1
|
Monberg MJ, Keefe S, Karantza V, Tryfonidis K, Toker S, Mejia J, Orlowski R, Haiderali A, Prabhu VS, Aktan G. A Narrative Review of the Clinical, Humanistic, and Economic Value of Pembrolizumab-Based Immunotherapy for the Treatment of Breast and Gynecologic Cancers. Oncol Ther 2024:10.1007/s40487-024-00308-0. [PMID: 39453600 DOI: 10.1007/s40487-024-00308-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/04/2024] [Indexed: 10/26/2024] Open
Abstract
Breast and gynecologic cancers are common across the world and are associated with substantial societal and economic burden. Pembrolizumab was among the first immune checkpoint inhibitors targeting programmed cell death protein 1 to be approved for the treatment of patients with triple-negative breast cancer, cervical cancer, and endometrial cancer. Recent clinical trials have established pembrolizumab regimens as a standard of care treatment for these tumor types. Clinical data are further supported by patient-reported outcome, cost-effectiveness, and real-world evidence. Pembrolizumab monotherapy and combination regimens do not negatively influence health-related quality of life and are cost-effective relative to comparators. Ongoing phase 3 studies with pembrolizumab will expand the current understanding of its use in breast and gynecologic cancers. Several of these studies are in patients with early-stage disease with the hope of curing patients. The main objective of this review is to summarize the clinical, humanistic, and economic value of pembrolizumab in these settings and to describe the future challenges for patients, caregivers, clinicians, and payers.
Collapse
Affiliation(s)
| | - Steve Keefe
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | | | - Sarper Toker
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | - Jaime Mejia
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Amin Haiderali
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| | | | - Gursel Aktan
- Merck & Co., Inc., 2025 E Scott Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
2
|
Rai A, Deshpande SG, Vaidya A, Shinde RK. Advancements in Immunotherapy for Breast Cancer: Mechanisms, Efficacy, and Future Directions. Cureus 2024; 16:e68351. [PMID: 39355073 PMCID: PMC11443072 DOI: 10.7759/cureus.68351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 08/31/2024] [Indexed: 10/03/2024] Open
Abstract
Breast cancer is a major global health challenge characterized by its diverse biological behavior and varying treatment responses. Traditional therapies, including surgery, radiation, chemotherapy, hormonal therapy, and targeted therapy, have significantly advanced breast cancer treatment but are often limited by issues such as resistance, side effects, and variable efficacy. Immunotherapy has emerged as a transformative approach, leveraging the body's immune system to target and eliminate cancer cells. This review provides a comprehensive overview of recent advancements in immunotherapy for breast cancer, detailing the mechanisms of various therapeutic strategies, including checkpoint inhibitors, monoclonal antibodies, cancer vaccines, adoptive cell therapy, and oncolytic virus therapy. We evaluate the efficacy of these approaches in different stages of breast cancer, highlighting successes and challenges encountered in clinical settings. The review also addresses the current limitations of immunotherapy, such as treatment-related adverse effects, resistance mechanisms, and issues of cost and accessibility. We discuss promising future directions, including emerging targets, combination therapies, and personalized medicine approaches. By integrating recent research and clinical trial data, this review aims to elucidate the potential of immunotherapy to revolutionize breast cancer treatment, offering insights into its future role in improving patient outcomes and shaping the landscape of oncological care.
Collapse
Affiliation(s)
- Archita Rai
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swati G Deshpande
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ashish Vaidya
- Oncology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Raju K Shinde
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
3
|
Rao X, Qiao Z, Yang Y, Deng Y, Zhang Z, Yu X, Guo X. Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening. Pharmaceuticals (Basel) 2024; 17:225. [PMID: 38399440 PMCID: PMC10892330 DOI: 10.3390/ph17020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/16/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Triple-negative breast cancer (TNBC) poses a therapeutic challenge due to its aggressive nature and lack of targeted therapies. Epigenetic modifications contribute to TNBC tumorigenesis and drug resistance, offering potential therapeutic targets. Recent advancements in three-dimensional (3D) organoid cultures, enabling precise drug screening, hold immense promise for identifying novel compounds targeting TNBC. In this study, we established two patient-derived TNBC organoids and implemented a high-throughput drug screening system using these organoids and two TNBC cell lines. Screening a library of 169 epigenetic compounds, we found that organoid-based systems offer remarkable precision in drug response assessment compared to cell-based models. The top 30 compounds showing the highest drug sensitivity in the initial screening were further assessed in a secondary screen. Four compounds, panobinostat, pacritinib, TAK-901, and JIB-04, targeting histone deacetylase, JAK/STAT, histone demethylases, and aurora kinase pathways, respectively, exhibited potent anti-tumor activity in TNBC organoids, surpassing the effect of paclitaxel. Our study highlights the potential of these novel epigenetic drugs as effective therapeutic agents for TNBC and demonstrates the valuable role of patient-derived organoids in advancing drug discovery.
Collapse
Affiliation(s)
- Xinxin Rao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhibin Qiao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yang Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Yun Deng
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaoli Yu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China; (X.R.); (Z.Q.); (Y.Y.); (Y.D.); (Z.Z.)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai 200032, China
| |
Collapse
|
4
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|