1
|
Zhou T, Zhang X, Yang D, Wei W, Gan J, Xia X, Chen Q, Jiang J, Feng X. Metformin overcomes chemoresistance by regulating stemness via KLF4 in oral squamous cell carcinoma. Oral Dis 2024. [PMID: 39039738 DOI: 10.1111/odi.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/22/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE Chemoresistance is a common event after chemotherapy, including oral squamous cell carcinoma (OSCC). Accumulated evidence suggests that the cancer stemness significantly contributes to therapy resistance. An unresolved question remains regarding how to effectively overcome OSCC chemoresistance by targeting stemness. This study aims to investigate the antitumor effect of metformin and clarify the potential molecular mechanisms. METHODS Cellular models resistant to chemotherapy were established, and their viability and sphere-forming ability were assessed using CCK-8 and soft agar formation assays, respectively. RNA-seq and Western blotting analyses were employed to delve into the molecular pathways. Furthermore, to corroborate the inhibitory effects of metformin and cisplatin at an animal level, a subcutaneous tumor transplantation model was instituted. RESULTS Metformin as a monotherapy exhibited inhibition of stemness traits via Krüppel-like factor 4 (KLF4). Metformin and cisplatin can synergically inhibit cell proliferation and induce cell apoptosis. Animal experiments confirmed the inhibitory effect of cisplatin and metformin on tumor in mice. CONCLUSION Our study proposes a potential therapeutic approach of combining chemotherapy with metformin to overcome chemoresistance in OSCC.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuefeng Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Dan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jianguo Gan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang, China
| | - Jian Jiang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Feng H, Shang S, Chen K, Sun X, Yue X. Impact of metformin on melanoma: a meta-analysis and systematic review. Front Oncol 2024; 14:1399693. [PMID: 38846983 PMCID: PMC11153730 DOI: 10.3389/fonc.2024.1399693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background There is evidence of a modest reduction in skin cancer risk among metformin users. However, no studies have further examined the effects of metformin on melanoma survival and safety outcomes. This study aimed to quantitatively summarize any influence of metformin on the overall survival (OS) and immune-related adverse effects (irAEs) in melanoma patients. Methods Selection criteria: The inclusion criteria were designed based on the PICOS principles. Information sources: PubMed, EMBASE, Cochrane Library, and Web of Science were searched for relevant literature published from the inception of these databases until November 2023 using 'Melanoma' and 'Metformin' as keywords. Survival outcomes were OS, progression-free survival (PFS), recurrence-free survival (RFS), and mortality; the safety outcome was irAEs. Risk of bias and data Synthesis: The Cochrane tool for assessing the risk of bias in randomized trial 2 (RoB2) and methodological index for non-randomized studies (MINORS) were selected to assess the risk of bias. The Cochrane Q and I 2 statistics based on Stata 15.1 SE were used to test the heterogeneity among all studies. Funnel plot, Egger regression, and Begg tests were used to evaluate publication bias. The leave-one-out method was selected as the sensitivity analysis tool. Results A total of 12 studies were included, involving 111,036 melanoma patients. The pooled HR for OS was 0.64 (95% CI [0.42, 1.00], p = 0.004, I2 = 73.7%), HR for PFS was 0.89 (95% CI [0.70, 1.12], p = 0.163, I2 = 41.4%), HR for RFS was 0.62 (95% CI [0.26, 1.48], p = 0.085, I2 = 66.3%), and HR for mortality was 0.53 (95% CI [0.46, 0.63], p = 0.775, I2 = 0.0%). There was no significant difference in irAEs incidence (OR = 1.01; 95% CI [0.42, 2.41]; p = 0.642) between metformin and no metformin groups. Discussion The improvement in overall survival of melanoma patients with metformin may indirectly result from its diverse biological targets and beneficial effects on multiple systemic diseases. While we could not demonstrate a specific improvement in the survival of melanoma patients, the combined benefits and safety of metformin for patients taking the drug are worthy of recognition. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024518182.
Collapse
Affiliation(s)
- Hua Feng
- Department of Dermatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuxian Shang
- Hospital of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Kun Chen
- Hospital of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, China
| | - Xuan Sun
- Interventional Neuroradiology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xueping Yue
- Department of Dermatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Roccuzzo G, Sarda C, Pala V, Ribero S, Quaglino P. Prognostic biomarkers in melanoma: a 2023 update from clinical trials in different therapeutic scenarios. Expert Rev Mol Diagn 2024; 24:379-392. [PMID: 38738539 DOI: 10.1080/14737159.2024.2347484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
INTRODUCTION Over the past decade, significant advancements in the field of melanoma have included the introduction of a new staging system and the development of immunotherapy and targeted therapies, leading to changes in substage classification and impacting patient prognosis. Despite these strides, early detection remains paramount. The quest for dependable prognostic biomarkers is ongoing, given melanoma's unpredictable nature, especially in identifying patients at risk of relapse. Reliable biomarkers are critical for informed treatment decisions. AREAS COVERED This review offers a comprehensive review of prognostic biomarkers in the context of clinical trials for immunotherapy and targeted therapy. It explores different clinical scenarios, including adjuvant, metastatic, and neo-adjuvant settings. Key findings suggest that tumor mutational burden, PD-L1 expression, IFN-γ signature, and immune-related factors are promising biomarkers associated with improved treatment responses. EXPERT OPINION Identifying practical prognostic factors for melanoma therapy is challenging due to the tumor's heterogeneity. Promising biomarkers include tumor mutational burden (TMB), circulating tumor DNA, and those characterizing the tumor microenvironment, especially the immune component. Future research should prioritize large-scale, prospective studies to validate and standardize these biomarkers, emphasizing clinical relevance and real-world applicability. Easily accessible biomarkers have the potential to enhance the precision and effectiveness of melanoma management.
Collapse
Affiliation(s)
- Gabriele Roccuzzo
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Cristina Sarda
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Valentina Pala
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Simone Ribero
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Section of Dermatology, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Poletto S, Paruzzo L, Nepote A, Caravelli D, Sangiolo D, Carnevale-Schianca F. Predictive Factors in Metastatic Melanoma Treated with Immune Checkpoint Inhibitors: From Clinical Practice to Future Perspective. Cancers (Basel) 2023; 16:101. [PMID: 38201531 PMCID: PMC10778365 DOI: 10.3390/cancers16010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The introduction of immunotherapy revolutionized the treatment landscape in metastatic melanoma. Despite the impressive results associated with immune checkpoint inhibitors (ICIs), only a portion of patients obtain a response to this treatment. In this scenario, the research of predictive factors is fundamental to identify patients who may have a response and to exclude patients with a low possibility to respond. These factors can be host-associated, immune system activation-related, and tumor-related. Patient-related factors can vary from data obtained by medical history (performance status, age, sex, body mass index, concomitant medications, and comorbidities) to analysis of the gut microbiome from fecal samples. Tumor-related factors can reflect tumor burden (metastatic sites, lactate dehydrogenase, C-reactive protein, and circulating tumor DNA) or can derive from the analysis of tumor samples (driver mutations, tumor-infiltrating lymphocytes, and myeloid cells). Biomarkers evaluating the immune system activation, such as IFN-gamma gene expression profile and analysis of circulating immune cell subsets, have emerged in recent years as significantly correlated with response to ICIs. In this manuscript, we critically reviewed the most updated literature data on the landscape of predictive factors in metastatic melanoma treated with ICIs. We focus on the principal limits and potentiality of different methods, shedding light on the more promising biomarkers.
Collapse
Affiliation(s)
- Stefano Poletto
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Luca Paruzzo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
- Division of Hematology and Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alessandro Nepote
- Department of Oncology, University of Turin, AOU S. Luigi Gonzaga, 10043 Orbassano, Italy;
| | - Daniela Caravelli
- Medical Oncology Division, Candiolo Cancer Institute, FPO-IRCCs, 10060 Candiolo, Italy; (D.C.); (F.C.-S.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (L.P.); (D.S.)
| | | |
Collapse
|
5
|
D’Arino A, Caputo S, Eibenschutz L, Piemonte P, Buccini P, Frascione P, Bellei B. Skin Cancer Microenvironment: What We Can Learn from Skin Aging? Int J Mol Sci 2023; 24:14043. [PMID: 37762344 PMCID: PMC10531546 DOI: 10.3390/ijms241814043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is a natural intrinsic process associated with the loss of fibrous tissue, a slower cell turnover, and a reduction in immune system competence. In the skin, the continuous exposition of environmental factors superimposes extrinsic damage, mainly due to ultraviolet radiation causing photoaging. Although not usually considered a pathogenic event, photoaging affects cutaneous biology, increasing the risk of skin carcinogenesis. At the cellular level, aging is typified by the rise of senescence cells a condition characterized by reduced or absent capacity to proliferate and aberrant hyper-secretory activity. Senescence has a double-edged sword in cancer biology given that senescence prevents the uncontrolled proliferation of damaged cells and favors their clearance by paracrine secretion. Nevertheless, the cumulative insults and the poor clearance of injured cells in the elderly increase cancer incidence. However, there are not conclusive data proving that aged skin represents a permissive milieu for tumor onset. On the other hand, tumor cells are capable of activating resident fibroblasts onto a pro-tumorigenic phenotype resembling those of senescent fibroblasts suggesting that aged fibroblasts might facilitate cancer progression. This review discusses changes that occur during aging that can prime neoplasm or increase the aggressiveness of melanoma and non-melanoma skin cancer.
Collapse
Affiliation(s)
- Andrea D’Arino
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Silvia Caputo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Laura Eibenschutz
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Paolo Piemonte
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pierluigi Buccini
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Pasquale Frascione
- Oncologic and Preventative Dermatology, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, Istituto di Ricovero e Cura a Carattere Scientifico IRCCS, 00141 Rome, Italy
| |
Collapse
|