1
|
Kechin A, Koryukov M, Mikheeva R, Filipenko M. Homologous recombination deficiency (HRD) diagnostics: underlying mechanisms and new perspectives. Cancer Metastasis Rev 2024; 44:19. [PMID: 39724448 DOI: 10.1007/s10555-024-10238-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Homologous recombination deficiency (HRD) is considered a universal and effective sign of a tumor's sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. HRD diagnostics have undergone several stages of transformations: from detection of point mutations in HR-related genes and large regions with loss of heterozygosity detected using single-nucleotide polymorphism arrays to whole-genome signatures of single-nucleotide variants, large genomic rearrangements (LGRs), and copy number alterations. All these methods have their own advantages and limitations. HRD tests, based on signatures of LGRs and copy number alterations, show in hindsight that some progenitor cells have possessed HRD status but not the current state of the genome. The aim of this review was to compare different methods of HRD detection and mechanisms of formation of HRD-specific LGRs. In the last several years, new data appeared implying a crucial role of proteins BRCA1 and BRCA2 in the resolution of stalled replication forks that may be associated with at least some of LGRs observed in HRD-positive tumors. Reviewing current knowledge on these mechanisms, distributions of different LGR types, and limitations of sequencing technologies and algorithms of data analysis, we offer some new perspectives on HRD diagnostics. We hope that this review will help to accelerate the development of new diagnostic approaches in this important field of molecular oncology.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Maksim Koryukov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Regina Mikheeva
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Maksim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Cortés A, López-Miranda E, Fernández-Ortega A, Carañana V, Servitja S, Urruticoechea A, Lema-Roso L, Márquez A, Lazaris A, Alcalá-López D, Mina L, Gener P, Rodríguez-Morató J, Antonarelli G, Llombart-Cussac A, Pérez-García J, Cortés J. Olaparib monotherapy in advanced triple-negative breast cancer patients with homologous recombination deficiency and without germline mutations in BRCA1/2: The NOBROLA phase 2 study. Breast 2024; 78:103834. [PMID: 39520738 PMCID: PMC11585816 DOI: 10.1016/j.breast.2024.103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE To evaluate olaparib in advanced triple negative breast cancer (TNBC) patients with homologous recombination deficiency (HRD) and no germline BRCA1/2 mutations (gBRCA1/2mut). METHODS NOBROLA (NCT03367689) is a single-arm, open-label, multicenter, phase IIa trial, enrolling adult patients with advanced TNBC without gBRCA1/2mut and with HRD, who were treated with olaparib. The primary endpoint was clinical benefit rate (CBR) per RECIST v.1.1. RESULTS Six of 114 patients were eligible and received olaparib. Median follow up was 8.5 months. CBR and overall response rate (ORR) were 50 % (95 % CI, 11.8-88.2). CONCLUSIONS The observed results could prompt further investigation. TRIAL ClinicalTrials.gov identifier NCT03367689.
Collapse
Affiliation(s)
| | - Elena López-Miranda
- Hospital Universitario Ramón y Cajal, Madrid, Spain; Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | | | - Vicente Carañana
- Department of Medical Oncology, Hospital Arnau de Vilanova, Valencia, Spain
| | | | | | | | - Antonia Márquez
- UGCI Oncología Médica, Hospital Universitario Regional y Virgen de la Victoria, IBIMA, Málaga, Spain
| | - Alexandros Lazaris
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Daniel Alcalá-López
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Leonardo Mina
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Petra Gener
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Jose Rodríguez-Morató
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA
| | - Gabriele Antonarelli
- Department of Oncology and Haemato-Oncology (DIPO), University of Milan, Milan, Italy; Division of Early Drug Development for Innovative Therapy, European Institute of Oncology, IRCCS, Milan, Italy
| | - Antonio Llombart-Cussac
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; Department of Medical Oncology, Hospital Arnau de Vilanova, Valencia, Spain.
| | - José Pérez-García
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain
| | - Javier Cortés
- Medica Scientia Innovation Research (MEDSIR), Barcelona, Spain; Medica Scientia Innovation Research (MEDSIR), Ridgewood, New Jersey, USA; International Breast Cancer Center (IBCC), Pangaea Oncology, Quiron Group, Barcelona, Spain; Universidad Europea de Madrid, Faculty of Biomedical and Health Sciences, Department of Medicine, Madrid, Spain
| |
Collapse
|
3
|
Demuth P, Thibol L, Lemsch A, Potlitz F, Schulig L, Grathwol C, Manolikakes G, Schade D, Roukos V, Link A, Fahrer J. Targeting PARP-1 and DNA Damage Response Defects in Colorectal Cancer Chemotherapy with Established and Novel PARP Inhibitors. Cancers (Basel) 2024; 16:3441. [PMID: 39456536 PMCID: PMC11506018 DOI: 10.3390/cancers16203441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/28/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The DNA repair protein PARP-1 emerged as a valuable target in the treatment of tumor entities with deficiencies of BRCA1/2, such as breast cancer. More recently, the application of PARP inhibitors (PARPi) such as olaparib has been expanded to other cancer entities including colorectal cancer (CRC). We previously demonstrated that PARP-1 is overexpressed in human CRC and promotes CRC progression in a mouse model. However, acquired resistance to PARPi and cytotoxicity-mediated adverse effects limit their clinical applicability. Here, we detailed the role of PARP-1 as a therapeutic target in CRC and studied the efficacy of novel PARPi compounds in wildtype (WT) and DNA repair-deficient CRC cell lines together with the chemotherapeutics irinotecan (IT), 5-fluorouracil (5-FU), and oxaliplatin (OXA). Based on the ComPlat molecule archive, we identified novel PARPi candidates by molecular docking experiments in silico, which were then confirmed by in vitro PARP activity measurements. Two promising candidates (X17613 and X17618) also showed potent PARP-1 inhibition in a CRC cell-based assay. In contrast to olaparib, the PARPi candidates caused no PARP-1 trapping and, consistently, were not or only weakly cytotoxic in WT CRC cells and their BRCA2- or ATR-deficient counterparts. Importantly, both PARPi candidates did not affect the viability of nonmalignant human colonic epithelial cells. While both olaparib and veliparib increased the sensitivity of WT CRC cells towards IT, no synergism was observed for X17613 and X17618. Finally, we provided evidence that all PARPi (olaparib > veliparib > X17613 > X17618) synergize with chemotherapeutic drugs (IT > OXA) in a BRCA2-dependent manner in CRC cells, whereas ATR deficiency had only a minor impact. Collectively, our study identified novel lead structures with potent PARP-1 inhibitory activity in CRC cells but low cytotoxicity due to the lack of PARP-1 trapping, which synergized with IT in homologous recombination deficiency.
Collapse
Affiliation(s)
- Philipp Demuth
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Lea Thibol
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Anna Lemsch
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| | - Felix Potlitz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Christoph Grathwol
- Institute of Biological and Chemical Systems—Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany;
| | - Georg Manolikakes
- Department of Chemistry, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany;
| | - Dennis Schade
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany;
| | | | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (F.P.); (L.S.); (A.L.)
| | - Jörg Fahrer
- Department of Chemistry, Division of Food Chemistry and Toxicology, RPTU Kaiserslautern-Landau, 67663 Kaiserslautern, Germany; (P.D.); (L.T.); (A.L.)
| |
Collapse
|
4
|
Xie J, Guo H, Dong B, Chen W, Jin C, Xu Q, Ding L, Liu W, Dong S, Zhao T, Yu Y, Guo C, Yao X, Peng B, Yang B. Olaparib Combined with Abiraterone versus Olaparib Monotherapy for Patients with Metastatic Castration-resistant Prostate Cancer Progressing after Abiraterone and Harboring DNA Damage Repair Deficiency: A Multicenter Real-world Study. Eur Urol Oncol 2024; 7:1088-1096. [PMID: 38458891 DOI: 10.1016/j.euo.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND OBJECTIVE Olaparib + abiraterone has a combined antitumor effect in metastatic castration-resistant prostate cancer (mCRPC), but the efficacy of this combination in patients with DNA damage repair (DDR)-deficient mCRPC progressing after abiraterone is unknown. Our aim was to compare the efficacy of olaparib + abiraterone versus olaparib monotherapy for patients with DDR-deficient mCRPC progressing after abiraterone. METHODS The study included 86 consecutive patients with DDR-deficient mCRPC progressing after abiraterone: 34 received olaparib + abiraterone, and 52 received olaparib monotherapy. DDR-deficient status was defined as the presence of a DDR gene with a pathogenic or likely pathogenic variant (DDR-PV), or with a variant of unknown significance (DDR-VUS). We assessed progression-free survival (PFS) and overall survival (OS) using the Kaplan-Meier method. Potential factors influencing PFS and OS were compared between the treatment arms using Cox proportional-hazards models. The prostate-specific antigen (PSA) response, the treatment effect across subgroups, and adverse events (AEs) were also evaluated. KEY FINDINGS AND LIMITATIONS Median follow-up was 9 mo. In the overall cohort, median PFS and OS were significantly longer in the combination arm than in the monotherapy arm (PFS: 6.0 vs 3.0 mo; hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.25-0.67; p < 0.01; OS: 25.0 vs 12.0 mo; HR 0.30, 95% CI 0.14-0.67; p < 0.01). PSA responses were significantly higher following combination therapy versus monotherapy. Combination therapy had significantly better efficacy in the DDR-PV and DDR-VUS subgroups, and was an independent predictor of better PFS and OS. AE rates were acceptable. The retrospective nature, small sample size, and short follow-up are limitations. CONCLUSIONS Olaparib + abiraterone resulted in better PFS and OS than olaparib alone for patients with DDR-deficient mCRPC progressing after abiraterone. These results need to be confirmed by a large-scale prospective randomized controlled trial. PATIENT SUMMARY Our study shows that the drug combination of olaparib plus abiraterone improved survival over olaparib alone for patients who have mutations in genes affecting DNA repair and metastatic prostate cancer resistant to hormone therapy. The results provide evidence of a synergistic effect of the two drugs in these patients.
Collapse
Affiliation(s)
- Jun Xie
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China
| | - Hanxu Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Chen
- Department of Urology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Chengqi Jin
- Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Qiufan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wujianhong Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shengrong Dong
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingting Zhao
- School of Life Sciences and Technology, Tongji University, Shanghai, China; Research Institute, GloriousMed Clinical Laboratory, Shanghai, China
| | - Yang Yu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Shanghai Clinical College, Fifth Clinical Medical College, Anhui Medical University, Shanghai, China; Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China; Department of Urology, School of Medicine, Anhui University of Science and Technology, Huainan, China.
| |
Collapse
|
5
|
Ding L, Yang B, Yao X. Re: Fred Saad, Noel W. Clarke, Mototsugu Oya, et al. Olaparib plus Abiraterone Versus Placebo plus Abiraterone in Metastatic Castration-resistant Prostate Cancer (PROpel): Final Prespecified Overall Survival Results of a Randomised, Double-blind, Phase 3 Trial. Lancet Oncol 2023;24:1094-108. Eur Urol 2024; 86:e88-e89. [PMID: 38000965 DOI: 10.1016/j.eururo.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023]
Affiliation(s)
- Li Ding
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Bin Yang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China; Urologic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Chiappa M, Decio A, Guarrera L, Mengoli I, Karki A, Yemane D, Ghilardi C, Scanziani E, Canesi S, Barbera MC, Craparotta I, Bolis M, Fruscio R, Grasselli C, Ceruti T, Zucchetti M, Patterson JC, Lu RA, Yaffe MB, Ridinger M, Damia G, Guffanti F. Onvansertib treatment overcomes olaparib resistance in high-grade ovarian carcinomas. Cell Death Dis 2024; 15:521. [PMID: 39039067 PMCID: PMC11263393 DOI: 10.1038/s41419-024-06894-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting.
Collapse
Affiliation(s)
- Michela Chiappa
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Alessandra Decio
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Guarrera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Mengoli
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Anju Karki
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Divora Yemane
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Carmen Ghilardi
- Laboratory of Cancer Metastasis Therapeutics, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Eugenio Scanziani
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Simone Canesi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi Campus, Italy
- Mouse and Animal Pathology Lab (MAPLab), UniMi Foundation, Milan, Italy
| | - Maria C Barbera
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Craparotta
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Marco Bolis
- Computational Oncology Unit, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynecology, Department of Medicine and Surgery, San Gerardo Hospital, University of Milan Bicocca, Monza, Italy
| | - Chiara Grasselli
- Immuno-Pharmacology Unit, Department of Oncology, Mario Negri Institute for Pharmacological Research (IRCCS), Milan, Italy
| | - Tommaso Ceruti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Massimo Zucchetti
- Laboratory of Laboratory of Cancer Pharmacology, Experimental Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Jesse C Patterson
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robin A Lu
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Micheal B Yaffe
- Center for Precision Cancer Medicine, David H. Koch Institute for Integrative Cancer Research, Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maya Ridinger
- R&D Department, Cardiff Oncology, San Diego, CA, USA
| | - Giovanna Damia
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Federica Guffanti
- Laboratory of Preclinical Gynecological Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| |
Collapse
|
7
|
Alyafeai E, Qaed E, Al-Mashriqi HS, Almaamari A, Almansory AH, Futini FA, Sultan M, Tang Z. Molecular dynamics of DNA repair and carcinogen interaction: Implications for cancer initiation, progression, and therapeutic strategies. Mutat Res 2024; 829:111883. [PMID: 39265237 DOI: 10.1016/j.mrfmmm.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The integrity of the genetic material in human cells is continuously challenged by environmental agents and endogenous stresses. Among these, environmental carcinogens are pivotal in initiating complex DNA lesions that can lead to malignant transformations if not properly repaired. This review synthesizes current knowledge on the molecular dynamics of DNA repair mechanisms and their interplay with various environmental carcinogens, providing a comprehensive overview of how these interactions contribute to cancer initiation and progression. We examine key DNA repair pathways including base excision repair, nucleotide excision repair, and double-strand break repair and their regulatory networks, highlighting how defects in these pathways can exacerbate carcinogen-induced damage. Further, we discuss how understanding these molecular interactions offers novel insights into potential therapeutic strategies. This includes leveraging synthetic lethality concepts and designing targeted therapies that exploit specific DNA repair vulnerabilities in cancer cells. By integrating recent advances in molecular biology, genetics, and oncology, this review aims to illuminate the complex landscape of DNA repair and carcinogen-induced carcinogenesis, setting the stage for future research and therapeutic innovations.
Collapse
Affiliation(s)
- Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Anisa H Almansory
- Biological department, Faculty of Science, University of Sana'a, Yemen
| | - Fatima Al Futini
- Department of Food Science, Faculty of Food Science & Technology, University Putra Malaysia (UPM), Malaysia
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
8
|
Orlikova-Boyer B, Lorant A, Gajulapalli SR, Cerella C, Schnekenburger M, Lee JY, Paik JY, Lee Y, Siegel D, Ross D, Han BW, Nguyen TKY, Christov C, Kang HJ, Dicato M, Diederich M. Antileukemic potential of methylated indolequinone MAC681 through immunogenic necroptosis and PARP1 degradation. Biomark Res 2024; 12:47. [PMID: 38704604 PMCID: PMC11069214 DOI: 10.1186/s40364-024-00594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Despite advancements in chronic myeloid leukemia (CML) therapy with tyrosine kinase inhibitors (TKIs), resistance and intolerance remain significant challenges. Leukemia stem cells (LSCs) and TKI-resistant cells rely on altered mitochondrial metabolism and oxidative phosphorylation. Targeting rewired energy metabolism and inducing non-apoptotic cell death, along with the release of damage-associated molecular patterns (DAMPs), can enhance therapeutic strategies and immunogenic therapies against CML and prevent the emergence of TKI-resistant cells and LSC persistence. METHODS Transcriptomic analysis was conducted using datasets of CML patients' stem cells and healthy cells. DNA damage was evaluated by fluorescent microscopy and flow cytometry. Cell death was assessed by trypan blue exclusion test, fluorescent microscopy, flow cytometry, colony formation assay, and in vivo Zebrafish xenografts. Energy metabolism was determined by measuring NAD+ and NADH levels, ATP production rate by Seahorse analyzer, and intracellular ATP content. Mitochondrial fitness was estimated by measurements of mitochondrial membrane potential, ROS, and calcium accumulation by flow cytometry, and morphology was visualized by TEM. Bioinformatic analysis, real-time qPCR, western blotting, chemical reaction prediction, and molecular docking were utilized to identify the drug target. The immunogenic potential was assessed by high mobility group box (HMGB)1 ELISA assay, luciferase-based extracellular ATP assay, ectopic calreticulin expression by flow cytometry, and validated by phagocytosis assay, and in vivo vaccination assay using syngeneic C57BL/6 mice. RESULTS Transcriptomic analysis identified metabolic alterations and DNA repair deficiency signatures in CML patients. CML patients exhibited enrichment in immune system, DNA repair, and metabolic pathways. The gene signature associated with BRCA mutated tumors was enriched in CML datasets, suggesting a deficiency in double-strand break repair pathways. Additionally, poly(ADP-ribose) polymerase (PARP)1 was significantly upregulated in CML patients' stem cells compared to healthy counterparts. Consistent with the CML patient DNA repair signature, treatment with the methylated indolequinone MAC681 induced DNA damage, mitochondrial dysfunction, calcium homeostasis disruption, metabolic catastrophe, and necroptotic-like cell death. In parallel, MAC681 led to PARP1 degradation that was prevented by 3-aminobenzamide. MAC681-treated myeloid leukemia cells released DAMPs and demonstrated the potential to generate an immunogenic vaccine in C57BL/6 mice. MAC681 and asciminib exhibited synergistic effects in killing both imatinib-sensitive and -resistant CML, opening new therapeutic opportunities. CONCLUSIONS Overall, increasing the tumor mutational burden by PARP1 degradation and mitochondrial deregulation makes CML suitable for immunotherapy.
Collapse
Affiliation(s)
- Barbora Orlikova-Boyer
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Sruthi Reddy Gajulapalli
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Jin-Young Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
- Present address: Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ji Yeon Paik
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Yejin Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - David Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David Ross
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Byung Woo Han
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | - Thi Kim Yen Nguyen
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea
| | | | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's Hospital, Seoul, 03080, Republic of Korea
| | - Mario Dicato
- Laboratoire de Biologie Moléculaire du Cancer, BAM3 Pavillon 2, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National University, 1, Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Kong LR, Gupta K, Wu AJ, Perera D, Ivanyi-Nagy R, Ahmed SM, Tan TZ, Tan SLW, Fuddin A, Sundaramoorthy E, Goh GS, Wong RTX, Costa ASH, Oddy C, Wong H, Patro CPK, Kho YS, Huang XZ, Choo J, Shehata M, Lee SC, Goh BC, Frezza C, Pitt JJ, Venkitaraman AR. A glycolytic metabolite bypasses "two-hit" tumor suppression by BRCA2. Cell 2024; 187:2269-2287.e16. [PMID: 38608703 DOI: 10.1016/j.cell.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/01/2024] [Accepted: 03/07/2024] [Indexed: 04/14/2024]
Abstract
Knudson's "two-hit" paradigm posits that carcinogenesis requires inactivation of both copies of an autosomal tumor suppressor gene. Here, we report that the glycolytic metabolite methylglyoxal (MGO) transiently bypasses Knudson's paradigm by inactivating the breast cancer suppressor protein BRCA2 to elicit a cancer-associated, mutational single-base substitution (SBS) signature in nonmalignant mammary cells or patient-derived organoids. Germline monoallelic BRCA2 mutations predispose to these changes. An analogous SBS signature, again without biallelic BRCA2 inactivation, accompanies MGO accumulation and DNA damage in Kras-driven, Brca2-mutant murine pancreatic cancers and human breast cancers. MGO triggers BRCA2 proteolysis, temporarily disabling BRCA2's tumor suppressive functions in DNA repair and replication, causing functional haploinsufficiency. Intermittent MGO exposure incites episodic SBS mutations without permanent BRCA2 inactivation. Thus, a metabolic mechanism wherein MGO-induced BRCA2 haploinsufficiency transiently bypasses Knudson's two-hit requirement could link glycolysis activation by oncogenes, metabolic disorders, or dietary challenges to mutational signatures implicated in cancer evolution.
Collapse
Affiliation(s)
- Li Ren Kong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Pharmacology, National University of Singapore, Singapore 117600, Singapore
| | - Komal Gupta
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Andy Jialun Wu
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - David Perera
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | | | - Syed Moiz Ahmed
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Shawn Lu-Wen Tan
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore
| | | | | | | | | | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Callum Oddy
- Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Hannan Wong
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - C Pawan K Patro
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Yun Suen Kho
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore
| | - Joan Choo
- Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mona Shehata
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK
| | - Soo Chin Lee
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Boon Cher Goh
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Department of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; University of Cologne, 50923 Köln, Germany
| | - Jason J Pitt
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A(∗)STAR, Singapore 138673, Singapore
| | - Ashok R Venkitaraman
- Cancer Science Institute of Singapore, Singapore 117599, Singapore; NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore 117599, Singapore; MRC Cancer Unit, University of Cambridge, Cambridge CB2 0XZ, UK; Institute of Molecular and Cell Biology (IMCB), A(∗)STAR, Singapore 138673, Singapore; Department of Oncology, University of Cambridge, Cambridge CB2 0XZ, UK; Department of Medicine, National University of Singapore, Singapore 119228, Singapore.
| |
Collapse
|
10
|
Ratnaparkhi R, Javellana M, Jewell A, Spoozak L. Evaluation of Homologous Recombination Deficiency in Ovarian Cancer. Curr Treat Options Oncol 2024; 25:237-260. [PMID: 38300479 DOI: 10.1007/s11864-024-01176-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 02/02/2024]
Abstract
OPINION STATEMENT Homologous recombination deficiency (HRD) is an important biomarker guiding selection of ovarian cancer patients who will derive the most benefit from poly(ADP-ribose) polymerase inhibitors (PARPi). HRD prevents cells from repairing double-stranded DNA damage with high fidelity, PARPis limit single-stranded repair, and together these deficits induce synthetic lethality. Germline or somatic BRCA mutations represent the narrowest definition of HRD, but do not reflect all patients who will have a durable PARPi response. HRD can also be defined by its downstream consequences, which are measured by different metrics depending on the test used. Ideally, all patients will undergo genetic counseling and germline testing shortly after diagnosis and have somatic testing sent once an adequate tumor sample is available. Should barriers to one test be higher, pursuing germline testing with reflex to somatic testing for BRCA wildtype patients or somatic testing first strategies are both evidence-based. Ultimately both tests offer complementary information, germline testing should be pursued for any patient with a history of ovarian cancer, and somatic testing is valuable at recurrence if not performed in the upfront setting. There is a paucity of data to suggest superiority of one germline or somatic assay; therefore, selection should optimize turnaround time, cost to patients, preferred result format, and logistical burden. Each clinic should implement a standard testing strategy for all ovarian cancer patients that ensures HRD status is known at the time of upfront chemotherapy completion to facilitate comprehensive counseling about anticipated maintenance PARPi benefit.
Collapse
Affiliation(s)
- Rubina Ratnaparkhi
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA.
| | - Melissa Javellana
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Jewell
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lori Spoozak
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
11
|
Incorvaia L, Perez A, Marchetti C, Brando C, Gristina V, Cancelliere D, Pivetti A, Contino S, Di Giovanni E, Barraco N, Bono M, Giurintano A, Bazan Russo TD, Gottardo A, Cutaia S, Pedone E, Peri M, Corsini LR, Fanale D, Galvano A, Scambia G, Badalamenti G, Russo A, Bazan V. Theranostic biomarkers and PARP-inhibitors effectiveness in patients with non-BRCA associated homologous recombination deficient tumors: Still looking through a dirty glass window? Cancer Treat Rev 2023; 121:102650. [PMID: 37939446 DOI: 10.1016/j.ctrv.2023.102650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2) deleterious variants were the first and, still today, the main biomarkers of poly(ADP)ribose polymerase (PARP)-inhibitors (PARPis) benefit. The recent, increased, numbers of individuals referred for counseling and multigene panel testing, and the remarkable expansion of approved PARPis, not restricted to BRCA1/BRCA2-Pathogenic Variants (PVs), produced a strong clinical need for non-BRCA biomarkers. Significant limitations of the current testing and assays exist. The different approaches that identify the causes of Homologous Recombination Deficiency (HRD), such as the germline and somatic Homologous Recombination Repair (HRR) gene PVs, the testing showing its consequences, such as the genomic scars, or the novel functional assays such as the RAD51 foci testing, are not interchangeable, and should not be considered as substitutes for each other in clinical practice for guiding use of PARPi in non-BRCA, HRD-associated tumors. Today, the deeper knowledge on the significant relationship among all proteins involved in the HRR, not limited to BRCA, expands the possibility of a successful non-BRCA, HRD-PARPi synthetic lethality and, at the same time, reinforces the need for enhanced definition of HRD biomarkers predicting the magnitude of PARPi benefit.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Claudia Marchetti
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Chiara Brando
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Valerio Gristina
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniela Cancelliere
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Alessia Pivetti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Emilia Di Giovanni
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marco Bono
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Ambra Giurintano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Andrea Gottardo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Sofia Cutaia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Marta Peri
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Giovanni Scambia
- Department of Woman's and Child Health and Public Health Sciences, Gynecologic Oncology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli 8, 00168 Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Badalamenti
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), Section of Medical Oncology, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
12
|
Sowamber R, Lukey A, Huntsman D, Hanley G. Ovarian Cancer: From Precursor Lesion Identification to Population-Based Prevention Programs. Curr Oncol 2023; 30:10179-10194. [PMID: 38132375 PMCID: PMC10742141 DOI: 10.3390/curroncol30120741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a heterogeneous group of malignancies, including high-grade serous ovarian cancer (HGSC). HGSC is often diagnosed at advanced stages and is linked to TP53 variants. While BRCA variants elevate risk, most HGSC cases occur in individuals without known genetic variants, necessitating prevention strategies for people without known high-risk genetic variants. Effective prevention programs are also needed due to the lack of traditional screening options. An emerging primary prevention strategy is opportunistic salpingectomy, which involves removing fallopian tubes during another planned pelvic surgery. Opportunistic salpingectomy offers a safe and cost-effective preventative option that is gaining global adoption. With the publication of the first cohort study of patients who underwent salpingectomy, specifically for cancer prevention, attention has turned to broadening opportunities for salpingectomy in addition to more targeted approaches. Prevention opportunities are promising with increasing adoption of salpingectomy and the increased understanding of the etiology of the distinct histotypes of ovarian cancer. Yet, further research on targeted risk-reducing salpingectomy with thoughtful consideration of equity is necessary to reduce death and suffering from ovarian cancer.
Collapse
Affiliation(s)
- Ramlogan Sowamber
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z4, Canada
| | - Alexandra Lukey
- School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - David Huntsman
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC V6T 1Z4, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Gillian Hanley
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| |
Collapse
|
13
|
Bustos MA, Yokoe T, Shoji Y, Kobayashi Y, Mizuno S, Murakami T, Zhang X, Sekhar SC, Kim S, Ryu S, Knarr M, Vasilev SA, DiFeo A, Drapkin R, Hoon DSB. MiR-181a targets STING to drive PARP inhibitor resistance in BRCA- mutated triple-negative breast cancer and ovarian cancer. Cell Biosci 2023; 13:200. [PMID: 37932806 PMCID: PMC10626784 DOI: 10.1186/s13578-023-01151-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase inhibitors (PARPi) are approved for the treatment of BRCA-mutated breast cancer (BC), including triple-negative BC (TNBC) and ovarian cancer (OvCa). A key challenge is to identify the factors associated with PARPi resistance; although, previous studies suggest that platinum-based agents and PARPi share similar resistance mechanisms. METHODS Olaparib-resistant (OlaR) cell lines were analyzed using HTG EdgeSeq miRNA Whole Transcriptomic Analysis (WTA). Functional assays were performed in three BRCA-mutated TNBC cell lines. In-silico analysis were performed using multiple databases including The Cancer Genome Atlas, the Genotype-Tissue Expression, The Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, and Gene Omnibus Expression. RESULTS High miR-181a levels were identified in OlaR TNBC cell lines (p = 0.001) as well as in tumor tissues from TNBC patients (p = 0.001). We hypothesized that miR-181a downregulates the stimulator of interferon genes (STING) and the downstream proinflammatory cytokines to mediate PARPi resistance. BRCA1 mutated TNBC cell lines with miR-181a-overexpression were more resistant to olaparib and showed downregulation in STING and the downstream genes controlled by STING. Extracellular vesicles derived from PARPi-resistant TNBC cell lines horizontally transferred miR-181a to parental cells which conferred PARPi-resistance and targeted STING. In clinical settings, STING levels were positively correlated with interferon gamma (IFNG) response scores (p = 0.01). In addition, low IFNG response scores were associated with worse response to neoadjuvant treatment including PARPi for high-risk HER2 negative BC patients (p = 0.001). OlaR TNBC cell lines showed resistance to platinum-based drugs. OvCa cell lines resistant to platinum showed resistance to olaparib. Knockout of miR-181a significantly improved olaparib sensitivity in OvCa cell lines (p = 0.001). CONCLUSION miR-181a is a key factor controlling the STING pathway and driving PARPi and platinum-based drug resistance in TNBC and OvCa. The miR-181a-STING axis can be used as a potential marker for predicting PARPi responses in TNBC and OvCa tumors.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Takamichi Yokoe
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yoshiaki Shoji
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Yuta Kobayashi
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Shodai Mizuno
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Tomohiro Murakami
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Xiaoqing Zhang
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA
| | - Sreeja C Sekhar
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - SooMin Kim
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Suyeon Ryu
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA
| | - Matthew Knarr
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Steven A Vasilev
- Department of Gynecologic Oncology Research, SJCI at SJHC, Santa Monica, CA, 90404, USA
| | - Analisa DiFeo
- Department of Obstetrics & Gynecology, University Michigan, Ann Arbor, MI, 48109, USA
- Department of Pathology, Rogel Cancer Center, University Michigan, Ann Arbor, MI, 48109, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, Penn Ovarian Cancer Research Center, University of Pennsylvania, Pennsylvania, PA, 19104, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, Saint John's Cancer Institute (SJCI) at Providence Saint John's Health Center (SJHC), 2200 Santa Monica Blvd, Santa Monica, CA, 90404, USA.
- Department of Genome Sequencing, SJCI at Providence SJHC, Santa Monica, CA, 90404, USA.
| |
Collapse
|
14
|
Dong F, Davies KD. Mutational Signatures in Cancer: Laboratory Considerations and Emerging Applications. J Mol Diagn 2023; 25:790-795. [PMID: 37633594 DOI: 10.1016/j.jmoldx.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023] Open
Abstract
Patterns of somatic mutations have emerged from the broad sequencing of human cancer genomes. These mutational signatures reflect mechanisms of mutagenesis and DNA repair defects and represent an emerging class of cancer biomarkers. The appropriate interpretation of mutational signatures from sequencing assays holds implications in the reporting of molecular diagnostic results for patients with cancer. This brief review describes the scientific principles, laboratory considerations, and emerging clinical applications of mutational signature analysis from clinical cancer genomes.
Collapse
Affiliation(s)
- Fei Dong
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Kurtis D Davies
- Emerging and Evolving Biomarker Content Committee, A Working Group of the Training and Education Committee, Association for Molecular Pathology, Rockville, Maryland; Department of Pathology, University of Colorado-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
15
|
Wu AJ, Perera A, Kularatnarajah L, Korsakova A, Pitt JJ. Mutational signature assignment heterogeneity is widespread and can be addressed by ensemble approaches. Brief Bioinform 2023; 24:bbad331. [PMID: 37742051 PMCID: PMC10518036 DOI: 10.1093/bib/bbad331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/27/2023] [Indexed: 09/25/2023] Open
Abstract
Single-base substitution (SBS) mutational signatures have become standard practice in cancer genomics. In lieu of de novo signature extraction, reference signature assignment allows users to estimate the activities of pre-established SBS signatures within individual malignancies. Several tools have been developed for this purpose, each with differing methodologies. However, due to a lack of standardization, there may be inter-tool variability in signature assignment. We deeply characterized three assignment strategies and five SBS signature assignment tools. We observed that assignment strategy choice can significantly influence results and interpretations. Despite varying recommendations by tools, Refit performed best by reducing overfitting and maximizing reconstruction of the original mutational spectra. Even after uniform application of Refit, tools varied remarkably in signature assignments both qualitatively (Jaccard index = 0.38-0.83) and quantitatively (Kendall tau-b = 0.18-0.76). This phenomenon was exacerbated for 'flat' signatures such as the homologous recombination deficiency signature SBS3. An ensemble approach (EnsembleFit), which leverages output from all five tools, increased SBS3 assignment accuracy in BRCA1/2-deficient breast carcinomas. After generating synthetic mutational profiles for thousands of pan-cancer tumors, EnsembleFit reduced signature activity assignment error 15.9-24.7% on average using Catalogue of Somatic Mutations In Cancer and non-standard reference signature sets. We have also released the EnsembleFit web portal (https://www.ensemblefit.pittlabgenomics.com) for users to generate or download ensemble-based SBS signature assignments using any strategy and combination of tools. Overall, we show that signature assignment heterogeneity across tools and strategies is non-negligible and propose a viable, ensemble solution.
Collapse
Affiliation(s)
- Andy J Wu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Medicine, National University of Singapore, Singapore, Singapore
| | - Akila Perera
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- School of Computing, National University of Singapore, Singapore, Singapore
| | | | - Anna Korsakova
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jason J Pitt
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
16
|
Paik ES, Chang HK, Lee S. Prevalence of Homologous Recombination Deficiency in First-Line PARP Inhibitor Maintenance Clinical Trials and Further Implication of Personalized Treatment in Ovarian Cancer. Cancers (Basel) 2023; 15:3095. [PMID: 37370704 DOI: 10.3390/cancers15123095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Among ovarian cancer patients with BRCA mutation or homologous recombination deficiency (HRD), the efficacy of Poly-ADP-ribose polymerase (PARP) inhibitors such as olaparib, niraparib, veliparib, and rucaparib has been proven in a number of clinical trials. BRCA mutation and HRD are currently indicated for PARP inhibitor maintenance treatment in ovarian cancer. HRD diagnostic tests examine various components, resulting in different HRD status definitions and, as a result, different treatment decisions. A number of HRD diagnostic tests exist, but test results provided by different companies may differ as they use different methods and different cutoffs. HRD prevalence difference was shown between PARP inhibitor maintenance trials. It is important to select an appropriate method that can present accurate HRD phenotypes to predict sensitivity to PARP inhibitors so that patients who are most likely to benefit from treatment are selected. Additionally, in the subset data of the PARP inhibitor maintenance trials, there was a difference in HRD prevalence by race as higher HRD prevalence in Japanese and Chinese ovarian cancer patients was shown. Further large-scale investigations on racial differences in HRD prevalence are needed and this may contribute to changes in determining the treatment plan and personalized treatment in ovarian cancer patients.
Collapse
Affiliation(s)
- E Sun Paik
- Department of Obstetrics and Gynecology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Republic of Korea
| | - Ha Kyun Chang
- Department of Obstetrics and Gynecology, Korea University Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Republic of Korea
| | - Sanghoon Lee
- Department of Obstetrics and Gynecology, Korea University Anam Hospital, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
17
|
Rădoi VE, Țurcan M, Maioru OV, Dan A, Bohîlțea LC, Dumitrescu EA, Gheorghe AS, Stănculeanu DL, Thodi G, Loukas YL, Săbău ID. Homologous Recombination Deficiency Score Determined by Genomic Instability in a Romanian Cohort. Diagnostics (Basel) 2023; 13:1896. [PMID: 37296748 PMCID: PMC10252278 DOI: 10.3390/diagnostics13111896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The Homologous Recombination Deficiency (HRD) Score, determined by evaluating genomic instability through the assessment of loss of heterozygosity (LOH), telomeric allelic imbalance (TAI), and large-scale state transitions (LST), serves as a crucial biomarker for identifying patients who might benefit from targeted therapies, such as PARP inhibitors (PARPi). This study aimed to investigate the efficacy of HRD testing in high-grade serous ovarian carcinoma, tubal, and peritoneal cancer patients who are negative for somatic BRCA1 and BRCA2 mutations and to evaluate the impact of HRD status on Bevacizumab and PARPi therapy response. A cohort of 100 Romanian female patients, aged 42-77, was initially selected. Among them, 30 patients had unsuitable samples for HRD testing due to insufficient tumor content or DNA integrity. Using the OncoScan C.N.V. platform, HRD testing was successfully performed on the remaining 70 patients, with 20 testing negative and 50 testing positive for HRD. Among the HRD-positive patients, 35 were eligible for and benefited from PARPi maintenance therapy, resulting in a median progression-free survival (PFS) increase from 4 months to 8.2 months. Our findings support the importance of HRD testing in ovarian cancer patients, demonstrating the potential therapeutic advantage of PARPi therapy in HRD-positive patients without somatic BRCA1/2 mutations.
Collapse
Affiliation(s)
- Viorica-Elena Rădoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
- Independent Researcher, 010987 Bucharest, Romania
- Sanador, 011026 Bucharest, Romania
| | - Mihaela Țurcan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| | - Ovidiu Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
| | - Laurentiu Camil Bohîlțea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Elena Adriana Dumitrescu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
| | - Adelina Silvana Gheorghe
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Dana Lucia Stănculeanu
- Department of Oncology, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (E.A.D.); (D.L.S.)
- Department of Medical Oncology I, Institute of Oncology “Prof. Dr. Al. Trestioreanu” Bucharest, 022328 Bucharest, Romania
| | - Georgia Thodi
- Neoscreen Diagnostic Laboratory, Voreiou Ipeirou, 15235 Athens, Greece;
| | - Yannis L. Loukas
- School of Pharmacy, University of Athens, Panepistimiolopis, 15771 Zografou, Greece;
| | - Ileana-Delia Săbău
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-E.R.); (O.V.M.); (A.D.); (L.C.B.); (I.-D.S.)
- Independent Researcher, 010987 Bucharest, Romania
| |
Collapse
|
18
|
Tamura R, Yamaguchi M, Kitani Y, Nishikawa N, Kawasaki T, Kikuchi A. Successful treatment of advanced squamous cell carcinoma arising from mature cystic teratoma of the ovary with homologous recombination deficiency: A case report. Int J Surg Case Rep 2023; 107:108329. [PMID: 37216734 DOI: 10.1016/j.ijscr.2023.108329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/24/2023] Open
Abstract
INTRODUCTION AND IMPORTANCE Squamous cell carcinoma (SCC) arising from mature cystic teratoma of the ovary (MCT-SCC) has a poor prognosis at advanced stages. Although the relationship between homologous recombination deficiency (HRD) and platinum-based chemotherapy sensitivity or poly (ADP ribose) polymerase (PARP) inhibitor efficacy in epithelial ovarian cancer has been demonstrated in clinical trials, the significance of HRD status in MCT-SCC has not previously been described. CASE PRESENTATION A 73-year-old woman underwent emergency laparotomy due to ovarian tumor rupture. The ovarian tumor was strongly adherent to the surrounding pelvic organs and could not be completely resected. The postoperative diagnosis was stage IIIB MCT-SCC (pT3bNXM0) of the left ovary. After surgery, we conducted the myChoice CDx. The genomic instability (GI) score of 87 was remarkably high, and there was no BRCA1/2 pathogenic mutation. After six courses of combination therapy with paclitaxel and carboplatin, the residual tumors had shrunk by 73 %. We performed interval debulking surgery (IDS), and the residual tumors were completely resected. Subsequently, the patient underwent two courses of the combination of paclitaxel, carboplatin, and bevacizumab, followed by maintenance therapy with olaparib and bevacizumab. Twelve months after IDS, no recurrence has been observed. CLINICAL DISCUSSION The present case suggests that there are some HRD cases among MCT-SCC patients and that IDS and maintenance therapy with PARP inhibitors may be effective in such cases, as in epithelial ovarian cancer. CONCLUSION Although the frequency of HRD-positive status in MCT-SCC remains unknown, HRD testing may provide appropriate treatment options for advanced MCT-SCC.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Gynecology, Niigata Cancer Center Hospital, Niigata, Japan; Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Japan.
| | - Masayuki Yamaguchi
- Department of Gynecology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Yohei Kitani
- Department of Gynecology, Niigata Cancer Center Hospital, Niigata, Japan
| | | | - Takashi Kawasaki
- Department of Pathology, Niigata Cancer Center Hospital, Niigata, Japan
| | - Akira Kikuchi
- Department of Gynecology, Niigata Cancer Center Hospital, Niigata, Japan
| |
Collapse
|
19
|
Li T, Wang X, Qin S, Chen B, Yi M, Zhou J. Targeting PARP for the optimal immunotherapy efficiency in gynecologic malignancies. Biomed Pharmacother 2023; 162:114712. [PMID: 37075667 DOI: 10.1016/j.biopha.2023.114712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
Gynecologic cancer, which includes ovarian, cervical, endometrial, vulvar, and vaginal cancer, is a major health concern for women all over the world. Despite the availability of various treatment options, many patients eventually progress to advanced stages and face high mortality rates. PARPi (poly (ADP-ribose) polymerase inhibitor) and immune checkpoint inhibitor (ICI) have both shown significant efficacy in the treatment of advanced and metastatic gynecologic cancer. However, both treatments have limitations, including inevitable resistance and a narrow therapeutic window, making PARPi and ICI combination therapy a promising approach to treating gynecologic malignancies. Preclinical and clinical trials have looked into the combination therapy of PARPi and ICI. PARPi improves ICI efficacy by inducing DNA damage and increasing tumor immunogenicity, resulting in a stronger immune response against cancer cells. ICI, conversly, can increase PARPi sensitivity by priming and activating immune cells, consequently prompting immune cytotoxic effect. Several clinical trials in gynecologic cancer patients have investigated the combination therapy of PARPi and ICI. When compared to monotherapy, the combination of PARPi and ICI increased progression-free survival and overall survival in ovarian cancer patients. The combination therapy has also been studied in other types of gynecologic cancer, including endometrial and cervical cancer, with promising results. Finally, the combination therapeutic strategy of PARPi and ICI is a promising approach in the treatment of gynecologic cancer, particularly advanced and metastatic stages. Preclinical studies and clinical trials have demonstrated the safety and efficacy of this combination therapy in improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Tianye Li
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinrun Wang
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Qin
- Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingxin Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.
| | - Jianwei Zhou
- Department of Gynecology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
20
|
Homologous Recombination Deficiency in Ovarian Cancer: from the Biological Rationale to Current Diagnostic Approaches. J Pers Med 2023; 13:jpm13020284. [PMID: 36836518 PMCID: PMC9968181 DOI: 10.3390/jpm13020284] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
The inability to efficiently repair DNA double-strand breaks using the homologous recombination repair pathway is defined as homologous recombination deficiency (HRD). This molecular phenotype represents a positive predictive biomarker for the clinical use of poly (adenosine diphosphate [ADP]-ribose) polymerase inhibitors and platinum-based chemotherapy in ovarian cancers. However, HRD is a complex genomic signature, and different methods of analysis have been developed to introduce HRD testing in the clinical setting. This review describes the technical aspects and challenges related to HRD testing in ovarian cancer and outlines the potential pitfalls and challenges that can be encountered in HRD diagnostics.
Collapse
|
21
|
Sokolova A, Johnstone KJ, McCart Reed AE, Simpson PT, Lakhani SR. Hereditary breast cancer: syndromes, tumour pathology and molecular testing. Histopathology 2023; 82:70-82. [PMID: 36468211 PMCID: PMC10953374 DOI: 10.1111/his.14808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 12/09/2022]
Abstract
Hereditary factors account for a significant proportion of breast cancer risk. Approximately 20% of hereditary breast cancers are attributable to pathogenic variants in the highly penetrant BRCA1 and BRCA2 genes. A proportion of the genetic risk is also explained by pathogenic variants in other breast cancer susceptibility genes, including ATM, CHEK2, PALB2, RAD51C, RAD51D and BARD1, as well as genes associated with breast cancer predisposition syndromes - TP53 (Li-Fraumeni syndrome), PTEN (Cowden syndrome), CDH1 (hereditary diffuse gastric cancer), STK11 (Peutz-Jeghers syndrome) and NF1 (neurofibromatosis type 1). Polygenic risk, the cumulative risk from carrying multiple low-penetrance breast cancer susceptibility alleles, is also a well-recognised contributor to risk. This review provides an overview of the established breast cancer susceptibility genes as well as breast cancer predisposition syndromes, highlights distinct genotype-phenotype correlations associated with germline mutation status and discusses molecular testing and therapeutic implications in the context of hereditary breast cancer.
Collapse
Affiliation(s)
- A Sokolova
- Sullivan and Nicolaides PathologyBrisbane
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - K J Johnstone
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| | - A E McCart Reed
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - P T Simpson
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
| | - S R Lakhani
- Centre for Clinical Research, Faculty of MedicineThe University of QueenslandBrisbane
- Pathology Queensland, The Royal Brisbane and Women's HospitalBrisbaneQueenslandAustralia
| |
Collapse
|
22
|
Tsang JY, Tse GM. Update on triple-negative breast cancers - highlighting subtyping update and treatment implication. Histopathology 2023; 82:17-35. [PMID: 36468263 DOI: 10.1111/his.14784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/14/2022] [Accepted: 08/19/2022] [Indexed: 12/12/2022]
Abstract
Triple-negative breast cancer (TNBC) remains a major challenge in breast cancer management. Continuing research in the past years aimed at understanding the biology of this tumour and developing more effective therapeutic options. It is now clear that TNBC is vastly heterogeneous with diverse histological, molecular, immunological profiles and clinical differences. Current evidence suggested the existence of at least four predominant subtypes based on expression profiling across studies. These subtypes exhibited specific genomic alterations and tumour microenvironment. Subtype-specific therapeutic strategies were identified. Recognising these subtypes allows not only an improved prognostication but also a better treatment decision. Herein, we provide an overview of the recent findings on TNBC heterogeneity at different levels and corresponding subtyping. The characteristic of subtypes and the implication of these subtypings in therapeutic approaches are also discussed.
Collapse
Affiliation(s)
- Julia Y Tsang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Gary M Tse
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
23
|
Bhat DS, Spies MA, Spies M. A moving target for drug discovery: Structure activity relationship and many genome (de)stabilizing functions of the RAD52 protein. DNA Repair (Amst) 2022; 120:103421. [PMID: 36327799 PMCID: PMC9888176 DOI: 10.1016/j.dnarep.2022.103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 02/02/2023]
Abstract
BRCA-ness phenotype, a signature of many breast and ovarian cancers, manifests as deficiency in homologous recombination, and as defects in protection and repair of damaged DNA replication forks. A dependence of such cancers on DNA repair factors less important for survival of BRCA-proficient cells, offers opportunities for development of novel chemotherapeutic interventions. The first drugs targeting BRCA-deficient cancers, poly-ADP-ribose polymerase (PARP) inhibitors have been approved for the treatment of advanced, chemotherapy resistant cancers in patients with BRCA1/2 germline mutations. Nine additional proteins that can be targeted to selectively kill BRCA-deficient cancer cells have been identified. Among them, a DNA repair protein RAD52 is an especially attractive target due to general tolerance of the RAD52 loss of function, and protective role of an inactivating mutation. Yet, the effective pharmacological inhibitors of RAD52 have not been forthcoming. In this review, we discuss advances in the state of our knowledge of the RAD52 structure, activities and cellular functions, with a specific focus on the features that make RAD52 an attractive, but difficult drug target.
Collapse
Affiliation(s)
- Divya S Bhat
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA
| | - M Ashley Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA; Division of Medicinal and Natural Products Chemistry, Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Maria Spies
- Department of Biochemistry, University of Iowa Carver College of Medicine, 51 Newton Road, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int J Mol Sci 2022; 23:ijms232314672. [PMID: 36499000 PMCID: PMC9735783 DOI: 10.3390/ijms232314672] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Resistance to chemo- and radiotherapy is a common event among cancer patients and a reason why new cancer therapies and therapeutic strategies need to be in continuous investigation and development. DNA damage response (DDR) comprises several pathways that eliminate DNA damage to maintain genomic stability and integrity, but different types of cancers are associated with DDR machinery defects. Many improvements have been made in recent years, providing several drugs and therapeutic strategies for cancer patients, including those targeting the DDR pathways. Currently, poly (ADP-ribose) polymerase inhibitors (PARP inhibitors) are the DDR inhibitors (DDRi) approved for several cancers, including breast, ovarian, pancreatic, and prostate cancer. However, PARPi resistance is a growing issue in clinical settings that increases disease relapse and aggravate patients' prognosis. Additionally, resistance to other DDRi is also being found and investigated. The resistance mechanisms to DDRi include reversion mutations, epigenetic modification, stabilization of the replication fork, and increased drug efflux. This review highlights the DDR pathways in cancer therapy, its role in the resistance to conventional treatments, and its exploitation for anticancer treatment. Biomarkers of treatment response, combination strategies with other anticancer agents, resistance mechanisms, and liabilities of treatment with DDR inhibitors are also discussed.
Collapse
|
25
|
Booth L, Roberts JL, West C, Dent P. GZ17-6.02 kills prostate cancer cells in vitro and in vivo. Front Oncol 2022; 12:1045459. [PMCID: PMC9671078 DOI: 10.3389/fonc.2022.1045459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
GZ17-6.02 is undergoing clinical evaluation in solid tumors and lymphoma. We defined the biology of GZ17-6.02 in prostate cancer cells and determined whether it interacted with the PARP1 inhibitor olaparib to enhance tumor cell killing. GZ17-6.02 interacted in a greater than additive fashion with olaparib to kill prostate cancer cells, regardless of androgen receptor expression or loss of PTEN function. Mechanistically, GZ17-6.02 initially caused peri-nuclear activation of ataxia-telangiectasia mutated (ATM) that was followed after several hours by activation of nuclear ATM, and which at this time point was associated with increased levels of DNA damage. Directly downstream of ATM, GZ17-6.02 and olaparib cooperated to activate the AMP-dependent protein kinase (AMPK) which then activated the kinase ULK1, resulting in autophagosome formation that was followed by autophagic flux. Knock down of ATM, AMPKα or the autophagy-regulatory proteins Beclin1 or ATG5 significantly reduced tumor cell killing. GZ17-6.02 and olaparib cooperated to activate protein kinase R which phosphorylated and inactivated eIF2α, i.e., enhanced endoplasmic reticulum (ER) stress signaling. Knock down of eIF2α also significantly reduced autophagosome formation and tumor cell killing. We conclude that GZ17-6.02 and olaparib interact to kill prostate cancer cells in vitro by increasing autophagy and by enhancing ER stress signaling. In vivo, GZ17-6.02 as a single agent profoundly reduced tumor growth and significantly prolonged animal survival. GZ17-6.02 interacted with olaparib to further suppress the growth of LNCaP tumors without ultimately enhancing animal survival. Our data support the consideration of GZ17-6.02 as a possible therapeutic agent in patients with AR+ prostate cancer.
Collapse
Affiliation(s)
- Laurence Booth
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Jane L. Roberts
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
| | - Cameron West
- Genzada Pharmaceuticals, Sterling, KS, United States
| | - Paul Dent
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Paul Dent,
| |
Collapse
|
26
|
Abe A, Imoto I, Ueki A, Nomura H, Kanao H. Moderate-Risk Genes for Hereditary Ovarian Cancers Involved in the Homologous Recombination Repair Pathway. Int J Mol Sci 2022; 23:11790. [PMID: 36233090 PMCID: PMC9570179 DOI: 10.3390/ijms231911790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 20% of cases of epithelial ovarian cancer (EOC) are hereditary, sharing many causative genes with breast cancer. The lower frequency of EOC compared to breast cancer makes it challenging to estimate absolute or relative risk and verify the efficacy of risk-reducing surgery in individuals harboring germline pathogenic variants (GPV) in EOC predisposition genes, particularly those with relatively low penetrance. Here, we review the molecular features and hereditary tumor risk associated with several moderate-penetrance genes in EOC that are involved in the homologous recombination repair pathway, i.e., ATM, BRIP1, NBN, PALB2, and RAD51C/D. Understanding the molecular mechanisms underlying the expression and function of these genes may elucidate trends in the development and progression of hereditary tumors, including EOC. A fundamental understanding of the genes driving EOC can help us accurately estimate the genetic risk of developing EOC and select appropriate prevention and treatment strategies for hereditary EOC. Therefore, we summarize the functions of the candidate predisposition genes for EOC and discuss the clinical management of individuals carrying GPV in these genes.
Collapse
Affiliation(s)
- Akiko Abe
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Arisa Ueki
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hidetaka Nomura
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Hiroyuki Kanao
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| |
Collapse
|