1
|
Lauricella E, Chaoul N, D'Angelo G, Giglio A, Cafiero C, Porta C, Palmirotta R. Neuroendocrine Tumors: Germline Genetics and Hereditary Syndromes. Curr Treat Options Oncol 2025:10.1007/s11864-024-01288-z. [PMID: 39821711 DOI: 10.1007/s11864-024-01288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/19/2025]
Abstract
OPINION STATEMENT The vast majority of neuroendocrine 'neoplasms (NENs) are sporadic, although recent evidence has indicated that a subset of these cancers may also originate as a result of genetic germline mutations. To date, 10% of these cancers can be linked to an inherited genetic syndrome. Genetic diagnosis is crucial for patients with a suspected hereditary NEN syndrome, as it recognizes patients carrying germline mutations and allows for personalized clinical follow-up, considering the higher risk of developing other tumours. The potential for early genetic detection has significant implications for the treatment of patients with hereditary NEN syndrome, as it may facilitate the delivery of precision therapy that differs from that typically provided to other patients. Thus, the integration of genotypic and phenotypic diagnostic methods help clinicians to provide more informed treatment and to extend appropriate prevention to family members.
Collapse
Affiliation(s)
- Eleonora Lauricella
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Nada Chaoul
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Gabriella D'Angelo
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Andrea Giglio
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
| | - Concetta Cafiero
- Medical Oncology, SG Moscati Hospital, Via Per Martina Franca, 74010, Taranto, Italy
| | - Camillo Porta
- Interdisciplinary Department of Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy
- Division of Medical Oncology, A.O.U. Consorziale Policlinico Di Bari, Piazza G. Cesare 11, 70124, Bari, Italy
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, Section of Sciences and Technologies of Laboratory Medicine, University of Bari "Aldo Moro", Piazza G. Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
2
|
Song G, Xue S, Zhu Y, Wu C, Ji X. The efficacy and safety of belzutifan inhibitor in patients with advanced or metastatic clear cell renal cell carcinoma: a meta-analysis. BMC Pharmacol Toxicol 2024; 25:100. [PMID: 39707485 DOI: 10.1186/s40360-024-00828-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND The belzutifan is a hypoxia inducible factor-2 alpha (HIF-2α) inhibitor for the treatment of advanced or metastatic clear cell renal cell carcinoma (mccRCC) and has exhibited good safety and efficacy in clinical trials. We conducted a meta-analysis of relevant studies to further clarify the efficacy and safety of belzutifan for the treatment of mccRCC. METHODS Multiple databases and abstracts from major scientific meetings were systematically reviewed for eligible articles published before June 1, 2024. The following outcomes were analyzed: objective response rate (ORR), disease control rate (DCR), median duration of response (mDOR), median progression-free survival (mPFS), median overall survival (mOS), and treatment-related adverse events (TRAes). 426 records were reviewed, and data were extracted by at least two individuals. RESULTS Seven studies involving 715 patients were included in this meta-analysis. The pooled ORR was 34% (95% confidence interval [CI]: 23-46%), the DCR was 79% (95% CI: 66-90%), the mDOR was 21.8 months (95% CI: 14.82-28.78), and the mPFS time was 8.8 months (95% CI: 6.15-11.44). The pooled incidence of grade 3-5 TRAes was 46%, and the most common TRAe was anemia. Further subgroup analysis revealed that, compared with belzutifan monotherapy, the combination of belzutifan with tyrosine kinase inhibitors (TKIs) as second- or later-line therapy was associated with a statistically significant increase in the ORR. Toxicity was also greater with combined inhibition therapy. CONCLUSIONS Our meta-analysis revealed moderate antitumor activity and a manageable safety profile of the inhibitor belzutifan in patients with mccRCC.
Collapse
Affiliation(s)
- Ge Song
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China
| | - Song Xue
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yingming Zhu
- Department of Radiation Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunling Wu
- Nephrology Blood Purification Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.
| | - Xiaowei Ji
- Department of Critical Care Medicine, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, 250014, China.
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
3
|
Jamshidi F, Lozano L, Tucker B, Andorf J, Sohn E, Stone E, Groves A, Zakharia Y, Boldt HC, Binkley E. Belzutifan in Individuals with von Hippel-Lindau Retinal Hemangioblastomas: Institutional Experience and Review of the Literature. Ocul Oncol Pathol 2024; 10:154-161. [PMID: 39224523 PMCID: PMC11368390 DOI: 10.1159/000539434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/17/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction The systemic HIF-2 alpha inhibitor, belzutifan, has been approved for use in patients with von Hippel-Lindau disease (VHL)-associated renal cell carcinoma, central nervous system (CNS) hemangioblastomas, and pancreatic neuroendocrine tumors. This drug has also shown promise in controlling VHL retinal hemangioblastomas (RHs), but little work has been published on the use of the drug in this setting. Methods We conducted a retrospective review of patients with VHL-associated RHs followed by the retina service at our institution who were treated with systemic belzutifan. Patient age, gender, genotype, presence of systemic tumors, indication for the drug, initial dose, adjusted dose, side effects, and tumor response were recorded. We also conducted a literature search for all manuscripts describing the effect of belzutifan on VHL-associated ocular tumors. Results We identified 12 eyes of 7 patients with VHL-associated ocular tumors who were treated with belzutifan at our institution. Of these, 5 eyes of 3 patients had progressing ocular tumors when belzutifan was started. Of the 7 total patients, 2 were treated for renal cell carcinoma, 2 for CNS hemangioblastomas, 2 for RHs, and one for pancreatic neuroendocrine tumors. Initial dose was 120 mg PO daily in 6 patients and 80 mg PO daily in 1 patient. The dose was reduced in all but 1 patient due to side effects. The ocular tumors were controlled in all patients with an average follow-up of 13 months (range 4-24 months). Literature review identified 7 manuscripts that described belzutifan-mediated control of ocular tumors in patients with VHL-associated RHs in 21 patients. Conclusion The drug belzutifan shows great promise for controlling RHs and preventing vision loss in patients with VHL. Further work needs to address the optimal dose, role of the drug as a neoadjuvant therapy, and long-term efficacy and tolerability of the drug in a larger cohort of patients with ocular tumors.
Collapse
Affiliation(s)
- Farzad Jamshidi
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
| | - Lola Lozano
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Budd Tucker
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Jean Andorf
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elliott Sohn
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Edwin Stone
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Andrew Groves
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - H. Culver Boldt
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| | - Elaine Binkley
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA, USA
- Institute for Vision Research, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
4
|
Vanni I, Pastorino L, Andreotti V, Comandini D, Fornarini G, Grassi M, Puccini A, Tanda ET, Pastorino A, Martelli V, Mastracci L, Grillo F, Cabiddu F, Guadagno A, Coco S, Allavena E, Barbero F, Bruno W, Dalmasso B, Bellomo SE, Marchiò C, Spagnolo F, Sciallero S, Berrino E, Ghiorzo P. Combining germline, tissue and liquid biopsy analysis by comprehensive genomic profiling to improve the yield of actionable variants in a real-world cancer cohort. J Transl Med 2024; 22:462. [PMID: 38750555 PMCID: PMC11097509 DOI: 10.1186/s12967-024-05227-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Comprehensive next-generation sequencing is widely used for precision oncology and precision prevention approaches. We aimed to determine the yield of actionable gene variants, the capacity to uncover hereditary predisposition and liquid biopsy appropriateness instead of, or in addition to, tumor tissue analysis, in a real-world cohort of cancer patients, who may benefit the most from comprehensive genomic profiling. METHODS Seventy-eight matched germline/tumor tissue/liquid biopsy DNA and RNA samples were profiled using the Hereditary Cancer Panel (germline) and the TruSight Oncology 500 panel (tumor tissue/cfDNA) from 23 patients consecutively enrolled at our center according to at least one of the following criteria: no available therapeutic options; long responding patients potentially fit for other therapies; rare tumor; suspected hereditary cancer; primary cancer with high metastatic potential; tumor of unknown primary origin. Variants were annotated for OncoKB and AMP/ASCO/CAP classification. RESULTS The overall yield of actionable somatic and germline variants was 57% (13/23 patients), and 43.5%, excluding variants previously identified by somatic or germline routine testing. The accuracy of tumor/cfDNA germline-focused analysis was demonstrated by overlapping results of germline testing. Five germline variants in BRCA1, VHL, CHEK1, ATM genes would have been missed without extended genomic profiling. A previously undetected BRAF p.V600E mutation was emblematic of the clinical utility of this approach in a patient with a liver undifferentiated embryonal sarcoma responsive to BRAF/MEK inhibition. CONCLUSIONS Our study confirms the clinical relevance of performing extended parallel tumor DNA and cfDNA testing to broaden therapeutic options, to longitudinally monitor cfDNA during patient treatment, and to uncover possible hereditary predisposition following tumor sequencing in patient care.
Collapse
Affiliation(s)
- I Vanni
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Pastorino
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - V Andreotti
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - D Comandini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - G Fornarini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - M Grassi
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Puccini
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E T Tanda
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Pastorino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - V Martelli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - L Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - F Cabiddu
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - A Guadagno
- Pathology Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Allavena
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - F Barbero
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - W Bruno
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy
| | - B Dalmasso
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - S E Bellomo
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
| | - C Marchiò
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - F Spagnolo
- Medical Oncology Unit 2, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
- Plastic Surgery, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16132, Genoa, Italy
| | - S Sciallero
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy
| | - E Berrino
- Pathology Unit, Candiolo Cancer Institute, FPO - IRCCS, 10060, Candiolo, Turin, Italy
- Department of Medical Sciences, University of Torino, 10060, Turin, Italy
| | - P Ghiorzo
- Genetics of Rare Cancers, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132, Genoa, Italy.
| |
Collapse
|
5
|
Huang B, Ren J, Ma Q, Yang F, Pan X, Zhang Y, Liu Y, Wang C, Zhang D, Wei L, Ran L, Zhao H, Liang C, Wang X, Wang S, Li H, Ning H, Ran A, Li W, Wang Y, Xiao B. A novel peptide PDHK1-241aa encoded by circPDHK1 promotes ccRCC progression via interacting with PPP1CA to inhibit AKT dephosphorylation and activate the AKT-mTOR signaling pathway. Mol Cancer 2024; 23:34. [PMID: 38360682 PMCID: PMC10870583 DOI: 10.1186/s12943-024-01940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Bo Huang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, 563006, P.R. China
| | - Junwu Ren
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Qiang Ma
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Feifei Yang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaojuan Pan
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Yuying Liu
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Cong Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Dawei Zhang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ling Wei
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Lingyu Ran
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Hongwen Zhao
- Department of Kidney, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China
| | - Ce Liang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Xiaolin Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Shiming Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Haiping Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Hao Ning
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Ai Ran
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China
| | - Wei Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing, 400030, P.R. China.
| | - Yongquan Wang
- Department of Urology, Southwest Hospital, Army Medical University, Chongqing, 400038, P.R. China.
| | - Bin Xiao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P.R. China.
| |
Collapse
|