1
|
Albrecht LJ, Dimitriou F, Grover P, Hassel JC, Erdmann M, Forschner A, Johnson DB, Váraljai R, Lodde G, Placke JM, Krefting F, Zaremba A, Ugurel S, Roesch A, Schulz C, Berking C, Pöttgen C, Menzies AM, Long GV, Dummer R, Livingstone E, Schadendorf D, Zimmer L. Anti-PD-(L)1 plus BRAF/MEK inhibitors (triplet therapy) after failure of immune checkpoint inhibition and targeted therapy in patients with advanced melanoma. Eur J Cancer 2024; 202:113976. [PMID: 38484692 DOI: 10.1016/j.ejca.2024.113976] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND Effective treatment options are limited for patients with advanced melanoma who have progressed on immune checkpoint inhibitors (ICI) and targeted therapies (TT). Preclinical models support the combination of ICI with TT; however, clinical trials evaluating the efficacy of triplet combinations in first-line setting showed limited advantage compared to TT only. METHODS We conducted a retrospective, multicenter study, that included patients with advanced melanoma who were treated with BRAF/MEK inhibitors in combination with an anti-PD-(L)1 antibody (triplet therapy) after failure of at least one anti-PD-(L)1-based therapy and one TT in seven major melanoma centers between February 2016 and July 2022. RESULTS A total of 48 patients were included, of which 32 patients, 66.7% had brain metastases, 37 patients (77.1%) had three or more metastatic organs and 21 patients (43.8%) had three or more treatment lines. The median follow-up time was 31.4 months (IQR, 22.27-40.45 months). The treatment with triplet therapy resulted in an ORR of 35.4% (n = 17) and a DCR of 47.9% (n = 23). The median DOR was 5.9 months (range, 3.39-14.27 months). Patients treated with BRAF/MEK inhibitors as the last treatment line showed a slightly lower ORR (29.6%) compared to patients who received ICI or chemotherapy last (ORR: 42.9%). Grade 3-4 treatment-related adverse events occurred in 25% of patients (n = 12), with seven patients (14.6%) requiring discontinuation of treatment with both or either drug. CONCLUSIONS Triplet therapy has shown activity in heavily pretreated patients with advanced melanoma and may represent a potential treatment regimen after failure of ICI and TT.
Collapse
Affiliation(s)
- Lea Jessica Albrecht
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Florentia Dimitriou
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Piyush Grover
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Erdmann
- Department of Dermatology, Uniklinikum Erlangen and the Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Andrea Forschner
- Department of Dermatology, University Hospital Tuebingen, Tuebingen, Germany
| | - Douglas B Johnson
- Department of Medicine, Division of Hematology and Oncology, VUMC, and Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Renáta Váraljai
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Georg Lodde
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Jan Malte Placke
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Frederik Krefting
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Anne Zaremba
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Selma Ugurel
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Carsten Schulz
- Department of Dermatology and National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Heidelberg, Germany
| | - Carola Berking
- Department of Dermatology, Uniklinikum Erlangen and the Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, West German Cancer Centre, University Hospital Essen, Essen, Germany
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Department of Medical Oncology, Royal North Shore and Mater Hospitals, Sydney, New South Wales, Australia
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - Elisabeth Livingstone
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany; National Center for Tumor Diseases (NCT)-West, Campus Essen, & Research Alliance Ruhr, Research Center One Health, University Duisburg-Essen, Essen, Germany
| | - Lisa Zimmer
- Department of Dermatology, University Hospital Essen, West German Cancer Center, University Duisburg-Essen and the German Cancer Consortium (DKTK), Essen, Germany.
| |
Collapse
|
2
|
Fietz S, Diekmann E, de Vos L, Zarbl R, Hunecke A, Glosch AK, Färber M, Sirokay J, Hoffmann F, Fröhlich A, Franzen A, Strieth S, Landsberg J, Dietrich D. Circulating Cell-Free SHOX2 DNA Methylation Is a Predictive, Prognostic, and Monitoring Biomarker in Adjuvant and Palliative Anti-PD-1-Treated Melanoma. Clin Chem 2024; 70:516-527. [PMID: 38300881 DOI: 10.1093/clinchem/hvad230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND The majority of metastatic melanoma patients initially do not respond or acquire resistance to anti-programmed cell death 1 (PD-1) immunotherapy. Liquid biopsy biomarkers might provide useful early response information and allow for personalized treatment decisions. METHODS We prospectively assessed circulating cell-free SHOX2 DNA methylation (SHOX2 ccfDNAm) levels and their dynamic changes in blood plasma of melanoma patients by quantitative methylation-specific polymerase chain reaction. Patients were treated with either palliative (n = 42) or adjuvant (n = 55) anti-PD-1 immunotherapy. Moreover, we included n = 126 control patients without evidence of malignant disease. We analyzed SHOX2 ccfDNAm status prior to and 4 weeks after palliative treatment initiation with regard to outcome [objective response, progression-free survival (PFS), and overall survival (OS)]. In the adjuvant setting, we associated longitudinal SHOX2 ccfDNAm status with disease recurrence. RESULTS Sensitivity was 60% with 25/42 melanoma patients showing increased SHOX2 ccfDNAm levels, whereas specificity was 98% with 123/126 (P < 0.001) control patients having SHOX2 ccfDNAm levels below cut-off. Pretreatment SHOX2 ccfDNAm status did not correlate with outcome; however, SHOX2 ccfDNAm negativity 4 weeks after palliative treatment initiation was strongly associated with improved survival [PFS: hazard ratio (HR) = 0.25, P = 0.002; OS: HR = 0.12, P = 0.007]. Pretreatment positive patients who reached SHOX2 ccfDNAm clearance after 4 weeks of immunotherapy showed an exceptionally beneficial outcome. SHOX2 ccfDNAm testing allowed for an early detection of distant metastases in adjuvant-treated melanoma patients. CONCLUSIONS Our study suggests SHOX2 ccfDNAm to be an early predictor of outcome in anti-PD-1 treated melanoma patients. SHOX2 ccfDNAm testing may aid individualized treatment decision-making.
Collapse
Affiliation(s)
- Simon Fietz
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Eric Diekmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Luka de Vos
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Romina Zarbl
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Alina Hunecke
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Ann-Kathrin Glosch
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Moritz Färber
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Judith Sirokay
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Friederike Hoffmann
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Anne Fröhlich
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Alina Franzen
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| | - Jennifer Landsberg
- Department of Dermatology and Allergology, University Hospital Bonn, Bonn, Germany
| | - Dimo Dietrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Maltas J, Killarney ST, Singleton KR, Strobl MAR, Washart R, Wood KC, Wood KB. Drug dependence in cancer is exploitable by optimally constructed treatment holidays. Nat Ecol Evol 2024; 8:147-162. [PMID: 38012363 PMCID: PMC10918730 DOI: 10.1038/s41559-023-02255-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancers with acquired resistance to targeted therapy can become simultaneously dependent on the presence of the targeted therapy drug for survival, suggesting that intermittent therapy may slow resistance. However, relatively little is known about which tumours are likely to become dependent and how to schedule intermittent therapy optimally. Here we characterized drug dependence across a panel of over 75 MAPK-inhibitor-resistant BRAFV600E mutant melanoma models at the population and single-clone levels. Melanocytic differentiated models exhibited a much greater tendency to give rise to drug-dependent progeny than their dedifferentiated counterparts. Mechanistically, acquired loss of microphthalmia-associated transcription factor in differentiated melanoma models drives ERK-JunB-p21 signalling to enforce drug dependence. We identified the optimal scheduling of 'drug holidays' using simple mathematical models that we validated across short and long timescales. Without detailed knowledge of tumour characteristics, we found that a simple adaptive therapy protocol can produce near-optimal outcomes using only measurements of total population size. Finally, a spatial agent-based model showed that optimal schedules derived from exponentially growing cells in culture remain nearly optimal in the context of tumour cell turnover and limited environmental carrying capacity. These findings may guide the implementation of improved evolution-inspired treatment strategies for drug-dependent cancers.
Collapse
Affiliation(s)
- Jeff Maltas
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | | | - Maximilian A R Strobl
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH, USA
| | - Rachel Washart
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Kevin B Wood
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Cammann C, Kulla J, Wiebusch L, Walz C, Zhao F, Lowinus T, Topfstedt E, Mishra N, Henklein P, Bommhardt U, Bossaller L, Hagemeier C, Schadendorf D, Schmidt B, Paschen A, Seifert U. Proteasome inhibition potentiates Kv1.3 potassium channel expression as therapeutic target in drug-sensitive and -resistant human melanoma cells. Biomed Pharmacother 2023; 168:115635. [PMID: 37816303 DOI: 10.1016/j.biopha.2023.115635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/24/2023] [Accepted: 10/03/2023] [Indexed: 10/12/2023] Open
Abstract
Primary and acquired therapy resistance is a major problem in patients with BRAF-mutant melanomas being treated with BRAF and MEK inhibitors (BRAFI, MEKi). Therefore, development of alternative therapy regimes is still required. In this regard, new drug combinations targeting different pathways to induce apoptosis could offer promising alternative approaches. Here, we investigated the combination of proteasome and Kv1.3 potassium channel inhibition on chemo-resistant, BRAF inhibitor-resistant as well as sensitive human melanoma cells. Our experiments demonstrated that all analyzed melanoma cell lines were sensitive to proteasome inhibitor treatment at concentrations that are not toxic to primary human fibroblasts. To further reduce proteasome inhibitor-associated side effects, and to foster apoptosis, potassium channels, which are other targets to induce pro-apoptotic effects in cancer cells, were blocked. In support, combined exposure of melanoma cells to proteasome and Kv1.3 channel inhibitor resulted in synergistic effects and significantly reduced cell viability. On the molecular level, enhanced apoptosis correlated with an increase of intracellular Kv1.3 channels and pro-apoptotic proteins such as Noxa and Bak and a reduction of anti-apoptotic proteins. Thus, use of combined therapeutic strategies triggering different apoptotic pathways may efficiently prevent the outgrowth of drug-resistant and -sensitive BRAF-mutant melanoma cells. In addition, this could be the basis for an alternative approach to treat other tumors expressing mutated BRAF such as non-small-cell lung cancer.
Collapse
Affiliation(s)
- Clemens Cammann
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Jonas Kulla
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lüder Wiebusch
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Christian Walz
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Fang Zhao
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Eylin Topfstedt
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Neha Mishra
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Petra Henklein
- Institute of Molecular Biology and Biochemistry, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lukas Bossaller
- Section of Rheumatology, Clinic and Policlinic of Internal Medicine A, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| | - Christian Hagemeier
- Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Boris Schmidt
- Clemens Schöpf-Institute for Organic Chemistry and Biochemistry, Technical University Darmstadt, Alarich Weiss-Straße 4-8, 64287 Darmstadt, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ulrike Seifert
- Friedrich Loeffler - Institute of Medical Microbiology - Virology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany.
| |
Collapse
|
5
|
Sullivan RJ. To Inhibit or Not to Inhibit MEK With BRAF Inhibitors: Is That the Question? J Clin Oncol 2023; 41:4613-4615. [PMID: 37590898 DOI: 10.1200/jco.23.01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023] Open
|
6
|
Namikawa K, Ito T, Yoshikawa S, Yoshino K, Kiniwa Y, Ohe S, Isei T, Takenouchi T, Kato H, Mizuhashi S, Fukushima S, Yamamoto Y, Inozume T, Fujisawa Y, Yamasaki O, Nakamura Y, Asai J, Maekawa T, Funakoshi T, Matsushita S, Nakano E, Oashi K, Kato J, Uhara H, Miyagawa T, Uchi H, Hatta N, Tsutsui K, Maeda T, Matsuya T, Yanagisawa H, Muto I, Okumura M, Ogata D, Yamazaki N. Systemic therapy for Asian patients with advanced BRAF V600-mutant melanoma in a real-world setting: A multi-center retrospective study in Japan (B-CHECK-RWD study). Cancer Med 2023; 12:17967-17980. [PMID: 37584204 PMCID: PMC10524053 DOI: 10.1002/cam4.6438] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Anti-PD-1-based immunotherapy is considered a preferred first-line treatment for advanced BRAF V600-mutant melanoma. However, a recent international multi-center study suggested that the efficacy of immunotherapy is poorer in Asian patients in the non-acral cutaneous subtype. We hypothesized that the optimal first-line treatment for Asian patients may be different. METHODS We retrospectively collected data of Asian patients with advanced BRAF V600-mutant melanoma treated with first-line BRAF/MEK inhibitors (BRAF/MEKi), anti-PD-1 monotherapy (Anti-PD-1), and nivolumab plus ipilimumab (PD-1/CTLA-4) between 2016 and 2021 from 28 institutions in Japan. RESULTS We identified 336 patients treated with BRAF/MEKi (n = 236), Anti-PD-1 (n = 64) and PD-1/CTLA-4 (n = 36). The median follow-up duration was 19.9 months for all patients and 28.6 months for the 184 pa tients who were alive at their last follow-up. For patients treated with BRAF/MEKi, anti-PD-1, PD-1/CTLA-4, the median ages at baseline were 62, 62, and 53 years (p = 0.03); objective response rates were 69%, 27%, and 28% (p < 0.001); median progression-free survival (PFS) was 14.7, 5.4, and 5.8 months (p = 0.003), and median overall survival (OS) was 34.6, 37.0 months, and not reached, respectively (p = 0.535). In multivariable analysis, hazard ratios (HRs) for PFS of Anti-PD-1 and PD-1/CTLA-4 compared with BRAF/MEKi were 2.30 (p < 0.001) and 1.38 (p = 0.147), and for OS, HRs were 1.37 (p = 0.111) and 0.56 (p = 0.075), respectively. In propensity-score matching, BRAF/MEKi showed a tendency for longer PFS and equivalent OS with PD-1/CTLA-4 (HRs for PD-1/CTLA-4 were 1.78 [p = 0.149]) and 1.03 [p = 0.953], respectively). For patients who received second-line treatment, BRAF/MEKi followed by PD-1/CTLA-4 showed poor survival outcomes. CONCLUSIONS The superiority of PD-1/CTLA-4 over BRAF/MEKi appears modest in Asian patients. First-line BRAF/MEKi remains feasible, but it is difficult to salvage at progression. Ethnicity should be considered when selecting systemic therapies until personalized biomarkers are available in daily practice. Further studies are needed to establish the optimal treatment sequence for Asian patients.
Collapse
Affiliation(s)
- Kenjiro Namikawa
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Takamichi Ito
- Department of Dermatology, Graduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | | | - Koji Yoshino
- Department of Dermatologic OncologyTokyo Metropolitan Cancer and Infectious Diseases Center Komagome HospitalTokyoJapan
- Present address:
Department of Dermatologic OncologyThe Cancer Institute Hospital of Japanese Foundation for Cancer ResearchTokyoJapan
| | - Yukiko Kiniwa
- Department of DermatologyShinshu UniversityMatsumotoJapan
| | - Shuichi Ohe
- Department of Dermatologic OncologyOsaka International Cancer InstituteOsakaJapan
| | - Taiki Isei
- Department of Dermatologic OncologyOsaka International Cancer InstituteOsakaJapan
| | | | - Hiroshi Kato
- Department of Geriatric and Environmental DermatologyNagoya City UniversityNagoyaJapan
| | - Satoru Mizuhashi
- Department of Dermatology and Plastic SurgeryKumamoto UniversityKumamotoJapan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic SurgeryKumamoto UniversityKumamotoJapan
| | | | | | - Yasuhiro Fujisawa
- Department of DermatologyUniversity of TsukubaTsukubaJapan
- Present address:
Department of DermatologyEhime UniversityEhimeJapan
| | - Osamu Yamasaki
- Department of DermatologyOkayama University Graduate School of Medicine, Dentistry, and Pharmaceutical SciencesOkayamaJapan
- Present address:
Department of DermatologyShimane University Faculty of MedicineShimaneJapan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/DermatologySaitama Medical University International Medical CenterSaitamaJapan
| | - Jun Asai
- Department of DermatologyKyoto Prefectural University of MedicineKyotoJapan
| | - Takeo Maekawa
- Department of DermatologyJichi Medical University HospitalTochigiJapan
| | | | - Shigeto Matsushita
- Department of Dermato‐Oncology/DermatologyNational Hospital Organization Kagoshima Medical CenterKagoshimaJapan
| | - Eiji Nakano
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
- Department of DermatologyKobe UniversityKobeJapan
| | - Kohei Oashi
- Department of DermatologySaitama Cancer CenterSaitamaJapan
| | - Junji Kato
- Department of DermatologySapporo Medical UniversitySapporoJapan
| | - Hisashi Uhara
- Department of DermatologySapporo Medical UniversitySapporoJapan
| | | | - Hiroshi Uchi
- Department of Dermato‐OncologyNational Hospital Organization Kyushu Cancer CenterFukuokaJapan
| | - Naohito Hatta
- Department of DermatologyToyama Prefectural Central HospitalToyamaJapan
| | - Keita Tsutsui
- Department of DermatologyFukuoka UniversityFukuokaJapan
| | - Taku Maeda
- Department of Plastic and Reconstructive SurgeryHokkaido UniversitySapporoJapan
| | - Taisuke Matsuya
- Department of DermatologyAsahikawa Medical UniversityAsahikawaJapan
| | | | - Ikko Muto
- Department of DermatologyKurume UniversityKurumeJapan
| | - Mao Okumura
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Dai Ogata
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| | - Naoya Yamazaki
- Department of Dermatologic OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
7
|
Kharouf N, Flanagan TW, Hassan SY, Shalaby H, Khabaz M, Hassan SL, Megahed M, Haikel Y, Santourlidis S, Hassan M. Tumor Microenvironment as a Therapeutic Target in Melanoma Treatment. Cancers (Basel) 2023; 15:3147. [PMID: 37370757 DOI: 10.3390/cancers15123147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The role of the tumor microenvironment in tumor growth and therapy has recently attracted more attention in research and drug development. The ability of the microenvironment to trigger tumor maintenance, progression, and resistance is the main cause for treatment failure and tumor relapse. Accumulated evidence indicates that the maintenance and progression of tumor cells is determined by components of the microenvironment, which include stromal cells (endothelial cells, fibroblasts, mesenchymal stem cells, and immune cells), extracellular matrix (ECM), and soluble molecules (chemokines, cytokines, growth factors, and extracellular vesicles). As a solid tumor, melanoma is not only a tumor mass of monolithic tumor cells, but it also contains supporting stroma, ECM, and soluble molecules. Melanoma cells are continuously in interaction with the components of the microenvironment. In the present review, we focus on the role of the tumor microenvironment components in the modulation of tumor progression and treatment resistance as well as the impact of the tumor microenvironment as a therapeutic target in melanoma.
Collapse
Affiliation(s)
- Naji Kharouf
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Sofie-Yasmin Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Hosam Shalaby
- Department of Urology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Marla Khabaz
- Department of Production, Beta Factory for Veterinary Pharmaceutical Industries, Damascus 0100, Syria
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany
| | - Youssef Haikel
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany
| | - Mohamed Hassan
- Biomaterials and Bioengineering, Institut National de la Santé et de la Recherche Médicale, Université de Strasbourg, Unité Mixte de Recherche 1121, 67000 Strasbourg, France
- Department of Endodontics and Conservative Dentistry, Faculty of Dental Medicine, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Sullivan RJ. What, if Any, Role Is There for BRAF-Targeted Therapy in BRAF-Mutant Melanoma? J Clin Oncol 2022; 40:4161-4165. [PMID: 35862870 PMCID: PMC9916112 DOI: 10.1200/jco.22.01066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/17/2022] [Indexed: 12/24/2022] Open
|
9
|
Abedi Kiasari B, Abbasi A, Ghasemi Darestani N, Adabi N, Moradian A, Yazdani Y, Sadat Hosseini G, Gholami N, Janati S. Combination therapy with nivolumab (anti-PD-1 monoclonal antibody): A new era in tumor immunotherapy. Int Immunopharmacol 2022; 113:109365. [PMID: 36332452 DOI: 10.1016/j.intimp.2022.109365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/05/2022]
|