1
|
Ciceri S, Bertolotti A, Serra A, Gattuso G, Boschetti L, Capasso M, Cecchi C, Sorrentino S, Quarello P, Ciniselli CM, Verderio P, De Cecco L, Manenti G, Diomedi Camassei F, Collini P, Spreafico F, Perotti D. Widening the spectrum of players affected by genetic changes in Wilms tumor relapse. iScience 2024; 27:110684. [PMID: 39262773 PMCID: PMC11387809 DOI: 10.1016/j.isci.2024.110684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Few studies investigated the genetics of relapsed Wilms tumor (WT), suggesting the SIX1 gene, the microRNA processing genes, and the MYCN network as possibly involved in a relevant percentage of relapses. We investigated 28 relapsing WT patients (10 new cases and 18 cases in which the involvement of SIX and miRNAPG had been excluded) with a panel of ∼5000 genes. We identified variants affecting genes involved in DNA damage prevention and repair in 12/28 relapsing patients (42.9%), and affecting genes involved in chromatin modification and regulation in 6/28 relapsing patients (21.4%), widening the spectrum of anomalies detected in relapsed tumors. The disclosure of molecular pathways possibly underlying tumor progression might allow to use molecularly targeted therapies at relapse. Surprisingly, germline anomalies, mostly affecting DNA damage prevention and repair genes, were identified in 13/28 patients (46.4%), raising the issue of performing a genetic testing to all children presenting with a WT.
Collapse
Affiliation(s)
- Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessia Bertolotti
- Diagnostic and Molecular Research Lab, Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Annalisa Serra
- Department of Pediatric Hematology and Oncology, Gene and Cellular Therapy, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Giovanna Gattuso
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luna Boschetti
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Maria Capasso
- Department of Pediatric Hemato-Oncology, AORN Santobono-Pausilipon, Naples, Italy
| | - Cecilia Cecchi
- Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | | | - Paola Quarello
- Pediatric Onco-Hematology, Stem Cell Transplantation and Cellular Therapy Division, Regina Margherita Children's Hospital, Turin, Italy
- Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| | - Chiara Maura Ciniselli
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Paolo Verderio
- Unit of Bioinformatics and Biostatistics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Giacomo Manenti
- Unit of Animal Health and Welfare, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Paola Collini
- Soft Tissue Tumor Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
2
|
Al-Jilaihawi S, Spreafico F, Mavinkurve-Groothuis A, Drost J, Perotti D, Koenig C, Brok J. Bevacizumab-containing treatment for relapsed or refractory Wilms tumor. Expert Rev Anticancer Ther 2024; 24:837-843. [PMID: 39016020 DOI: 10.1080/14737140.2024.2381537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/15/2024] [Indexed: 07/18/2024]
Abstract
INTRODUCTION Angiogenesis is critical for tumor growth and metastasis. Bevacizumab is an antiangiogenic drug used to treat various adult and childhood solid tumors. Its potential efficacy in Wilms tumor (WT) with poor prognosis is not established. AREAS COVERED The response to bevacizumab-containing regimens in relapsed or refractory WT was reviewed in available literature. Searches were conducted using PubMed, Scopus, and ClinicalTrials.gov databases. Eight papers were identified, published between 2007 and 2020, including six treatment regimens, predominantly vincristine, irinotecan, and bevacizumab (VIB) ± temozolomide (VITB). Among 16 evaluable patients, there were two complete responses, seven partial responses, five patients achieved stable disease (SD), and two patients had progressive disease. Objective responses (OR) were observed in 56% of all cases. OR or SD was observed in 89% (8/9) patients who received VIB/VITB. Bevacizumab was generally well tolerated. Related toxicities included hypertension, proteinuria, and delayed wound healing. EXPERT OPINION This review suggests potential effectiveness and good tolerability of bevacizumab in the setting of relapsed/refractory WT when used in combination with other drugs. Such combination therapies may serve as a bridging treatment option to other interventions and more personalized treatment options in the future; however, focused trials are needed to obtain additional evidence.
Collapse
Affiliation(s)
- Sarah Al-Jilaihawi
- Department of Paediatric Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Filippo Spreafico
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | | | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk and Genetic Testing Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Christa Koenig
- Pediatric Hematology/Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jesper Brok
- Department of Pediatric Hematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
3
|
Tiburcio PD, Chen K, Xu L, Chen KS. Actinomycin D and bortezomib disrupt protein homeostasis in Wilms tumor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598518. [PMID: 38948702 PMCID: PMC11212905 DOI: 10.1101/2024.06.11.598518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Wilms tumor is the most common kidney cancer in children, and diffusely anaplastic Wilms tumor is the most chemoresistant histological subtype. Here we explore how Wilms tumor cells evade the common chemotherapeutic drug actinomycin D, which inhibits ribosomal RNA biogenesis. Using ribosome profiling, protein arrays, and a genome-wide knockout screen, we describe how actinomycin D disrupts protein homeostasis and blocks cell cycle progression. We found that, when ribosomal capacity is limited by actinomycin D treatment, anaplastic Wilms tumor cells preferentially translate proteasome components and upregulate proteasome activity. Furthermore, the proteasome inhibitor bortezomib sensitizes cells to actinomycin D treatment by inducing apoptosis both in vitro and in vivo. Lastly, we show that increased levels of proteasome components are associated with anaplastic histology and with worse prognosis in non-anaplastic Wilms tumor. In sum, maintaining protein homeostasis is critical for Wilms tumor proliferation, and it can be therapeutically disrupted by blocking protein synthesis or turnover.
Collapse
Affiliation(s)
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Quantitative Biomedical Research Center, Peter O’Donnell School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kenneth S. Chen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
4
|
Zhu S, Zhou R, Tang X, Fu W, Jia W. Hypoxia/inflammation-induced upregulation of HIF-1α and C/EBPβ promotes nephroblastoma cell EMT by improving HOXA11-AS transcription. Heliyon 2024; 10:e27654. [PMID: 38524550 PMCID: PMC10958367 DOI: 10.1016/j.heliyon.2024.e27654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Background Homeobox (HOX) A11 antisense RNA (HOXA11-AS) has been identified as a cancer promoting lncRNA and is overexpressed in nephroblastoma. However, how HOXA11-AS is regulated in a hypoxic inflammatory environment has not been studied. Methods In this study, gene expression and epithelial-mesenchymal transition (EMT) ability were detected in the nephroblastoma cell line WiT49 under conditions of hypoxia and inflammation. Next, HOXA11-AS transcription factors were predicted by datasets and subsequently confirmed by CHIP-QPCR, EMSA, and dual-luciferase reporter assays. Moreover, the regulatory relationships of HOXA11-AS and its transcription factors were further confirmed by rescue experiments. Results Our results showed that a hypoxic microenvironment promoted HOXA11-AS expression and nephroblastoma progression, induced EMT, and activated the Wnt signaling pathway. Combined hypoxia and inflammation had a more substantial effect on nephroblastoma than either hypoxia or inflammation alone. HIF-1α and C/EBPβ were confirmed to be the transcription factors for HOXA11-AS. Silencing of HIF-1α or C/EBPβ downregulated HOXA11-AS expression and suppressed EMT and the Wnt signaling pathway in nephroblastoma cells exposed to a hypoxic or inflammatory microenvironment. HOXA11-AS overexpression partly reversed the effect of HIF-1α or C/EBPβ knockdown. Conclusion We demonstrated that hypoxia/inflammation-induced upregulation of HIF-1α and C/EBPβ promoted nephroblastoma EMT by improving HOXA11-AS transcription. HOXA11-AS might be a therapy target for nephroblastoma.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiangliang Tang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Perotti D, Williams RD, Wegert J, Brzezinski J, Maschietto M, Ciceri S, Gisselsson D, Gadd S, Walz AL, Furtwaengler R, Drost J, Al-Saadi R, Evageliou N, Gooskens SL, Hong AL, Murphy AJ, Ortiz MV, O'Sullivan MJ, Mullen EA, van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Grundy PE, Geller JI, Dome JS, Perlman EJ, Gessler M, Huff V, Pritchard-Jones K. Hallmark discoveries in the biology of Wilms tumour. Nat Rev Urol 2024; 21:158-180. [PMID: 37848532 DOI: 10.1038/s41585-023-00824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/19/2023]
Abstract
The modern study of Wilms tumour was prompted nearly 50 years ago, when Alfred Knudson proposed the 'two-hit' model of tumour development. Since then, the efforts of researchers worldwide have substantially expanded our knowledge of Wilms tumour biology, including major advances in genetics - from cloning the first Wilms tumour gene to high-throughput studies that have revealed the genetic landscape of this tumour. These discoveries improve understanding of the embryonal origin of Wilms tumour, familial occurrences and associated syndromic conditions. Many efforts have been made to find and clinically apply prognostic biomarkers to Wilms tumour, for which outcomes are generally favourable, but treatment of some affected individuals remains challenging. Challenges are also posed by the intratumoural heterogeneity of biomarkers. Furthermore, preclinical models of Wilms tumour, from cell lines to organoid cultures, have evolved. Despite these many achievements, much still remains to be discovered: further molecular understanding of relapse in Wilms tumour and of the multiple origins of bilateral Wilms tumour are two examples of areas under active investigation. International collaboration, especially when large tumour series are required to obtain robust data, will help to answer some of the remaining unresolved questions.
Collapse
Affiliation(s)
- Daniela Perotti
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Richard D Williams
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Section of Genetics and Genomics, Faculty of Medicine, Imperial College London, London, UK
| | - Jenny Wegert
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
| | - Jack Brzezinski
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Campinas, São Paulo, Brazil
| | - Sara Ciceri
- Predictive Medicine: Molecular Bases of Genetic Risk, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Gisselsson
- Cancer Cell Evolution Unit, Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Clinical Genetics, Pathology and Molecular Diagnostics, Office of Medical Services, Skåne, Sweden
| | - Samantha Gadd
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Amy L Walz
- Division of Hematology,Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Rhoikos Furtwaengler
- Division of Pediatric Oncology and Hematology, Department of Pediatrics, Inselspital Bern University, Bern, Switzerland
| | - Jarno Drost
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
- Oncode Institute, Utrecht, Netherlands
| | - Reem Al-Saadi
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Histopathology, Great Ormond Street Hospital for Children, London, UK
| | - Nicholas Evageliou
- Divisions of Hematology and Oncology, Children's Hospital of Philadelphia, CHOP Specialty Care Center, Vorhees, NJ, USA
| | - Saskia L Gooskens
- Princess Máxima Center for Paediatric Oncology, Utrecht, Netherlands
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Emory University and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael V Ortiz
- Department of Paediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland at Crumlin, Dublin, Ireland
- Trinity Translational Medicine Institute, Trinity College, Dublin, Ireland
| | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Conrad V Fernandez
- Division of Paediatric Hematology Oncology, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - Norbert Graf
- Department of Paediatric Oncology and Hematology, Saarland University Hospital, Homburg, Germany
| | - Paul E Grundy
- Department of Paediatrics Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA
| | - Jeffrey S Dome
- Division of Oncology, Center for Cancer and Blood Disorders, Children's National Hospital and the Department of Paediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Elizabeth J Perlman
- Department of Pathology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute/Biocenter, Developmental Biochemistry, Wuerzburg University, Wuerzburg, Germany
- Comprehensive Cancer Center Mainfranken, Wuerzburg, Germany
| | - Vicki Huff
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
6
|
Geller JI, Hong AL, Vallance KL, Evageliou N, Aldrink JH, Cost NG, Treece AL, Renfro LA, Mullen EA. Children's Oncology Group's 2023 blueprint for research: Renal tumors. Pediatr Blood Cancer 2023; 70 Suppl 6:e30586. [PMID: 37477907 PMCID: PMC10529605 DOI: 10.1002/pbc.30586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Every year, approximately 600 infants, children, and adolescents are diagnosed with renal cancer in the United States. In addition to Wilms tumor (WT), which accounts for about 80% of all pediatric renal cancers, clear cell sarcoma of the kidney, renal cell carcinoma, malignant rhabdoid tumor, as well as more rare cancers (other sarcomas, rare carcinomas, lymphoma) and benign tumors can originate within the kidney. WT itself can be divided into favorable histology (FHWT), with a 5-year overall survival (OS) exceeding 90%, and anaplastic histology, with 4-year OS of 73.7%. Outcomes of the other pediatric renal cancers include clear cell sarcoma (5-year OS: 90%), malignant rhabdoid tumor (5-year OS: 10% for stages 3 and 4), and renal cell carcinoma (4-year OS: 84.8%). Recent clinical trials have identified novel biological prognostic markers for FHWT, and a series of Children's Oncology Group (COG) trials have demonstrated improving outcomes with therapy modification, and opportunities for further care refinement.
Collapse
Affiliation(s)
- James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Andrew L Hong
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kelly L Vallance
- Hematology and Oncology, Cook Children's Medical Center, Fort Worth, Texas, USA
| | - Nick Evageliou
- Division of Oncology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jennifer H Aldrink
- Division of Pediatric Surgery, Department of Surgery, Nationwide Children's Hospital, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Nicholas G Cost
- Department of Surgery, Division of Urology and the Surgical Oncology Program at Children's Hospital Colorado, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amy L Treece
- Department of Pathology and Laboratory Medicine, Children's of Alabama, Birmingham, Alabama, USA
| | | | - Elizabeth A Mullen
- Dana-Farber/Boston Children's Blood Disorders and Cancer Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Xiang B, Chen ML, Gao ZQ, Mi T, Shi QL, Dong JJ, Tian XM, Liu F, Wei GH. CCNB1 is a novel prognostic biomarker and promotes proliferation, migration and invasion in Wilms tumor. BMC Med Genomics 2023; 16:189. [PMID: 37592341 PMCID: PMC10433552 DOI: 10.1186/s12920-023-01627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Wilms tumour (WT) is a mixed type of embryonal tumour that usually occurs in early childhood. However, our knowledge of the pathogenesis or progression mechanism of WT is inadequate, and there is a scarcity of beneficial therapeutic strategies. METHODS High-throughput RNA sequencing was employed in this study to identify differentially expressed genes (DEGs) in clinical tumor samples and matching normal tissues. The STRING database was utilized to build a protein-protein interaction (PPI) network, and the Cytohubba method was used to identify the top 10 highly related HUB genes. Then, the key genes were further screened by univariate COX survival analysis. Subsequently, the XCELL algorithm was used to evaluate the tumour immune infiltration. RT-PCR, WB, and IF were used to verify the expression level of key genes in clinical tissues and tumour cell lines. Finally, the function of the key gene was further verified by loss-of-function experiments. RESULTS We initially screened 1612 DEGs, of which 1030 were up-regulated and 582 were down-regulated. The GO and KEGG enrichment analysis suggested these genes were associated with 'cell cycle', 'DNA replication'. Subsequently, we identified 10 key HUB genes, among them CCNB1 was strongly related to WT patients' overall survival. Multiple survival analyses showed that CCNB1 was an independent indicator of WT prognosis. Thus, we constructed a nomogram of CCNB1 combined with other clinical indicators. Single gene GSEA and immune infiltration analysis revealed that CCNB1 was associated with the degree of infiltration or activation status of multiple immune cells. TIDE analysis indicated that this gene was correlated with multiple key immune checkpoint molecules and TIDE scores. Finally, we validated the differential expression level of CCNB1 in an external gene set, the pan-cancer, clinical samples, and cell lines. CCNB1 silencing significantly inhibited the proliferation, migration, and invasive capabilities of WIT-49 cells, also, promoted apoptosis, and in turn induced G2 phase cell cycle arrest in loss-of-function assays. CONCLUSION Our study suggests that CCNB1 is closely related to WT progression and prognosis, and serves as a potential target.
Collapse
Affiliation(s)
- Bin Xiang
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mei-Lin Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Zhi-Qiang Gao
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Tao Mi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin-Lin Shi
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jun-Jun Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiao-Mao Tian
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Feng Liu
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.
| | - Guang-Hui Wei
- Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
- Department of Urology, Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| |
Collapse
|
8
|
Ortiz MV, Koenig C, Armstrong AE, Brok J, de Camargo B, Mavinkurve-Groothuis AMC, Herrera TBV, Venkatramani R, Woods AD, Dome JS, Spreafico F. Advances in the clinical management of high-risk Wilms tumors. Pediatr Blood Cancer 2023; 70 Suppl 2:e30342. [PMID: 37096797 PMCID: PMC10857813 DOI: 10.1002/pbc.30342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 04/26/2023]
Abstract
Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christa Koenig
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesper Brok
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK
- Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz de Camargo
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | | | - Rajkumar Venkatramani
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Jeffrey S Dome
- Division of Oncology, Children's National Hospital and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
9
|
Ortiz MV, Koenig C, Armstrong AE, Brok J, de Camargo B, Mavinkurve-Groothuis AMC, Herrera TBV, Venkatramani R, Woods AD, Dome JS, Spreafico F. Advances in the clinical management of high-risk Wilms tumors. Pediatr Blood Cancer 2023; 70:e30153. [PMID: 36625399 DOI: 10.1002/pbc.30153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/24/2022] [Indexed: 01/11/2023]
Abstract
Outcomes are excellent for the majority of patients with Wilms tumors (WT). However, there remain WT subgroups for which the survival rate is approximately 50% or lower. Acknowledging that the composition of this high-risk group has changed over time reflecting improvements in therapy, we introduce the authors' view of the historical and current approach to the classification and treatment of high-risk WT. For this review, we consider high-risk WT to include patients with newly diagnosed metastatic blastemal-type or diffuse anaplastic histology, those who relapse after having been initially treated with three or more different chemotherapeutics, or those who relapse more than once. In certain low- or low middle-income settings, socio-economic factors expand the definition of what constitutes a high-risk WT. As conventional therapies are inadequate to cure the majority of high-risk WT patients, advancement of laboratory and early-phase clinical investigations to identify active agents is urgently needed.
Collapse
Affiliation(s)
- Michael V Ortiz
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Christa Koenig
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jesper Brok
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, London, UK.,Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - Beatriz de Camargo
- Pediatric Hematology and Oncology Program, Research Center, Instituto Nacional de Cancer, Rio de Janeiro, Brazil
| | | | | | - Rajkumar Venkatramani
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, Oregon, USA
| | - Jeffrey S Dome
- Division of Oncology, Children's National Hospital and Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Filippo Spreafico
- Pediatric Oncology Unit, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
10
|
Zhong Z, Jiang H, Chen H, Wu C, Wang Y, Zhang Z, Li J, Liu J. Ex vivo tumor dissection followed by kidney autotransplantation in bilateral wilms tumor. Front Pediatr 2023; 11:1120797. [PMID: 36816368 PMCID: PMC9936068 DOI: 10.3389/fped.2023.1120797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Successful management of bilateral Wilm's tumor (BWT) involves a radical resection while preserving enough normal kidney tissue. Nephron-sparing surgery often results in an R1/R2 resection with a high recurrence rate in children with huge or multiple tumors, or tumors proximity to the renal hilum. In contrast, kidney autotransplantation can completely resect the tumor while maintaining homeostasis and preserving the patient's healthy kidney tissues. METHODS We summarized the clinical data of 8 synchronous BWT patients who underwent kidney autotransplantation at the First Affiliated Hospital of Sun Yat-sen University from 2018 to 2020. Ex vivo tumor resection and kidney autotransplantions were performed on 11 kidneys. The baseline characteristics, perioperative management, and survival status were reported. RESULTS Nephron-sparing surgeries were performed on 5 kidneys in vivo. Among all the 8 patients, six of them (75%) received staged operation and the other 2 patients (25%) received single-stage operation. No residual tumors were found on the postoperative imaging in all the 8 patients. In total, 6 (75%) patients occurred complications after the autotransplantation, among which, 2 (33.3%) patients had complication of Clavien-Dindo grade IIIa, and 4 (66.7%) patients had complication of grade < 3. During the 38 months of follow-up, 87.5% (7/8) of patients were tumor-free survival with normal renal function. One patient died from renal failure without tumor recurrence. DISCUSSION Therefore, our study indicated that autologous kidney transplantation can be an option for patients with complex BWT if the hospital's surgical technique and perioperative management conditions are feasible.
Collapse
Affiliation(s)
- Zhihai Zhong
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Jiang
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huadong Chen
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenglin Wu
- Department of Organ Transplantation, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Wang
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhichong Zhang
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Li
- Department of Organ Transplantation, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juncheng Liu
- Department of Pediatric Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
McAleer MF, Melchior P, Parkes J, Pater L, Rübe C, Saunders D, Paulino AC, Janssens GO, Kalapurakal J. Harmonica consensus, controversies, and future directions in radiotherapy for pediatric Wilms tumors. Pediatr Blood Cancer 2022; 70 Suppl 2:e30090. [PMID: 36482883 DOI: 10.1002/pbc.30090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/13/2022]
Abstract
Radiotherapy (RT) is essential for multimodality treatment of pediatric renal tumors, particularly in higher-risk and metastatic disease. Despite decades of use, particularly for Wilms tumor, there remain controversies regarding RT indications, timing, dose, and targets. To align global management, we address these issues in this international HARMONIsation and CollAboration (HARMONICA) project. There are multiple knowledge gaps and opportunities for future research including: (1) utilization of advanced RT technologies, including intensity-modulated RT, proton beam therapy, combined with image-guided RT to reduce target volumes; (2) impact of molecular biomarkers including loss of heterozygosity at 1p, 16q, and 1q gain on RT indications; (3) mitigation of reproductive toxicity following RT; (4) promotion of RT late effects research; and (5) support to overcome challenges in RT utilization in low- and middle-income countries where 90% of the world's children reside. Here, we outline current status and future directions for RT in pediatric renal tumors.
Collapse
Affiliation(s)
- Mary Frances McAleer
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | - Jeannette Parkes
- Department of Radiation Oncology, Groote Schuur Hospital and University of Cape Town, Cape Town, South Africa.,Low- and Middle-Income Countries Committee Co-Chair, Paediatric Radiation Oncology Society, Cape Town, South Africa
| | - Luke Pater
- Department of Radiation Oncology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University Hospital, Homburg, Germany
| | | | - Arnold C Paulino
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Geert O Janssens
- Department of Radiation Oncology, University Medical Center Utrecht, Utrecht, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - John Kalapurakal
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
12
|
Cheng C, Cai Y, Liu X, Wu Y, Cheng Q, Wu Y, Wu Z. KHSRP modulated cell proliferation and cell cycle via regulating PPP2CA and p27 expression in Wilms tumor. Cell Signal 2022; 100:110447. [PMID: 36029941 DOI: 10.1016/j.cellsig.2022.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
Wilms tumor (WT) is the most common renal malignancy in children, and the survival rate of high-risk WT patients was still low despite multimodality therapy. KHSRP, an RNA-binding protein, has been proved to be relative to tumor progression in different kinds of malignancies, but the function of KHSRP in WT remained unclear. Here, our study aimed to explore and clarify the function of KHSRP in WT cells and its molecular mechanism. Thus, our results showed that KHSRP was highly expressed in WT tumor tissues compared to normal kidney tissues and correlated with poor prognosis in WT patients. Downregulation of KHSRP using siRNAs in WT cell line SK-NEP-1 and Wit49 resulted in inhibition of cell proliferation and cell cycle arrest via stabilizing and upregulating p27 protein. Furthermore, mechanistic analyses revealed that KHSRP bound to 3'UTR of PPP2CA mRNA and modulating its mRNA stability, resulting in regulation of the phosphorylation level and protein stability of p27 in WT cell lines. In conclusion, our results demonstrated that KHSRP played an important role in WT and modulated cell proliferation and cell cycle via regulating the expression of PPP2CA and p27.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yuanxia Cai
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Xiaowei Liu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yangkun Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Qianqian Cheng
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China
| | - Yeming Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China; Department of Pediatric Surgery, Hangzhou Children's Hospital, Hangzhou, Hangzhou 310010, China.
| | - Zhixiang Wu
- Department of Pediatric Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Division of Pediatric Oncology, Shanghai Institute of Pediatric Research, 200092 Shanghai, China; Department of Pediatric Surgery, Children's Hospital of Soochow University, 215003 Suzhou, China.
| |
Collapse
|
13
|
van den Heuvel-Eibrink MM, Fernandez CV, Graf N, Geller JI. Progress by international collaboration for pediatric renal tumors by HARMONIzation and COllaboration: The HARMONICA initiative. Pediatr Blood Cancer 2022; 70 Suppl 2:e30082. [PMID: 36426385 DOI: 10.1002/pbc.30082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Affiliation(s)
| | - C V Fernandez
- IWK Health Centre and Dalhousie University, Halifax, Nova Scotia, Canada
| | - N Graf
- Saarland University, Homburg, Germany
| | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
14
|
Finding the way to Wilms tumor by comparing the primary and relapse tumor samples. Cell Rep Med 2022; 3:100667. [PMID: 35732150 PMCID: PMC9245055 DOI: 10.1016/j.xcrm.2022.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this issue of Cell Reports Medicine, Gadd and colleagues presented on behalf of the Children's Oncology Group their comprehensive analysis of genetic changes associated with relapse in children with favorable histology Wilms tumor.
Collapse
|
15
|
Graf N, Bergeron C, Brok J, de Camargo B, Chowdhury T, Furtwängler R, Gessler M, Godzinski J, Pritchard-Jones K, Ramirez-Villar GL, Rübe C, Sandstedt B, Schenk JP, Spreafico F, Sudour-Bonnange H, van Tinteren H, Verschuur A, Vujanic G, van den Heuvel-Eibrink MM. Fifty years of clinical and research studies for childhood renal tumors within the International Society of Pediatric Oncology (SIOP). Ann Oncol 2021; 32:1327-1331. [PMID: 34416363 DOI: 10.1016/j.annonc.2021.08.1749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Affiliation(s)
- N Graf
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany.
| | - C Bergeron
- Department of Paediatric Haemato-Oncology, Centre Léon Bérard, Lyon, France
| | - J Brok
- Department of Pediatric Oncology and Hematology, Rigshospitalet, Copenhagen, Denmark
| | - B de Camargo
- Research Center, Instituto Nacional do Cancer, Rio de Janeiro, Brazil
| | - T Chowdhury
- Department of Haematology and Oncology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - R Furtwängler
- Department of Pediatric Oncology and Hematology, Saarland University, Homburg, Germany
| | - M Gessler
- Theodor-Boveri-Institute/Biocenter and Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany
| | - J Godzinski
- Department of Pediatric Surgery, Marciniak Hospital, Fieldorfa 2, Poland; Department of Paediatric Traumatology and Emergency Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - K Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, University College London Great Ormond Street Institute of Child Health, University College London, London, UK
| | - G L Ramirez-Villar
- Department of Paediatric Oncology, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - C Rübe
- Department of Radiation Oncology, Saarland University, Homburg, Germany
| | - B Sandstedt
- Childhood Cancer Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - J-P Schenk
- Pediatric Radiology Section, Department for Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - F Spreafico
- Department of Medical Oncology and Hematology, Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - H Sudour-Bonnange
- Centre Oscar Lambret, Department of Children and AJA Oncology, Lille, France
| | - H van Tinteren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - A Verschuur
- Department of Pediatric Oncology, Hôpital d'Enfants de la Timone, Marseille, France
| | - G Vujanic
- Department of Pathology, Sidra Medicine and Weill Cornell Medicine - Qatar, Doha, Qatar
| | | |
Collapse
|
16
|
Spreafico F, Fernandez CV, Brok J, Nakata K, Vujanic G, Geller JI, Gessler M, Maschietto M, Behjati S, Polanco A, Paintsil V, Luna-Fineman S, Pritchard-Jones K. Wilms tumour. Nat Rev Dis Primers 2021; 7:75. [PMID: 34650095 DOI: 10.1038/s41572-021-00308-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Wilms tumour (WT) is a childhood embryonal tumour that is paradigmatic of the intersection between disrupted organogenesis and tumorigenesis. Many WT genes play a critical (non-redundant) role in early nephrogenesis. Improving patient outcomes requires advances in understanding and targeting of the multiple genes and cellular control pathways now identified as active in WT development. Decades of clinical and basic research have helped to gradually optimize clinical care. Curative therapy is achievable in 90% of affected children, even those with disseminated disease, yet survival disparities within and between countries exist and deserve commitment to change. Updated epidemiological studies have also provided novel insights into global incidence variations. Introduction of biology-driven approaches to risk stratification and new drug development has been slower in WT than in other childhood tumours. Current prognostic classification for children with WT is grounded in clinical and pathological findings and in dedicated protocols on molecular alterations. Treatment includes conventional cytotoxic chemotherapy and surgery, and radiation therapy in some cases. Advanced imaging to capture tumour composition, optimizing irradiation techniques to reduce target volumes, and evaluation of newer surgical procedures are key areas for future research.
Collapse
Affiliation(s)
- Filippo Spreafico
- Department of Medical Oncology and Hematology, Paediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Conrad V Fernandez
- Department of Paediatrics, IWK Health, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jesper Brok
- Department of Paediatric Haematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | - Kayo Nakata
- Cancer Control Center, Osaka International Cancer Institute, Osaka, Japan
| | | | - James I Geller
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Cincinnati, OH, USA
| | - Manfred Gessler
- Theodor-Boveri-Institute, Developmental Biochemistry, and Comprehensive Cancer Center Mainfranken, University of Wuerzburg, Wuerzburg, Germany
| | - Mariana Maschietto
- Research Center, Boldrini Children's Hospital, Genetics and Molecular Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Sam Behjati
- Wellcome Sanger Institute, Hinxton, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Angela Polanco
- National Cancer Research Institute Children's Group Consumer Representative, London, UK
| | - Vivian Paintsil
- Department of Child Health, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sandra Luna-Fineman
- Division of Hematology, Oncology and Bone Marrow Transplantation, Department of Paediatrics, University of Colorado, Aurora, CO, USA
| | - Kathy Pritchard-Jones
- Developmental Biology and Cancer Research and Teaching Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
17
|
Zhang Y, Katharina Wagner A, Du H, Han T, Gupta S, Denburg AE, Frazier AL, Guan X, Shi L. Childhood cancer drugs in China: An overview and comparison of regulatory approvals in China and the United States. Int J Cancer 2021; 150:482-490. [PMID: 34536294 DOI: 10.1002/ijc.33818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
Different from less developed countries, 80% of children with cancers in the United States are cured. Traditional chemotherapy drugs are the mainstay of therapies; new targeted medications have become available recently. Using publicly available data, we created a database of cancer drugs with paediatric malignancy indications approved by 31 October 2020 in China and the United States. We compared numbers, type, indications and listing on the World Health Organization Model List of Essential Medicines for Children (WHO EMLc) between the two countries, assessed the correlation between paediatric indications and cancer incidences, and described evidence supporting approvals of targeted medications in the two settings. Our study showed that by 31 October 2020, 31 and 39 cancer drugs available in China and the United States were approved for use in children, corresponding to 137 and 102 paediatric cancer indications, respectively. About half of these drugs (17 in China and 18 in the United States) were listed on the WHO EMLc. The correlation between indications and burden of disease was higher in the United States (r = 0.68) than China (r = 0.59). More traditional chemotherapy drugs were approved in China (n = 27) than the United States (n = 19). Of 20 targeted childhood anticancer medicines approved in the United States, mainly on the basis of single arm trials (27/32 indications, 84.4%), only four were approved for paediatric indications in China, at a median of 2.8 years after US Food and Drug Administration approval. A harmonised, evidence-based regulatory framework is needed to ensure approvals of needed, safe and efficacious childhood cancer drugs across the world.
Collapse
Affiliation(s)
- Yichen Zhang
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Anita Katharina Wagner
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Haoxin Du
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Taisen Han
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Sumit Gupta
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Avram E Denburg
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada.,Institute of Health Policy, Management, and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - A Lindsay Frazier
- Dana-Farber/Boston Children's Cancer and Blood Disorders Centre, Boston, Massachusetts, USA
| | - Xiaodong Guan
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,International Research Centre for Medicinal Administration, Peking University, Beijing, China
| | - Luwen Shi
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University, Beijing, China.,International Research Centre for Medicinal Administration, Peking University, Beijing, China
| |
Collapse
|