1
|
Li F, Kakoki M, Smid M, Boggess K, Wilder J, Hiller S, Bounajim C, Parnell SE, Sulik KK, Smithies O, Maeda-Smithies N. Causative Effects of Genetically Determined High Maternal/Fetal Endothelin-1 on Preeclampsia-Like Conditions in Mice. Hypertension 2018; 71:894-903. [PMID: 29610266 DOI: 10.1161/hypertensionaha.117.10849] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/22/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
Endothelin-1 (ET-1) is implicated in the pathophysiology of preeclampsia. An association between an EDN1 gene polymorphism with high ET-1 and preeclampsia was reported in humans, but their cause and effect relationships have not been defined. We examined the pregnancy effects in mice with a modified Edn1 allele that increases mRNA stability and thus ET-1 production. Heterozygous Edn1H/+ females showed no obvious abnormalities before pregnancy, but when mated with wild-type (WT) males developed a full spectrum of preeclampsia-like phenotypes, including increased systolic blood pressure, proteinuria, glomerular endotheliosis, and intrauterine fetal growth restriction. At 7.5 days post-coitus, the embryos from Edn1H/+ dams, regardless of their Edn1 genotype, lagged 12 hours in development compared with embryos from WT dams, had disoriented ectoplacental cones, and retained high E-cadherin expression. In contrast, WT females mated with Edn1H/+ males, which also carried half of the fetuses with Edn1H/+ genotype, showed a mild systolic blood pressure increase only. These WT dams had 2× higher plasma soluble fms-like tyrosine kinase-1 than WT dams mated with WT males. In human first trimester trophoblast cells, pharmacological doses of ET-1 increased the cellular sFlt1 transcripts and protein secretion via both type A and B ET-1 receptors. Our data demonstrate that high maternal ET-1 production causes preeclampsia-like phenotypes during pregnancy, affecting both initial stage of trophoblast differentiation/invasion and maternal peripheral vasculature during late gestation. High fetal ET-1 production, however, could cause increased soluble fms-like tyrosine kinase-1 in the maternal circulation and contribute to blood pressure elevation.
Collapse
Affiliation(s)
- Feng Li
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.).
| | - Masao Kakoki
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Marcela Smid
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kim Boggess
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Jennifer Wilder
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Sylvia Hiller
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Carol Bounajim
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Scott E Parnell
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Kathleen K Sulik
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Oliver Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| | - Nobuyo Maeda-Smithies
- From the Department of Pathology and Laboratory Medicine (F.L., M.K., J.W., S.H., O.S., N.M.-S.), Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology (K.B.), School of Medicine (C.B.), and Department of Cell Biology and Physiology (S.E.P., K.K.S.), University of North Carolina; and Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City (M.S.)
| |
Collapse
|
2
|
Melkonyan MM, Hunanyan L, Lourhmati A, Layer N, Beer-Hammer S, Yenkoyan K, Schwab M, Danielyan L. Neuroprotective, Neurogenic, and Amyloid Beta Reducing Effect of a Novel Alpha 2-Adrenoblocker, Mesedin, on Astroglia and Neuronal Progenitors upon Hypoxia and Glutamate Exposure. Int J Mol Sci 2017; 19:ijms19010009. [PMID: 29267189 PMCID: PMC5795961 DOI: 10.3390/ijms19010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/17/2022] Open
Abstract
Locus coeruleus-noradrenergic system dysfunction is known to contribute to the progression of Alzheimer’s disease (AD). Besides a variety of reports showing the involvement of norepinephrine and its receptor systems in cognition, amyloid β (Aβ) metabolism, neuroinflammation, and neurogenesis, little is known about the contribution of the specific receptors to these actions. Here, we investigated the neurogenic and neuroprotective properties of a new α2 adrenoblocker, mesedin, in astroglial primary cultures (APC) from C57BL/6 and 3×Tg-AD mice. Our results demonstrate that mesedin rescues neuronal precursors and young neurons, and reduces the lactate dehydrogenase (LDH) release from astroglia under hypoxic and normoxic conditions. Mesedin also increased choline acetyltransferase, postsynaptic density marker 95 (PSD95), and Aβ-degrading enzyme neprilysin in the wild type APC, while in the 3×Tg-AD APC exposed to glutamate, it decreased the intracellular content of Aβ and enhanced the survival of synaptophysin-positive astroglia and neurons. These effects in APC can at least partially be attributed to the mesedin’s ability of increasing the expression of Interleukine(IL)-10, which is a potent anti-inflammatory, neuroprotective neurogenic, and Aβ metabolism enhancing factor. In summary, our data identify the neurogenic, neuroprotective, and anti-amyloidogenic action of mesedin in APC. Further in vivo studies are needed to estimate the therapeutic value of mesedin for AD.
Collapse
Affiliation(s)
- Magda M Melkonyan
- Department of Medical Chemistry, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Lilit Hunanyan
- Department of Medical Chemistry, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Ali Lourhmati
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Nikolas Layer
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology and ICePhA, University of Tuebingen, Wilhelmstr. 56, D-72076 Tübingen, Germany.
| | - Konstantin Yenkoyan
- Biochemistry Department, Yerevan state Medical University after M. Heratsi, 2 Koryun St., Yerevan 0025, Armenia.
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Auerbachstr. 112, D-70376 Stuttgart, Germany.
- Department of Pharmacy and Biochemistry, University of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tübingen, Auf der Morgenstelle 8, D-72076 Tübingen, Germany.
| |
Collapse
|
3
|
Schäfer R, Mueller L, Buecheler R, Proksch B, Schwab M, Gleiter CH, Danielyan L. Interplay between endothelin and erythropoietin in astroglia: the role in protection against hypoxia. Int J Mol Sci 2014; 15:2858-75. [PMID: 24557580 PMCID: PMC3958886 DOI: 10.3390/ijms15022858] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 01/27/2014] [Accepted: 02/13/2014] [Indexed: 12/21/2022] Open
Abstract
We show that, under in vitro conditions, the vulnerability of astroglia to hypoxia is reflected by alterations in endothelin (ET)-1 release and capacity of erythropoietin (EPO) to regulate ET-1 levels. Exposure of cells to 24 h hypoxia did not induce changes in ET-1 release, while 48–72 h hypoxia resulted in increase of ET-1 release from astrocytes that could be abolished by EPO. The endothelin receptor type A (ETA) antagonist BQ123 increased extracellular levels of ET-1 in human fetal astroglial cell line (SV-FHAS). The survival and proliferation of rat primary astrocytes, neural precursors, and neurons upon hypoxic conditions were increased upon administration of BQ123. Hypoxic injury and aging affected the interaction between the EPO and ET systems. Under hypoxia EPO decreased ET-1 release from astrocytes, while ETA receptor blockade enhanced the expression of EPO mRNA and EPO receptor in culture-aged rat astroglia. The blockade of ETA receptor can increase the availability of ET-1 to the ETB receptor and can potentiate the neuroprotective effects of EPO. Thus, the new therapeutic use of combined administration of EPO and ETA receptor antagonists during hypoxia-associated neurodegenerative disorders of the central nervous system (CNS) can be suggested.
Collapse
Affiliation(s)
- Richard Schäfer
- Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hesse gGmbH, Johann-Wolfgang-Goethe-University Hospital, Sandhofstrasse 1, Frankfurt/Main D-60528, Germany.
| | - Lars Mueller
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Reinhild Buecheler
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Barbara Proksch
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Christoph H Gleiter
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Auf der Morgenstelle 8, Tuebingen D-72076, Germany.
| |
Collapse
|
4
|
Danielyan L, Beer-Hammer S, Stolzing A, Schäfer R, Siegel G, Fabian C, Kahle P, Biedermann T, Lourhmati A, Buadze M, Novakovic A, Proksch B, Gleiter CH, Frey WH, Schwab M. Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease. Cell Transplant 2014; 23 Suppl 1:S123-39. [DOI: 10.3727/096368914x684970] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In view of the rapid preclinical development of cell-based therapies for neurodegenerative disorders, traumatic brain injury, and tumors, the safe and efficient delivery and targeting of therapeutic cells to the central nervous system is critical for maintaining therapeutic efficacy and safety in the respective disease models. Our previous data demonstrated therapeutically efficacious and targeted delivery of mesenchymal stem cells (MSCs) to the brain in the rat 6-hydroxydopamine model of Parkinson's disease (PD). The present study examined delivery of bone marrow-derived MSCs, macrophages, and microglia to the brain in a transgenic model of PD [(Thy1)-h[A30P] aS] and an APP/PS1 model of Alzheimer's disease (AD) via intranasal application (INA). INA of microglia in naive BL/6 mice led to targeted and effective delivery of cells to the brain. Quantitative PCR analysis of eGFP DNA showed that the brain contained the highest amount of eGFP-microglia (up to 2.1 × 104) after INA of 1 × 106 cells, while the total amount of cells detected in peripheral organs did not exceed 3.4 × 103. Seven days after INA, MSCs expressing eGFP were detected in the olfactory bulb (OB), cortex, amygdala, striatum, hippocampus, cerebellum, and brainstem of (Thy1)-h[A30P] aS transgenic mice, showing predominant distribution within the OB and brainstem. INA of eGFP-expressing macrophages in 13-month-old APP/PS1 mice led to delivery of cells to the OB, hippocampus, cortex, and cerebellum. Both MSCs and macrophages contained Iba-1-positive population of small microglia-like cells and Iba-1-negative large rounded cells showing either intracellular amyloid β (macrophages in APP/PS1 model) or α-synuclein [MSCs in (Thy1)-h[A30P] aS model] immunoreactivity. Here, we show, for the first time, intranasal delivery of cells to the brain of transgenic PD and AD mouse models. Additional work is needed to determine the optimal dosage (single treatment regimen or repeated administrations) to achieve functional improvement in these mouse models with intranasal microglia/macrophages and MSCs. This manuscript is published as part of the International Association of Neurorestoratology (IANR) special issue of Cell Transplantation.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Alexandra Stolzing
- Department of Cell Therapy Stem Cell Biology and Regeneration Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Richard Schäfer
- Department Cell Therapeutics and Cell Processing, Institute for Transfusion Medicine and Immunohaematology, German Red Cross Blood Donor Service Baden-Württemberg-Hesse gGmbH, Johann Wolfgang Goethe University Hospital, Frankfurt, Germany
- Institute for Clinical and Experimental Transfusion Medicine (IKET,) University Hospital of Tübingen, Tübingen, Germany
| | - Georg Siegel
- Institute for Clinical and Experimental Transfusion Medicine (IKET,) University Hospital of Tübingen, Tübingen, Germany
| | - Claire Fabian
- Department of Cell Therapy Stem Cell Biology and Regeneration Unit, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Philipp Kahle
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research and German Center for Neurodegenerative Diseases, Faculty of Medicine, University of Tübingen, Tübingen, Germany
| | - Tilo Biedermann
- Department of Dermatology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Ali Lourhmati
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Ana Novakovic
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Barbara Proksch
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - Christoph H. Gleiter
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
| | - William H. Frey
- Alzheimer's Research Center, HealthPartners Center for Memory and Aging, Regions Hospital, St. Paul, MN, USA
| | - Matthias Schwab
- Department of Clinical Pharmacology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, University of Tübingen, Tübingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Germany
| |
Collapse
|
5
|
Lourhmati A, Buniatian GH, Paul C, Verleysdonk S, Buecheler R, Buadze M, Proksch B, Schwab M, Gleiter CH, Danielyan L. Age-dependent astroglial vulnerability to hypoxia and glutamate: the role for erythropoietin. PLoS One 2013; 8:e77182. [PMID: 24124607 PMCID: PMC3790708 DOI: 10.1371/journal.pone.0077182] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
Extracellular accumulation of toxic concentrations of glutamate (Glu) is a hallmark of many neurodegenerative diseases, often accompanied by hypoxia and impaired metabolism of this neuromediator. To address the question whether the multifunctional neuroprotective action of erythropoietin (EPO) extends to the regulation of extracellular Glu-level and is age-related, young and culture-aged rat astroglial primary cells (APC) were simultaneously treated with 1mM Glu and/or human recombinant EPO under normoxic and hypoxic conditions (NC and HC). EPO increased the Glu uptake by astrocytes under both NC and especially upon HC in culture-aged APC (by 60%). Moreover, treatment with EPO up-regulated the activity of glutamine synthetase (GS), the expression of glutamate-aspartate transporter (GLAST) and the level of EPO mRNA. EPO alleviated the Glu- and hypoxia-induced LDH release from astrocytes. These protective EPO effects were concentration-dependent and they were strongly intensified with age in culture. More than a 4-fold increase in apoptosis and a 2-fold decrease in GS enzyme activity was observed in APC transfected with EPO receptor (EPOR)-siRNA. Our in vivo data show decreased expression of EPO and a strong increase of EPOR in brain homogenates of APP/PS1 mice and their wild type controls during aging. Comparison of APP/PS1 and age-matched WT control mice revealed a stronger expression of EPOR but a weaker one of EPO in the Alzheimer's disease (AD) model mice. Here we show for the first time the direct correlation between the extent of differentiation (age) of astrocytes and the efficacy of EPO in balancing extracellular glutamate clearance and metabolism in an in-vitro model of hypoxia and Glu-induced astroglial injury. The clinical relevance of EPO and EPOR as markers of brain cells vulnerability during aging and neurodegeneration is evidenced by remarkable changes in their expression levels in a transgenic model of AD and their WT controls.
Collapse
Affiliation(s)
- Ali Lourhmati
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Gayane H. Buniatian
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
- H. Buniatyan Institute of Biochemistry, National Academy of Sciences, Yerevan, Armenia
| | - Christina Paul
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | | | - Reinhild Buecheler
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Marine Buadze
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Barbara Proksch
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, University of Tübingen, Stuttgart, Stuttgart, Germany
| | - Christoph H. Gleiter
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Lusine Danielyan
- Department of Clinical Pharmacology, Institute of Clinical and Experimental Pharmacology and Toxicology, University Hospital of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
Filipovich T, Fleisher-Berkovich S. Regulation of glial inflammatory mediators synthesis: possible role of endothelins. Peptides 2008; 29:2250-6. [PMID: 18838093 DOI: 10.1016/j.peptides.2008.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/07/2008] [Accepted: 09/08/2008] [Indexed: 01/07/2023]
Abstract
Endothelins are well known as modulators of inflammation in the periphery, but little is known about their possible role in brain inflammation. Stimulation of astrocyte prostaglandin, an inflammatory mediator, synthesis was shown so far only by endothelin 3 (ET-3). By contrast, several studies showed no change or slight decrease of basal nitric oxide synthesis after treatment of astrocytes with endothelin 1 (ET-1) and ET-3. However, a significant increase in astrocytic and microglial nitric oxide synthase (NOS) was observed after exposure to ET-1 and ET-3 in a model of forebrain ischaemia. Here we demonstrate that all three endothelins (ET-1, ET-2, ET-3) significantly enhanced the synthesis of prostaglandin E(2) and nitric oxide in glial cells. Each of the selective antagonists for ETA and ETB receptors (BQ123 and BQ788 respectively), significantly inhibited endothelins-induced production of both nitric oxide and prostaglandin E(2). These results suggest a regulatory mechanism of endothelins, interacting with both endothelin receptors, on glial inflammation. Therefore, inhibition of endothelin receptors may have a therapeutic potential in pathological conditions of the brain, when an uncontrolled inflammatory response is involved.
Collapse
Affiliation(s)
- Talia Filipovich
- Department of Clinical Pharmacology, Ben-Gurion University, P.O.B 653, Beer-Sheva 84105, Israel
| | | |
Collapse
|
7
|
Danielyan L, Lourhmati A, Verleysdonk S, Kabisch D, Proksch B, Thiess U, Umbreen S, Schmidt B, Gleiter CH. Angiotensin Receptor Type 1 Blockade in Astroglia Decreases Hypoxia-Induced Cell Damage and TNF Alpha Release. Neurochem Res 2007; 32:1489-98. [PMID: 17406976 DOI: 10.1007/s11064-007-9337-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 03/16/2007] [Indexed: 12/25/2022]
Abstract
The present study investigated the role of angiotensin receptors (AT-R) in the survival and inflammatory response of astroglia upon hypoxic injury. Exposure of rat astroglial primary cultures (APC) to hypoxic conditions (HC) led to decreased viability of the cells and to a 3.5-fold increase in TNF-alpha release. AT-R type1 (AT1-R) antagonist losartan and its metabolite EXP3174 decrease the LDH release (by 36 +/- 9%; 45 +/- 6%) from APC under HC. Losartan diminished TNF-alpha release (by 40 +/- 15%) and the number of TUNEL-cells by 204 +/- 38% under HC, alone and together with angiotensin II (ATII), while EXP3174 was dependent on ATII for its effect on TNF-alpha. The AT2-R antagonist, PD123.319, did not influence the release of LDH and TNF-alpha under normoxic (NC) and HC. These data suggest that AT1-R may decrease the susceptibility of astrocytes to hypoxic injury and their propensity to release TNF-alpha. AT1-R antagonists may therefore be of therapeutic value during hypoxia-associated neurodegeneration.
Collapse
Affiliation(s)
- Lusine Danielyan
- Department of Clinical Pharmacology, University Hospital of Tuebingen, Otfried-Mueller Strasse 45, 72076 Tuebingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Seifert G, Schilling K, Steinhäuser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 2006; 7:194-206. [PMID: 16495941 DOI: 10.1038/nrn1870] [Citation(s) in RCA: 565] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent work on glial cell physiology has revealed that glial cells, and astrocytes in particular, are much more actively involved in brain information processing than previously thought. This finding has stimulated the view that the active brain should no longer be regarded solely as a network of neuronal contacts, but instead as a circuit of integrated, interactive neurons and glial cells. Consequently, glial cells could also have as yet unexpected roles in the diseased brain. An improved understanding of astrocyte biology and heterogeneity and the involvement of these cells in pathogenesis offers the potential for developing novel strategies to treat neurological disorders.
Collapse
Affiliation(s)
- Gerald Seifert
- Department of Experimental Neurobiology, Clinic of Neurosurgery, University of Bonn, Germany
| | | | | |
Collapse
|
9
|
Danielyan L, Mueller L, Proksch B, Kabisch D, Weller M, Wiesinger H, Buniatian GH, Gleiter CH. Similar protective effects of BQ-123 and erythropoietin on survival of neural cells and generation of neurons upon hypoxic injury. Eur J Cell Biol 2006; 84:907-13. [PMID: 16323287 DOI: 10.1016/j.ejcb.2005.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Our recent study [Danielyan et al., 2005. Eur. J. Cell Biol. 84, 567-579] showed an additive protective effect of endothelin (ET) receptor A (ETA-R) blockade and erythropoietin (EPO) on the survival and rejuvenation of rat astroglial cells exposed to hypoxia. Whether the effects observed with rodent astroglial cells can be reproduced in human astrocytes and whether these effects of ETA-R blockade and EPO on astrocytes are associated with neuronal survival remained open. Therefore, in the present study, the effects of the ETA-R antagonist BQ-123 and EPO on the maintenance of the neuronal population and survival of the human fetal astroglial cell line (SV-FHAS) under normoxic and hypoxic conditions (NC and HC, respectively) were investigated. Rat brain primary cultures exposed to BQ-123 and/or EPO revealed an increase in the number of beta-III tubulin-positive neurons under NC. The hypoxia-caused loss of neurons was abolished by administration of BQ-123 or EPO. Simultaneous application of EPO and BQ-123 led to an additive protective effect on the generation of neurons under NC only. By contrast, BQ-788, the selective ETB-R antagonist, diminished the neuronal population both in NC and HC. Both under NC and HC the number of non-differentiated nestin+/GFAP- neural cells increased upon application of EPO or BQ-123. SV-FHAS responded to BQ-123 or EPO by a decrease in LDH activity in the culture medium under NC (35%) and HC (26% LDH decrease). Concomitant effects of EPO and BQ-123 were illustrated in an additional increase in the survival of human astrocytes (33% under NC and 17% under HC). These data hint at a neuroprotective therapeutic potency of ETA-R blockade, which either alone or in combination with EPO may improve the survival of astroglial and neuronal cells upon hypoxic injury.
Collapse
Affiliation(s)
- Lusine Danielyan
- Division of Clinical Pharmacology, Institute of Pharmacology and Toxicology, University Hospital of Tübingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|