1
|
Proteins of the Nucleolus of Dictyostelium discoideum: Nucleolar Compartmentalization, Targeting Sequences, Protein Translocations and Binding Partners. Cells 2019; 8:cells8020167. [PMID: 30781559 PMCID: PMC6406644 DOI: 10.3390/cells8020167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/15/2019] [Indexed: 12/31/2022] Open
Abstract
The nucleoli of Dictyostelium discoideum have a comparatively unique, non-canonical, localization adjacent to the inner nuclear membrane. The verified nucleolar proteins of this eukaryotic microbe are detailed while other potential proteins are introduced. Heat shock protein 32 (Hsp32), eukaryotic translation initiation factor 6 (eIF6), and tumour necrosis factor receptor-associated protein 1 (TRAP1) are essential for cell survival. NumA1, a breast cancer type 1 susceptibility protein-C Terminus domain-containing protein linked to cell cycle, functions in the regulation of nuclear number. The cell cycle checkpoint kinase 2 homologue forkhead-associated kinase A (FhkA) and BRG1-associated factor 60a homologue Snf12 are also discussed. While nucleoli appear homogeneous ultrastructurally, evidence for nucleolar subcompartments exists. Nucleolar localization sequences (NoLS) have been defined that target proteins to either the general nucleolar area or to a specific intranucleolar domain. Protein translocations during mitosis are protein-specific and support the multiple functions of the Dictyostelium nucleolus. To enrich the picture, binding partners of NumA1, the most well-characterized nucleolar protein, are examined: nucleolar Ca2+-binding protein 4a (CBP4a), nuclear puromycin-sensitive aminopeptidase A (PsaA) and Snf12. The role of Dictyostelium as a model for understanding the contribution of nucleolar proteins to various diseases and cellular stress is discussed throughout the review.
Collapse
|
2
|
Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Del Peral LVG, Lelièvre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Sci Rep 2018; 8:3939. [PMID: 29500372 PMCID: PMC5834492 DOI: 10.1038/s41598-018-22228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13–14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential “universal” targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK.
Collapse
Affiliation(s)
- Valentin Trofimov
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.,Institut Pasteur de Lille, Lille, France
| | - Sébastien Kicka
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sabrina Mucaria
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | | | | | - Joël Lelièvre
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jonathan A G Cox
- School of Life & Health Sciences, Aston University, Birmingham, UK.
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Early nucleolar disorganization in Dictyostelium cell death. Cell Death Dis 2017; 8:e2528. [PMID: 28055008 PMCID: PMC5386361 DOI: 10.1038/cddis.2016.444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022]
Abstract
Cell death occurs in all eukaryotes, but it is still not known whether some core steps of the cell death process are conserved. We investigated this using the protist Dictyostelium. The dissection of events in Dictyostelium vacuolar developmental cell death was facilitated by the sequential requirement for two distinct exogenous signals. An initial exogenous signal (starvation and cAMP) recruited some cells into clumps. Only within these clumps did subsequent cell death events take place. Contrary to our expectations, already this initial signal provoked nucleolar disorganization and irreversible inhibition of rRNA and DNA synthesis, reflecting marked cell dysfunction. The initial signal also primed clumped cells to respond to a second exogenous signal (differentiation-inducing factor-1 or c-di-GMP), which led to vacuolization and synthesis of cellulose encasings. Thus, the latter prominent hallmarks of developmental cell death were induced separately from initial cell dysfunction. We propose that (1) in Dictyostelium vacuolization and cellulose encasings are late, organism-specific, hallmarks, and (2) on the basis of our observations in this protist and of similar previous observations in some cases of mammalian cell death, early inhibition of rRNA synthesis and nucleolar disorganization may be conserved in some eukaryotes to usher in developmental cell death.
Collapse
|
4
|
Calligari PA, Calandrini V, Ollivier J, Artero JB, Härtlein M, Johnson M, Kneller GR. Adaptation of Extremophilic Proteins with Temperature and Pressure: Evidence from Initiation Factor 6. J Phys Chem B 2015; 119:7860-73. [PMID: 25996652 DOI: 10.1021/acs.jpcb.5b02034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we study dynamical properties of an extremophilic protein, Initiation Factor 6 (IF6), produced by the archeabacterium Methanocaldococcus jannascii, which thrives close to deep-sea hydrothermal vents where temperatures reach 80 °C and the pressure is up to 750 bar. Molecular dynamics simulations (MD) and quasi-elastic neutron scattering (QENS) measurements give new insights into the dynamical properties of this protein with respect to its eukaryotic and mesophilic homologue. Results obtained by MD are supported by QENS data and are interpreted within the framework of a fractional Brownian dynamics model for the characterization of protein relaxation dynamics. IF6 from M. jannaschii at high temperature and pressure shares similar flexibility with its eukaryotic homologue from S. cerevisieae under ambient conditions. This work shows for the first time, to our knowledge, that the very common pattern of corresponding states for thermophilic protein adaptation can be extended to thermo-barophilic proteins. A detailed analysis of dynamic properties and of local structural fluctuations reveals a complex pattern for "corresponding" structural flexibilities. In particular, in the case of IF6, the latter seems to be strongly related to the entropic contribution given by an additional, C-terminal, 20 amino-acid tail which is evolutionary conserved in all mesophilic IF6s.
Collapse
Affiliation(s)
- Paolo A Calligari
- †SISSA, International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy
| | - Vania Calandrini
- ‡Computational Biophysics, German Research School for Simulation Sciences, Jülich, Germany
| | - Jacques Ollivier
- §Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble Cedex, France
| | - Jean-Baptiste Artero
- §Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble Cedex, France
| | - Michael Härtlein
- §Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble Cedex, France
| | - Mark Johnson
- §Institut Laue-Langevin, 6 Rue Jules Horowitz, BP 156, 38042 Grenoble Cedex, France
| | - Gerald R Kneller
- ∥Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, F-45071 Orléans Cedex 2, France.,⊥Synchrotron Soleil, L'Orme de Merisiers, BP 48, 91192 Gif-sur-Yvette, France.,#Université de Orléans, Chateau de la Source-Av. du Parc Floral, 45067 Orléans, France
| |
Collapse
|
5
|
Catalano A, O'Day DH. Evidence for nucleolar subcompartments in Dictyostelium. Biochem Biophys Res Commun 2014; 456:901-7. [PMID: 25522879 DOI: 10.1016/j.bbrc.2014.12.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
The nucleolus is a multifunctional nuclear compartment usually consisting of two to three subcompartments which represent stages of ribosomal biogenesis. It is linked to several human diseases including viral infections, cancer, and neurodegeneration. Dictyostelium is a model eukaryote for the study of fundamental biological processes as well as several human diseases however comparatively little is known about its nucleolus. Unlike most nucleoli it does not possess visible subcompartments at the ultrastructural level. Several recently identified nucleolar proteins in Dictyostelium leave the nucleolus after treatment with the rDNA transcription inhibitor actinomycin-D (AM-D). Different proteins exit in different ways, suggesting that previously unidentified nucleolar subcompartments may exist. The identification of nucleolar subcompartments would help to better understand the nucleolus in this model eukaryote. Here, we show that Dictyostelium nucleolar proteins nucleomorphin isoform NumA1 and Bud31 localize throughout the entire nucleolus while calcium-binding protein 4a localizes to only a portion, representing nucleolar subcompartment 1 (NoSC1). SWI/SNF complex member Snf12 localizes to a smaller area within NoSC1 representing a second nucleolar subcompartment, NoSC2. The nuclear/nucleolar localization signal KRKR from Snf12 localized GFP to NoSC2, and thus also appears to function as a nucleolar subcompartment localization signal. FhkA localizes to the nucleolar periphery displaying a similar pattern to that of Hsp32. Similarities between the redistribution patterns of Dictyostelium nucleolar proteins during nucleolar disruption as a result of either AM-D treatment or mitosis support these subcompartments. A model for the AM-D-induced redistribution patterns is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada.
| | - Danton H O'Day
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd. N., Mississauga, Ontario L5L 1C6, Canada; Department of Cell and Systems Biology, University of Toronto, 25 Harbord St., Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
6
|
Catalano A, O'Day DH. Rad53 homologue forkhead-associated kinase A (FhkA) and Ca2+-binding protein 4a (CBP4a) are nucleolar proteins that differentially redistribute during mitosis in Dictyostelium. Cell Div 2013; 8:4. [PMID: 23587254 PMCID: PMC3637376 DOI: 10.1186/1747-1028-8-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/05/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND During mitosis most nucleolar proteins redistribute to other locales providing an opportunity to study the relationship between nucleolar protein localization and function. Dictyostelium is a model organism for the study of several fundamental biological processes and human diseases but only two nucleolar proteins have been studied during mitosis: NumA1 and Snf12. Both of them are linked to the cell cycle. To acquire a better understanding of nucleolar protein localization and dynamics in Dictyostelium we studied the nucleolar localization of two additional proteins during mitosis: Snf12-linked forkhead-associated kinase A (FhkA), which is involved in the cell cycle, and Ca2+-binding protein 4a (CBP4a), which is a binding partner of NumA1. METHODS Polyclonal antibodies were produced in-house. Cells were fixed and probed with either anti-FhkA or anti-CBP4a in order to determine cellular localization during interphase and throughout the stages of mitosis. Colocalization with DAPI nuclear stain allowed us to determine the location of the nucleus and nucleolus while colocalization with anti-α-tubulin allowed us to determine the cell cycle stage. RESULTS Here we verify two novel nucleolar proteins, Rad53 homologue FhkA which localized around the edge of the nucleolus and CBP4a which was detected throughout the entire nucleolus. Treatment with the Ca2+ chelator BAPTA (5 mM) showed that the nucleolar localization of CBP4a is Ca2+-dependent. In response to actinomycin D (0.05 mg/mL) CBP4a disappeared from the nucleolus while FhkA protruded from the nucleus, eventually pinching off as cytoplasmic circles. FhkA and CBP4a redistributed differently during mitosis. FhkA redistributed throughout the entire cell and at the nuclear envelope region from prometaphase through telophase. In contrast, during prometaphase CBP4a relocated to many large, discrete "CBP4a islands" throughout the nucleoplasm. Two larger "CBP4a islands" were also detected specifically at the metaphase plate region. CONCLUSIONS FhkA and CBP4a represent the sixth and seventh nucleolar proteins that have been verified to date in Dictyostelium and the third and fourth studied during mitosis. The protein-specific distributions of all of these nucleolar proteins during interphase and mitosis provide unique insight into nucleolar protein dynamics in this model organism setting the stage for future work.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord st,, Toronto, ON M5S 3G5, Canada.
| | | |
Collapse
|
7
|
Abstract
Much of our knowledge of molecular cellular functions is based on studies with a few number of model organisms that were established during the last 50 years. The social amoeba Dictyostelium discoideum is one such model, and has been particularly useful for the study of cell motility, chemotaxis, phagocytosis, endocytic vesicle traffic, cell adhesion, pattern formation, caspase-independent cell death, and, more recently, autophagy and social evolution. As nonmammalian model of human diseases D. discoideum is a newcomer, yet it has proven to be a powerful genetic and cellular model for investigating host-pathogen interactions and microbial infections, for mitochondrial diseases, and for pharmacogenetic studies. The D. discoideum genome harbors several homologs of human genes responsible for a variety of diseases, -including Chediak-Higashi syndrome, lissencephaly, mucolipidosis, Huntington disease, IBMPFD, and Shwachman-Diamond syndrome. A few genes have already been studied, providing new insights on the mechanism of action of the encoded proteins and in some cases on the defect underlying the disease. The opportunities offered by the organism and its place among the nonmammalian models for human diseases will be discussed.
Collapse
Affiliation(s)
- Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy.
| |
Collapse
|
8
|
Nucleoplasmic/nucleolar translocation and identification of a nuclear localization signal (NLS) in Dictyostelium BAF60a/SMARCD1 homologue Snf12. Histochem Cell Biol 2012; 138:515-30. [PMID: 22623154 DOI: 10.1007/s00418-012-0973-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Dictyostelium is a model eukaryote for the study of several cellular processes; however, comparatively little is known about its nucleolus. Identification of nucleolar proteins is key to understanding this nuclear subcompartment, but only four have been identified in Dictyostelium. As discussed in this article, a potential relationship between nucleolar NumA1 and BAF60a/SMARCD1 suggested BAF60a may also reside in the nucleolus. Here, we identify BAF60a homologue Snf12 as the fifth nucleolar protein in Dictyostelium. Immunolocalization experiments demonstrate that Snf12 is nucleoplasmic, but translocates to nucleoli upon actinomycin-D-induced transcription inhibition (0.05 mg/mL, 4 h). Translocation was accompanied by a microtubule-independent protrusion of nucleolar Snf12 regions from the nucleus followed by detection of Snf12 in cytoplasmic circles for at least 48 h. Residues (372)KRKR(375) are both necessary and sufficient for nucleoplasmic localization of Snf12 and represent a functional nuclear localization signal (NLS), similar to recently identified NLSs in other Dictyostelium proteins. Since nucleolar and nucleoplasmic proteins redistribute during mitosis, we investigated Snf12 dynamics during this time. Dictyostelium undergoes closed mitosis, meaning its nuclear envelope remains intact. Despite this, during metaphase and anaphase Snf12 redistributed throughout the cytoplasm before reaccumulating in the nucleus during telophase, unlike the previously reported nucleoplasmic redistribution of nucleolar NumA1. The nuclear exit of Snf12 was independent of its putative nuclear export signal and not inhibited by exportin inhibition, suggesting that the redistribution of nuclear proteins during mitosis in Dictyostelium is mediated by other mechanisms. Snf12 is the second Dictyostelium nucleolar protein for which its dynamics during mitosis have been investigated.
Collapse
|
9
|
Stevense M, Chubb JR, Muramoto T. Nuclear organization and transcriptional dynamics in Dictyostelium. Dev Growth Differ 2011; 53:576-86. [PMID: 21585360 DOI: 10.1111/j.1440-169x.2011.01271.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Dictyostelium model has a set of features uniquely well-suited to developing our understanding of transcriptional control. The complete Dictyostelium discoideum genome sequence has revealed that many of the molecular components regulating transcription in larger eukaryotes are conserved in Dictyostelium, from transcription factors and chromatin components to the enzymes and signals that regulate them. In addition, the system permits visualization of single gene firing events in living cells, which provides a more detailed view of transcription and its relationships to cell and developmental processes. This review will bring together the available knowledge of the structure and dynamics of the Dictyostelium nucleus and discuss recent transcription imaging studies and their implications for stability and accuracy of cell decisions.
Collapse
Affiliation(s)
- Michelle Stevense
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | |
Collapse
|
10
|
Nucleolar localization and identification of nuclear/nucleolar localization signals of the calmodulin-binding protein nucleomorphin during growth and mitosis in Dictyostelium. Histochem Cell Biol 2011; 135:239-49. [PMID: 21327858 DOI: 10.1007/s00418-011-0785-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2011] [Indexed: 10/18/2022]
Abstract
The calmodulin-binding protein nucleomorphin isoform NumA1 is a nuclear number regulator in Dictyostelium that localizes to intra-nuclear patches adjacent to the nuclear envelope and to a lesser extent the nucleoplasm. Earlier studies have shown similar patches to be nucleoli but only three nucleolar proteins have been identified in Dictyostelium. Here, actinomycin-D treatment caused the loss of NumA1 localization, while calcium and calmodulin antagonists had no effect. In keeping with a nucleolar function, NumA1 moved out of the presumptive nucleoli during mitosis redistributing to areas within the nucleus, the spindle fibers, and centrosomal region before re-accumulating in the presumptive nucleoli at telophase. Together, these data verify NumA1 as a true nucleolar protein. Prior to this study, the dynamics of specific nucleolar proteins had not been determined during mitosis in Dictyostelium. FITC-conjugated peptides equivalent to presumptive nuclear localization signals within NumA1 localized to nucleoli indicating that they also act as nucleolar localization signals. To our knowledge, these represent the first precisely defined nucleolar localization signals as well as the first nuclear/nucleolar localization signals identified in Dictyostelium. Together, these results reveal that NumA1 is a true nucleolar protein and the only nucleolar calmodulin-binding protein identified in Dictyostelium. The possible use of nuclear/nucleolar localization signal-mediated drug targeting to nucleoli is discussed.
Collapse
|
11
|
Kato Y, Konishi M, Shigyo M, Yoneyama T, Yanagisawa S. Characterization of plant eukaryotic translation initiation factor 6 (eIF6) genes: The essential role in embryogenesis and their differential expression in Arabidopsis and rice. Biochem Biophys Res Commun 2010; 397:673-8. [PMID: 20570652 DOI: 10.1016/j.bbrc.2010.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 06/01/2010] [Indexed: 12/26/2022]
Abstract
Eukaryotic translation initiation factor 6 (eIF6) is an essential component of ribosome biogenesis. In our present study, we characterize plant eIF6 genes for the first time. Although a single gene encodes eIF6 in yeast and animals, two genes were found to encode proteins homologous to animal and yeast eIF6 in Arabidopsis and rice, denoted At-eIF6;1 and At-eIF6;2, and Os-eIF6;1 and Os-eIF6;2, respectively. Analysis of the yeast eif6 (tif6) mutant suggested that plant eIF6, at least in the case of At-eIF6;1, can complement the essential function of eIF6 in yeast. Evidence for the essential role of eIF6 in plants was also provided by the embryonic-lethal phenotype of the at-eif6;1 mutant. In contrast, At-eIF6;2 appears not to be essential due to its very low expression level and the normal growth phenotype of the eif6;2 mutants. Consistent with the putative role of plant eIF6 in ribosome biogenesis, At-eIF6;1 is predominately expressed in tissues where cell division actively proceeds under the control of intronic cis-regulatory elements. On the other hand, both Os-eIF6;1 and Os-eIF6;2 are probably active genes because they are expressed at significant expression levels. Interestingly, the supply of ammonium nitrate as a plant nutrient was found to induce specifically the expression of Os-eIF6;2. Our present findings indicate that the eIF6 genes have differently evolved in plant and animal kingdoms and also in distinct plant species.
Collapse
Affiliation(s)
- Yuki Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
12
|
Sillo A, Bloomfield G, Balest A, Balbo A, Pergolizzi B, Peracino B, Skelton J, Ivens A, Bozzaro S. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics 2008; 9:291. [PMID: 18559084 PMCID: PMC2443395 DOI: 10.1186/1471-2164-9-291] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 06/17/2008] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Phagocytosis plays a major role in the defense of higher organisms against microbial infection and provides also the basis for antigen processing in the immune response. Cells of the model organism Dictyostelium are professional phagocytes that exploit phagocytosis of bacteria as the preferred way to ingest food, besides killing pathogens. We have investigated Dictyostelium differential gene expression during phagocytosis of non-pathogenic bacteria, using DNA microarrays, in order to identify molecular functions and novel genes involved in phagocytosis. RESULTS The gene expression profiles of cells incubated for a brief time with bacteria were compared with cells either incubated in axenic medium or growing on bacteria. Transcriptional changes during exponential growth in axenic medium or on bacteria were also compared. We recognized 443 and 59 genes that are differentially regulated by phagocytosis or by the different growth conditions (growth on bacteria vs. axenic medium), respectively, and 102 genes regulated by both processes. Roughly one third of the genes are up-regulated compared to macropinocytosis and axenic growth. Functional annotation of differentially regulated genes with different tools revealed that phagocytosis induces profound changes in carbohydrate, amino acid and lipid metabolism, and in cytoskeletal components. Genes regulating translation and mitochondrial biogenesis are mostly up-regulated. Genes involved in sterol biosynthesis are selectively up-regulated, suggesting a shift in membrane lipid composition linked to phagocytosis. Very few changes were detected in genes required for vesicle fission/fusion, indicating that the intracellular traffic machinery is mostly in common between phagocytosis and macropinocytosis. A few putative receptors, including GPCR family 3 proteins, scaffolding and adhesion proteins, components of signal transduction and transcription factors have been identified, which could be part of a signalling complex regulating phagocytosis and adaptational downstream responses. CONCLUSION The results highlight differences between phagocytosis and macropinocytosis, and provide the basis for targeted functional analysis of new candidate genes and for comparison studies with transcriptomes during infection with pathogenic bacteria.
Collapse
Affiliation(s)
- Alessio Sillo
- Department of Clinical and Biological Sciences, University of Turin, Ospedale S, Luigi, 10043 Orbassano, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Muramoto T, Chubb JR. Live imaging of theDictyosteliumcell cycle reveals widespread S phase during development, a G2 bias in spore differentiation and a premitotic checkpoint. Development 2008; 135:1647-57. [DOI: 10.1242/dev.020115] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The regulation of the Dictyostelium cell cycle has remained ambiguous owing to difficulties in long-term imaging of motile cells and a lack of markers for defining cell cycle phases. There is controversy over whether cells replicate their DNA during development, and whether spores are in G1 or G2 of the cell cycle. We have introduced a live-cell S-phase marker into Dictyostelium cells that allows us to precisely define cycle phase. We show that during multicellular development, a large proportion of cells undergo nuclear DNA synthesis. Germinating spores enter S phase only after their first mitosis, indicating that spores are in G2. In addition, we demonstrate that Dictyostelium heterochromatin is copied late in S phase and replicates via accumulation of replication factors, rather than recruitment of DNA to pre-existing factories. Analysis of variability in cycle times indicates that regulation of the cycle manifests at a single random transition in G2, and we present the first identified checkpoint in Dictyostelium, which operates at the G2-M transition in response to DNA damage.
Collapse
Affiliation(s)
- Tetsuya Muramoto
- Division of Cell and Developmental Biology, College of Life Sciences,University of Dundee, Dundee DD1 5EH, UK
| | - Jonathan R. Chubb
- Division of Cell and Developmental Biology, College of Life Sciences,University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
14
|
Catalano A, O'Day DH. Calmodulin-binding proteins in the model organism Dictyostelium: a complete & critical review. Cell Signal 2007; 20:277-91. [PMID: 17897809 DOI: 10.1016/j.cellsig.2007.08.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 08/20/2007] [Indexed: 10/22/2022]
Abstract
Calmodulin is an essential protein in the model organism Dictyostelium discoideum. As in other organisms, this small, calcium-regulated protein mediates a diversity of cellular events including chemotaxis, spore germination, and fertilization. Calmodulin works in a calcium-dependent or -independent manner by binding to and regulating the activity of target proteins called calmodulin-binding proteins. Profiling suggests that Dictyostelium has 60 or more calmodulin-binding proteins with specific subcellular localizations. In spite of the central importance of calmodulin, the study of these target proteins is still in its infancy. Here we critically review the history and state of the art of research into all of the identified and presumptive calmodulin-binding proteins of Dictyostelium detailing what is known about each one with suggestions for future research. Two individual calmodulin-binding proteins, the classic enzyme calcineurin A (CNA; protein phosphatase 2B) and the nuclear protein nucleomorphin (NumA), which is a regulator of nuclear number, have been particularly well studied. Research on the role of calmodulin in the function and regulation of the various myosins of Dictyostelium, especially during motility and chemotaxis, suggests that this is an area in which future active study would be particularly valuable. A general, hypothetical model for the role of calmodulin in myosin regulation is proposed.
Collapse
Affiliation(s)
- Andrew Catalano
- Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Rd., Mississauga, ON, Canada L5L 1C6
| | | |
Collapse
|