of the inhibition of growth (ING) family act as tumor suppressors, governing cell cycle, apoptosis and cellular senescence. The molecular mechanism of action of ING genes, as well as their anchor points in pathways commonly linked to malignant transformation of cells, have been studied with respect to a variety of cancer specimens. This review of the current literature focuses specifically on the action mode of ING family members in lung cancer. We have summarized data from in vitro and in vivo studies, highlighting the effects of varying levels of ING expression in cancer cells. Based on the increasing insight into the function of these proteins, the use of ING family members as clinically useful biomarkers for lung cancer detection and prognosis will probably become routine in everyday clinical practice.
Collapse
|