1
|
McMurry HS, Rivero JD, Chen EY, Kardosh A, Lopez CD, Pegna GJ. Gastroenteropancreatic neuroendocrine tumors: Epigenetic landscape and clinical implications. Curr Probl Cancer 2024; 52:101131. [PMID: 39173542 DOI: 10.1016/j.currproblcancer.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/22/2024] [Indexed: 08/24/2024]
Abstract
Neuroendocrine tumors (NETs) are a rare, heterogenous group of neoplasms arising from cells of the neuroendocrine system. Amongst solid tumor malignancies, NETs are notable for overall genetic stability and recent data supports the notion that epigenetic changes may drive NET pathogenesis. In this review, major epigenetic mechanisms of NET pathogenesis are reviewed, including changes in DNA methylation, histone modification, chromatin remodeling, and microRNA. Prognostic implications of the above are discussed, as well as the expanding diagnostic utility of epigenetic markers in NETs. Lastly, preclinical and clinical evaluations of epigenetically targeted therapies in NETs and are reviewed, with a focus on future directions in therapeutic advancement.
Collapse
Affiliation(s)
- Hannah S McMurry
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Jaydira Del Rivero
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emerson Y Chen
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Adel Kardosh
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Charles D Lopez
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States
| | - Guillaume J Pegna
- Department of Medicine, Division of Hematology and Medical Oncology, Oregon Health & Science University, Portland, OR, United States.
| |
Collapse
|
2
|
Saleh Z, Moccia MC, Ladd Z, Joneja U, Li Y, Spitz F, Hong YK, Gao T. Pancreatic Neuroendocrine Tumors: Signaling Pathways and Epigenetic Regulation. Int J Mol Sci 2024; 25:1331. [PMID: 38279330 PMCID: PMC10816436 DOI: 10.3390/ijms25021331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are characterized by dysregulated signaling pathways that are crucial for tumor formation and progression. The efficacy of traditional therapies is limited, particularly in the treatment of PNETs at an advanced stage. Epigenetic alterations profoundly impact the activity of signaling pathways in cancer development, offering potential opportunities for drug development. There is currently a lack of extensive research on epigenetic regulation in PNETs. To fill this gap, we first summarize major signaling events that are involved in PNET development. Then, we discuss the epigenetic regulation of these signaling pathways in the context of both PNETs and commonly occurring-and therefore more extensively studied-malignancies. Finally, we will offer a perspective on the future research direction of the PNET epigenome and its potential applications in patient care.
Collapse
Affiliation(s)
- Zena Saleh
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Matthew C. Moccia
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Zachary Ladd
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Upasana Joneja
- Department of Pathology, Cooper University Health Care, Camden, NJ 08103, USA
| | - Yahui Li
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Francis Spitz
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Young Ki Hong
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
| | - Tao Gao
- Department of Surgery, Cooper University Health Care, Camden, NJ 08103, USA; (Z.S.); (Z.L.)
- Camden Cancer Research Center, Camden, NJ 08103, USA
| |
Collapse
|
3
|
Fan S, Zheng H, Zhan Y, Luo J, Zang H, Wang H, Wang W, Xu Y. Somatostatin receptor2 (SSTR2) expression, prognostic implications, modifications and potential therapeutic strategies associates with head and neck squamous cell carcinomas. Crit Rev Oncol Hematol 2024; 193:104223. [PMID: 38036157 DOI: 10.1016/j.critrevonc.2023.104223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 12/02/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) constitute a heterogeneous cluster of tumors celebrated for their predisposition to metastasize and exhibit local recurrence. Recent explorations have illuminated the intricate involvement of Somatostatin Receptor 2 (SSTR2), a growth-regulatory receptor traditionally classified as a tumor suppressor, yet concurrently implicated in bolstering specific tumor phenotypes. Advances in the realm of SSTR2 investigation within HNSCC, with a specific spotlight on laryngeal squamous cell carcinomas (LSCC), tongue squamous cell carcinomas (TSCC), and nasopharyngeal carcinomas (NPC), have been established. This study aims to provide a comprehensive overview of SSTR2 expression patterns, prognostic implications, distinctive signaling pathways, epigenetic modifications, and potential therapeutic strategies associated with SSTR2 in HNSCC.
Collapse
Affiliation(s)
- Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Jiadi Luo
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Hongjing Zang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Huilin Wang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China
| | - Weiyuan Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yue Xu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Medical Research Center for Cancer Pathogenic Genes Testing and Diagnosis, Changsha, Hunan 410011, China.
| |
Collapse
|
4
|
Murphy R, Chander G, Martinez M, Ward C, Khan SR, Naik M, Barwick T, Aboagye E, Sharma R. Study protocol of LANTana: a phase Ib study to investigate epigenetic modification of somatostatin receptor-2 with ASTX727 to improve therapeutic outcome with [177Lu]Lu-DOTA-TATE in patients with metastatic neuroendocrine tumours, UK. BMJ Open 2023; 13:e075221. [PMID: 37879695 PMCID: PMC10603539 DOI: 10.1136/bmjopen-2023-075221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 09/25/2023] [Indexed: 10/27/2023] Open
Abstract
INTRODUCTION Suitability for peptide receptor radionuclide therapy (PRRT) for neuroendocrine neoplasia (NENs) depends on presence of somatostatin receptor-2 (SSTR2) determined by [68Ga]Ga-DOTA-peptide-positron emission tomography (PET). Some patients have low or no uptake on [68Ga]Ga-DOTA-peptide-PET, precluding PRRT. The upstream promoter region of SSRT2 is methylated, with percentage of methylation correlating with SSTR2 expression. Demethylating agents increase uptake on PET imaging in vivo such that tumours previously negative on PET become positive, correlating with a dose dependent increase in tumorous SSTR2 expression. LANTana will determine whether treatment with the demethylating agent, ASTX727, results in re-expression of SSTR2 using [68Ga]Ga-DOTA-peptide-PET to image epigenetic modification of the SSTR2 locus, allowing subsequent PRRT. METHODS AND ANALYSIS 27 participants with a histological diagnosis of NEN (Ki67<55%) with no or low uptake on baseline [68Ga]Ga-DOTA-TATE-PET/CT will be recruited. Patients will receive 5 days of ASTX727 (fixed dose 35 mg decitabine+100 mg cedazuridine). [68Ga]Ga-DOTA-peptide-PET/CT will be repeated day 8±2; where there is significant uptake greater than liver in most lesions, PRRT will be administered. Primary objective is to determine re-expression of SSTR2 on PET imaging. Tolerability, progression-free survival, overall response and quality of life will be assessed. Methylation in peripheral blood mononuclear cells and tumorous methylation will be evaluated. ETHICS AND DISSEMINATION LANTana has ethical approval from Leeds West Research Ethics Committee (REC Reference: 21/YH/0247).Sponsored by Imperial College London and funded by Advanced Accelerator Applications pharmaceuticals. Results will be presented at conferences and submitted to peer-reviewed journals for publication and will be available on ClinicalTrials.gov. TRIAL REGISTRATION NUMBERS EUDRACT number: 2020-003800-15, NCT05178693.
Collapse
Affiliation(s)
- Ravindhi Murphy
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| | - Gurvin Chander
- Department of Surgery and Cancer, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Maria Martinez
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| | - Caroline Ward
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Sairah R Khan
- Department of Nuclear Medicine, Hammersmith Hospital, London, UK
| | - Mitesh Naik
- Department of Nuclear Medicine, Hammersmith Hospital, London, UK
| | - Tara Barwick
- Department of Cancer and Surgery, Imperial College London, London, UK
- Department of Radiology, Imperial College Healthcare NHS Trust, London, UK
| | - Eric Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Rohini Sharma
- Department of Surgery and Cancer, Hammersmith Hospital, London, UK
| |
Collapse
|
5
|
Sharma R, Earla B, Baidoo KE, Zeiger MA, Madigan JP, Escorcia FE, Sadowski SM. Upregulation of Somatostatin Receptor Type 2 Improves 177Lu-DOTATATE Therapy in Receptor-Deficient Pancreatic Neuroendocrine Tumor Model. Mol Cancer Ther 2023; 22:1052-1062. [PMID: 37487000 PMCID: PMC10477832 DOI: 10.1158/1535-7163.mct-22-0798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/16/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Pancreatic neuroendocrine tumors (PNET) express high levels of somatostatin receptor type 2 (SSTR2), a unique target for both tumor imaging and therapy. This surface expression is lost in metastatic high-grade PNETs, making patients ineligible for SSTR2-targeted 177 Lutetium (Lu)-DOTATATE peptide receptor radionuclide therapy (PRRT), and represents an unmet clinical need. Here, we aimed to restore SSTR2 expression through the reversal of inhibitory epigenetic gene silencing to improve tumor responsiveness to PRRT. We first assessed human SSTR2 promoter methylation and expression levels in 96 patient samples. We then used three NET cell lines (QGP-1, BON-1, GOT-1) with variable SSTR2 expression profiles for functional in vitro studies using histone deacetylase inhibitors (HDACi). Finally, the QGP-1 xenograft mouse model, with low basal SSTR2 expression, was used to assess the therapeutic efficacy of combined HDACi and 177Lu-DOTATATE therapies. We confirm that SSTR expression is decreased and correlates with SSTR2 promoter methylation in patients with high-grade NETs. When exposed to HDACis, SSTR2 surface expression is increased in three NET cell lines in vitro. In an in vivo PNET xenograft model with low basal SSTR2 expression, our studies demonstrate significantly higher tumor uptake of SSTR2-targeted 177Lu-DOTATATE in animals pretreated with HDACis compared with controls. For the first time, we show that this higher tumor uptake results in significant antitumor response when compared with standard PRRT alone. These preclinical results provide a rationale for utilizing HDACi pretreatment to improve targeted radionuclide therapy in patients with SSTR2-negative, metastatic PNETs.
Collapse
Affiliation(s)
- Rupali Sharma
- Endocrine Surgery Section, Surgical Oncology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Bhargav Earla
- Endocrine Surgery Section, Surgical Oncology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- UAB Heersink School of Medicine, Birmingham, Alabama
| | - Kwamena E. Baidoo
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Martha A. Zeiger
- Office of Surgeon Scientists Programs, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - James P. Madigan
- Endocrine Surgery Section, Surgical Oncology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Samira M. Sadowski
- Endocrine Surgery Section, Surgical Oncology Program, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
6
|
Zhou S, Ou H, Wu Y, Qi D, Pei X, Yu X, Hu X, Wu E. Targeting tumor endothelial cells with methyltransferase inhibitors: Mechanisms of action and the potential of combination therapy. Pharmacol Ther 2023:108434. [PMID: 37172786 DOI: 10.1016/j.pharmthera.2023.108434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Tumor endothelial cells (TECs) reside in the inner lining of blood vessels and represent a promising target for targeted cancer therapy. DNA methylation is a chemical process that involves the transfer of a methyl group to a specific base in the DNA strand, catalyzed by DNA methyltransferase (DNMT). DNMT inhibitors (DNMTis) can inhibit the activity of DNMTs, thereby preventing the transfer of methyl groups from s-adenosyl methionine (SAM) to cytosine. Currently, the most viable therapy for TECs is the development of DNMTis to release cancer suppressor genes from their repressed state. In this review, we first outline the characteristics of TECs and describe the development of tumor blood vessels and TECs. Abnormal DNA methylation is closely linked to tumor initiation, progression, and cell carcinogenesis, as evidenced by numerous studies. Therefore, we summarize the role of DNA methylation and DNA methyltransferase and the therapeutic potential of four types of DNMTi in targeting TECs. Finally, we discuss the accomplishments, challenges, and opportunities associated with combination therapy with DNMTis for TECs.
Collapse
Affiliation(s)
- Shu Zhou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Hailong Ou
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yatao Wu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Dan Qi
- Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA
| | - Xiaming Pei
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaohui Yu
- Department of Urology, Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Xiaoxiao Hu
- State Key Laboratory of Biosensing, College of Biology, Hunan University, Changsha, Hunan 410082, China; Research Institute of Hunan University in Chongqing, Chongqing 401120, China.
| | - Erxi Wu
- Department of Neurosurgery, Neuroscience Institute, Baylor Scott & White Health, Temple, TX 78508, USA; Texas A & M University Schools of Medicine and Pharmacy, College Station, TX 77843, USA; LIVESTRONG Cancer Institutes, Department of Oncology, Dell Medical School, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
7
|
Klomp MJ, Refardt J, van Koetsveld PM, Campana C, Dalm SU, Dogan F, van Velthuysen MLF, Feelders RA, de Herder WW, Hofland J, Hofland LJ. Epigenetic regulation of SST 2 expression in small intestinal neuroendocrine tumors. Front Endocrinol (Lausanne) 2023; 14:1184436. [PMID: 37223009 PMCID: PMC10200989 DOI: 10.3389/fendo.2023.1184436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Background Somatostatin receptor type 2 (SST2) expression is critical for the diagnosis and treatment of neuroendocrine tumors and is associated with improved patient survival. Recent data suggest that epigenetic changes such as DNA methylation and histone modifications play an important role in regulating SST2 expression and tumorigenesis of NETs. However, there are limited data on the association between epigenetic marks and SST2 expression in small intestinal neuroendocrine tumors (SI-NETs). Methods Tissue samples from 16 patients diagnosed with SI-NETs and undergoing surgical resection of the primary tumor at Erasmus MC Rotterdam were analysed for SST2 expression levels and epigenetic marks surrounding the SST2 promoter region, i.e. DNA methylation and histone modifications H3K27me3 and H3K9ac. As a control, 13 normal SI-tissue samples were included. Results The SI-NET samples had high SST2 protein and mRNA expression levels; a median (IQR) of 80% (70-95) SST2-positive cells and 8.2 times elevated SST2 mRNA expression level compared to normal SI-tissue (p=0.0042). In comparison to normal SI-tissue, DNA methylation levels and H3K27me3 levels were significantly lower at five out of the eight targeted CpG positions and at two out of the three examined locations within the SST2 gene promoter region of the SI-NET samples, respectively. No differences in the level of activating histone mark H3K9ac were observed between matched samples. While no correlation was found between histone modification marks and SST2 expression, SST2 mRNA expression levels correlated negatively with DNA methylation within the SST2 promoter region in both normal SI-tissue and SI-NETs (p=0.006 and p=0.04, respectively). Conclusion SI-NETs have lower SST2 promoter methylation levels and lower H3K27me3 methylation levels compared to normal SI-tissue. Moreover, in contrast to the absence of a correlation with SST2 protein expression levels, significant negative correlations were found between SST2 mRNA expression level and the mean level of DNA methylation within the SST2 promoter region in both normal SI-tissue and SI-NET tissue. These results indicate that DNA methylation might be involved in regulating SST2 expression. However, the role of histone modifications in SI-NETs remains elusive.
Collapse
Affiliation(s)
- Maria J. Klomp
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- ENETS Center of Excellence, Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Julie Refardt
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- ENETS Center of Excellence, Department of Endocrinology, University Hospital Basel, Basel, Switzerland
| | - Peter M. van Koetsveld
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Claudia Campana
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
- Endocrinology Unit, Department of Internal Medicine and Medical Specialties, School of Medical and Pharmaceutical Sciences, University of Genova, Genova, Italy
| | - Simone U. Dalm
- ENETS Center of Excellence, Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, Netherlands
| | - Fadime Dogan
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | | | - Richard A. Feelders
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Wouter W. de Herder
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Johannes Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| | - Leo J. Hofland
- ENETS Center of Excellence, Department of Internal Medicine, Section of Endocrinology, Erasmus Medical Center (MC) Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|