1
|
Kück U, Schmitt O. The Chloroplast Trans-Splicing RNA-Protein Supercomplex from the Green Alga Chlamydomonas reinhardtii. Cells 2021; 10:cells10020290. [PMID: 33535503 PMCID: PMC7912774 DOI: 10.3390/cells10020290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, RNA trans-splicing is a significant RNA modification process for the end-to-end ligation of exons from separately transcribed primary transcripts to generate mature mRNA. So far, three different categories of RNA trans-splicing have been found in organisms within a diverse range. Here, we review trans-splicing of discontinuous group II introns, which occurs in chloroplasts and mitochondria of lower eukaryotes and plants. We discuss the origin of intronic sequences and the evolutionary relationship between chloroplast ribonucleoprotein complexes and the nuclear spliceosome. Finally, we focus on the ribonucleoprotein supercomplex involved in trans-splicing of chloroplast group II introns from the green alga Chlamydomonas reinhardtii. This complex has been well characterized genetically and biochemically, resulting in a detailed picture of the chloroplast ribonucleoprotein supercomplex. This information contributes substantially to our understanding of the function of RNA-processing machineries and might provide a blueprint for other splicing complexes involved in trans- as well as cis-splicing of organellar intron RNAs.
Collapse
|
2
|
Vieweger M, Nesbitt DJ. Synergistic SHAPE/Single-Molecule Deconvolution of RNA Conformation under Physiological Conditions. Biophys J 2018; 114:1762-1775. [PMID: 29694857 PMCID: PMC5937115 DOI: 10.1016/j.bpj.2018.02.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/06/2018] [Accepted: 02/20/2018] [Indexed: 11/24/2022] Open
Abstract
Structural RNA domains are widely involved in the regulation of biological functions, such as gene expression, gene modification, and gene repair. Activity of these dynamic regions depends sensitively on the global fold of the RNA, in particular, on the binding affinity of individual conformations to effector molecules in solution. Consequently, both the 1) structure and 2) conformational dynamics of noncoding RNAs prove to be essential in understanding the coupling that results in biological function. Toward this end, we recently reported observation of three conformational states in the metal-induced folding pathway of the tRNA-like structure domain of Brome Mosaic Virus, via single-molecule fluorescence resonance energy transfer studies. We report herein selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE)-directed structure predictions as a function of metal ion concentrations ([Mn+]) to confirm the three-state folding model, as well as test 2° structure models from the literature. Specifically, SHAPE reactivity data mapped onto literature models agrees well with the secondary structures observed at 0-10 mM [Mg2+], with only minor discrepancies in the E hairpin domain at low [Mg2+]. SHAPE probing and SHAPE-directed structure predictions further confirm the stepwise unfolding pathway previously observed in our single-molecule studies. Of special relevance, this means that reduction in the metal-ion concentration unfolds the 3' pseudoknot interaction before unfolding the long-range stem interaction. This work highlights the synergistic power of combining 1) single-molecule Förster resonance energy transfer and 2) SHAPE-directed structure-probing studies for detailed analysis of multiple RNA conformational states. In particular, single-molecule guided deconvolution of the SHAPE reactivities permits 2° structure predictions of isolated RNA conformations, thereby substantially improving on traditional limitations associated with current structure prediction algorithms.
Collapse
Affiliation(s)
- Mario Vieweger
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado; Department of Physics, University of Colorado, Boulder, Colorado.
| |
Collapse
|
3
|
He Y, Yuan C, Chen L, Lei M, Zellmer L, Huang H, Liao DJ. Transcriptional-Readthrough RNAs Reflect the Phenomenon of "A Gene Contains Gene(s)" or "Gene(s) within a Gene" in the Human Genome, and Thus Are Not Chimeric RNAs. Genes (Basel) 2018; 9:E40. [PMID: 29337901 PMCID: PMC5793191 DOI: 10.3390/genes9010040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/29/2017] [Accepted: 01/07/2018] [Indexed: 02/06/2023] Open
Abstract
Tens of thousands of chimeric RNAs, i.e., RNAs with sequences of two genes, have been identified in human cells. Most of them are formed by two neighboring genes on the same chromosome and are considered to be derived via transcriptional readthrough, but a true readthrough event still awaits more evidence and trans-splicing that joins two transcripts together remains as a possible mechanism. We regard those genomic loci that are transcriptionally read through as unannotated genes, because their transcriptional and posttranscriptional regulations are the same as those of already-annotated genes, including fusion genes formed due to genetic alterations. Therefore, readthrough RNAs and fusion-gene-derived RNAs are not chimeras. Only those two-gene RNAs formed at the RNA level, likely via trans-splicing, without corresponding genes as genomic parents, should be regarded as authentic chimeric RNAs. However, since in human cells, procedural and mechanistic details of trans-splicing have never been disclosed, we doubt the existence of trans-splicing. Therefore, there are probably no authentic chimeras in humans, after readthrough and fusion-gene derived RNAs are all put back into the group of ordinary RNAs. Therefore, it should be further determined whether in human cells all two-neighboring-gene RNAs are derived from transcriptional readthrough and whether trans-splicing truly exists.
Collapse
Affiliation(s)
- Yan He
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Chengfu Yuan
- Department of Biochemistry, China Three Gorges University, Yichang City 443002, Hubei, China.
| | - Lichan Chen
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Mingjuan Lei
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| | - Lucas Zellmer
- Masonic Cancer Center, University of Minnesota, 435 E. River Road, Minneapolis, MN 55455, USA.
| | - Hai Huang
- School of Clinical Laboratory Science, Guizhou Medical University, Guiyang 550004, Guizhou, China.
| | - Dezhong Joshua Liao
- Key Lab of Endemic and Ethnic Diseases of the Ministry of Education of China in Guizhou Medical University, Guiyang 550004, Guizhou, China.
- Department of Pathology, Guizhou Medical University Hospital, Guiyang 550004, Guizhou, China.
| |
Collapse
|
4
|
Sawyer A, Bai Y, Lu Y, Hemschemeier A, Happe T. Compartmentalisation of [FeFe]-hydrogenase maturation in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:1134-1143. [PMID: 28295776 DOI: 10.1111/tpj.13535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Molecular hydrogen (H2 ) can be produced in green microalgae by [FeFe]-hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub-cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub-cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase-deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full-length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm-targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2 -producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.
Collapse
Affiliation(s)
- Anne Sawyer
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Yu Bai
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Anja Hemschemeier
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| | - Thomas Happe
- AG Photobiotechnologie, Lehrstuhl für Biochemie der Pflanzen, Fakultät für Biologie und Biotechnologie, Ruhr-Universität Bochum, 44801, Bochum, Germany
| |
Collapse
|
5
|
It Is Imperative to Establish a Pellucid Definition of Chimeric RNA and to Clear Up a Lot of Confusion in the Relevant Research. Int J Mol Sci 2017; 18:ijms18040714. [PMID: 28350330 PMCID: PMC5412300 DOI: 10.3390/ijms18040714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 12/27/2022] Open
Abstract
There have been tens of thousands of RNAs deposited in different databases that contain sequences of two genes and are coined chimeric RNAs, or chimeras. However, "chimeric RNA" has never been lucidly defined, partly because "gene" itself is still ill-defined and because the means of production for many RNAs is unclear. Since the number of putative chimeras is soaring, it is imperative to establish a pellucid definition for it, in order to differentiate chimeras from regular RNAs. Otherwise, not only will chimeric RNA studies be misled but also characterization of fusion genes and unannotated genes will be hindered. We propose that only those RNAs that are formed by joining two RNA transcripts together without a fusion gene as a genomic basis should be regarded as authentic chimeras, whereas those RNAs transcribed as, and cis-spliced from, single transcripts should not be deemed as chimeras. Many RNAs containing sequences of two neighboring genes may be transcribed via a readthrough mechanism, and thus are actually RNAs of unannotated genes or RNA variants of known genes, but not chimeras. In today's chimeric RNA research, there are still several key flaws, technical constraints and understudied tasks, which are also described in this perspective essay.
Collapse
|
6
|
Vieweger M, Holmstrom ED, Nesbitt DJ. Single-Molecule FRET Reveals Three Conformations for the TLS Domain of Brome Mosaic Virus Genome. Biophys J 2015; 109:2625-2636. [PMID: 26682819 PMCID: PMC4699858 DOI: 10.1016/j.bpj.2015.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/28/2022] Open
Abstract
Metabolite-dependent conformational switching in RNA riboswitches is now widely accepted as a critical regulatory mechanism for gene expression in bacterial systems. More recently, similar gene regulation mechanisms have been found to be important for viral systems as well. One of the most abundant and best-studied systems is the tRNA-like structure (TLS) domain, which has been found to occur in many plant viruses spread across numerous genera. In this work, folding dynamics for the TLS domain of Brome Mosaic Virus have been investigated using single-molecule fluorescence resonance energy transfer techniques. In particular, burst fluorescence methods are exploited to observe metal-ion ([M(n+)])-induced folding in freely diffusing RNA constructs resembling the minimal TLS element of brome mosaic virus RNA3. The results of these experiments reveal a complex equilibrium of at least three distinct populations. A stepwise, or consecutive, thermodynamic model for TLS folding is developed, which is in good agreement with the [M(n+)]-dependent evolution of conformational populations and existing structural information in the literature. Specifically, this folding pathway explains the metal-ion dependent formation of a functional TLS domain from unfolded RNAs via two consecutive steps: 1) hybridization of a long-range stem interaction, followed by 2) formation of a 3'-terminal pseudoknot. These two conformational transitions are well described by stepwise dissociation constants for [Mg(2+)] (K1 = 328 ± 30 μM and K2 = 1092 ± 183 μM) and [Na(+)] (K1 = 74 ± 6 mM and K2 = 243 ± 52 mM)-induced folding. The proposed thermodynamic model is further supported by inhibition studies of the long-range stem interaction using a complementary DNA oligomer, which effectively shifts the dynamic equilibrium toward the unfolded conformation. Implications of this multistep conformational folding mechanism are discussed with regard to regulation of virus replication.
Collapse
Affiliation(s)
- Mario Vieweger
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - Erik D Holmstrom
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado
| | - David J Nesbitt
- Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado.
| |
Collapse
|
7
|
The Octatricopeptide Repeat Protein Raa8 Is Required for Chloroplast trans Splicing. EUKARYOTIC CELL 2015. [PMID: 26209695 DOI: 10.1128/ec.00096-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mRNA maturation of the tripartite chloroplast psaA gene from the green alga Chlamydomonas reinhardtii depends on various nucleus-encoded factors that participate in trans splicing of two group II introns. Recently, a multiprotein complex was identified that is involved in processing the psaA precursor mRNA. Using coupled tandem affinity purification (TAP) and mass spectrometry analyses with the trans-splicing factor Raa4 as a bait protein, we recently identified a multisubunit ribonucleoprotein (RNP) complex comprising the previously characterized trans-splicing factors Raa1, Raa3, Raa4, and Rat2 plus novel components. Raa1 and Rat2 share a structural motif, an octatricopeptide repeat (OPR), that presumably functions as an RNA interaction module. Two of the novel RNP complex components also exhibit a predicted OPR motif and were therefore considered potential trans-splicing factors. In this study, we selected bacterial artificial chromosome (BAC) clones encoding these OPR proteins and conducted functional complementation assays using previously generated trans-splicing mutants. Our assay revealed that the trans-splicing defect of mutant F19 was restored by a new factor we named RAA8; molecular characterization of complemented strains verified that Raa8 participates in splicing of the first psaA group II intron. Three of six OPR motifs are located in the C-terminal end of Raa8, which was shown to be essential for restoring psaA mRNA trans splicing. Our results support the important role played by OPR proteins in chloroplast RNA metabolism and also demonstrate that combining TAP and mass spectrometry with functional complementation studies represents a vigorous tool for identifying trans-splicing factors.
Collapse
|
8
|
Huwald D, Schrapers P, Kositzki R, Haumann M, Hemschemeier A. Characterization of unusual truncated hemoglobins of Chlamydomonas reinhardtii suggests specialized functions. PLANTA 2015; 242:167-85. [PMID: 25893868 DOI: 10.1007/s00425-015-2294-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/27/2015] [Indexed: 05/04/2023]
Abstract
Annotated hemoglobin genes in Chlamydomonas reinhardtii form functional globins, despite unusual architectures. Spectral characteristics show subtle biochemical differences. Multiple globins might help the alga to cope with its versatile environment. The unicellular green alga C. reinhardtii is a photosynthetic, often soil-dwelling organism, subjected to a changeable environment in nature. The alga contains 12 genes encoding so-called truncated hemoglobins that feature a two-on-two helical fold instead of the three-on-three helix arrangement of the long-studied vertebrate globins or plant symbiotic and non-symbiotic hemoglobins. In plants, non-symbiotic hemoglobins often play a role in acclimation to stress, and we could show recently that one of the C. reinhardtii globin genes is vital for anoxic growth. Here, three further globin encoding transcripts (Cre16.g661000.t1.1, Cre16.g661300.t2.1 and Cre16.g662750.t1.2) were heterologously expressed along with the recently studied THB1. UV-Vis and X-ray absorption spectroscopy analyses show that the sequences indeed encode functional hemoglobins, despite their uncommon primary sequences, which include long C-termini without any predictable function, or a split heme-binding domain. The proteins show some variations regarding the coordination of the heme iron or the interaction with diatomic ligands, indicating different functionalities. The respective transcripts are not responsive to the nitrogen source, in contrast to results reported for THB1, but they accumulate in darkness. This work advances experimental data on the very large globin family in general, and, more specifically, on hemoglobins in photosynthetic organisms.
Collapse
Affiliation(s)
- Dennis Huwald
- Work Group Photobiotechnology, Department of Plant Biochemistry, Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Universitätsstr. 150, ND2/134, 44801, Bochum, Germany
| | | | | | | | | |
Collapse
|
9
|
Peng Z, Yuan C, Zellmer L, Liu S, Xu N, Liao DJ. Hypothesis: Artifacts, Including Spurious Chimeric RNAs with a Short Homologous Sequence, Caused by Consecutive Reverse Transcriptions and Endogenous Random Primers. J Cancer 2015; 6:555-67. [PMID: 26000048 PMCID: PMC4439942 DOI: 10.7150/jca.11997] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022] Open
Abstract
Recent RNA-sequencing technology and associated bioinformatics have led to identification of tens of thousands of putative human chimeric RNAs, i.e. RNAs containing sequences from two different genes, most of which are derived from neighboring genes on the same chromosome. In this essay, we redefine "two neighboring genes" as those producing individual transcripts, and point out two known mechanisms for chimeric RNA formation, i.e. transcription from a fusion gene or trans-splicing of two RNAs. By our definition, most putative RNA chimeras derived from canonically-defined neighboring genes may either be technical artifacts or be cis-splicing products of 5'- or 3'-extended RNA of either partner that is redefined herein as an unannotated gene, whereas trans-splicing events are rare in human cells. Therefore, most authentic chimeric RNAs result from fusion genes, about 1,000 of which have been identified hitherto. We propose a hypothesis of "consecutive reverse transcriptions (RTs)", i.e. another RT reaction following the previous one, for how most spurious chimeric RNAs, especially those containing a short homologous sequence, may be generated during RT, especially in RNA-sequencing wherein RNAs are fragmented. We also point out that RNA samples contain numerous RNA and DNA shreds that can serve as endogenous random primers for RT and ensuing polymerase chain reactions (PCR), creating artifacts in RT-PCR.
Collapse
Affiliation(s)
- Zhiyu Peng
- 1. Beijing Genomics Institute at Shenzhen, Building No.11, Beishan Industrial Zone, Yantian District, Shenzhen 518083, P. R. China
| | - Chengfu Yuan
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Lucas Zellmer
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Siqi Liu
- 3. CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Ningzhi Xu
- 4. Laboratory of Cell and Molecular Biology, Cancer Institute, Chinese Academy of Medical Science, Beijing 100021, P. R. China
| | - D Joshua Liao
- 2. Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
10
|
Jalal A, Schwarz C, Schmitz-Linneweber C, Vallon O, Nickelsen J, Bohne AV. A small multifunctional pentatricopeptide repeat protein in the chloroplast of Chlamydomonas reinhardtii. MOLECULAR PLANT 2015; 8:412-26. [PMID: 25702521 DOI: 10.1016/j.molp.2014.11.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/10/2014] [Accepted: 11/24/2014] [Indexed: 05/21/2023]
Abstract
Organellar biogenesis is mainly regulated by nucleus-encoded factors, which act on various steps of gene expression including RNA editing, processing, splicing, stabilization, and translation initiation. Among these regulatory factors, pentatricopeptide repeat (PPR) proteins form the largest family of RNA binding proteins, with hundreds of members in flowering plants. In striking contrast, the genome of the unicellular green alga Chlamydomonas reinhardtii encodes only 14 such proteins. In this study, we analyzed PPR7, the smallest and most highly expressed PPR protein in C. reinhardtii. Green fluorescent protein-based localization and gel-filtration analysis revealed that PPR7 forms a part of a high-molecular-weight ribonucleoprotein complex in the chloroplast stroma. RIP-chip analysis of PPR7-bound RNAs demonstrated that the protein associates with a diverse set of chloroplast transcripts in vivo, i.e. rrnS, psbH, rpoC2, rbcL, atpA, cemA-atpH, tscA, and atpI-psaJ. Furthermore, the investigation of PPR7 RNAi strains revealed that depletion of PPR7 results in a light-sensitive phenotype, accompanied by altered levels of its target RNAs that are compatible with the defects in their maturation or stabilization. PPR7 is thus an unusual type of small multifunctional PPR protein, which interacts, probably in conjunction with other RNA binding proteins, with numerous target RNAs to promote a variety of post-transcriptional events.
Collapse
Affiliation(s)
- Abdullah Jalal
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Christian Schwarz
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | | | - Olivier Vallon
- UMR7141 CNRS/Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 13 Rue Pierre et Marie Curie, 75005 Paris, France
| | - Jörg Nickelsen
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany
| | - Alexandra-Viola Bohne
- Molecular Plant Sciences, Ludwig-Maximillians-University, Grosshaderner Straße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
11
|
Jacobs J, Marx C, Kock V, Reifschneider O, Fränzel B, Krisp C, Wolters D, Kück U. Identification of a chloroplast ribonucleoprotein complex containing trans-splicing factors, intron RNA, and novel components. Mol Cell Proteomics 2013; 12:1912-25. [PMID: 23559604 PMCID: PMC3708175 DOI: 10.1074/mcp.m112.026583] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Indexed: 11/06/2022] Open
Abstract
Maturation of chloroplast psaA pre-mRNA from the green alga Chlamydomonas reinhardtii requires the trans-splicing of two split group II introns. Several nuclear-encoded trans-splicing factors are required for the correct processing of psaA mRNA. Among these is the recently identified Raa4 protein, which is involved in splicing of the tripartite intron 1 of the psaA precursor mRNA. Part of this tripartite group II intron is the chloroplast encoded tscA RNA, which is specifically bound by Raa4. Using Raa4 as bait in a combined tandem affinity purification and mass spectrometry approach, we identified core components of a multisubunit ribonucleoprotein complex, including three previously identified trans-splicing factors (Raa1, Raa3, and Rat2). We further detected tscA RNA in the purified protein complex, which seems to be specific for splicing of the tripartite group II intron. A yeast-two hybrid screen and co-immunoprecipitation identified chloroplast-localized Raa4-binding protein 1 (Rab1), which specifically binds tscA RNA from the tripartite psaA group II intron. The yeast-two hybrid system provides evidence in support of direct interactions between Rab1 and four trans-splicing factors. Our findings contribute to our knowledge of chloroplast multisubunit ribonucleoprotein complexes and are discussed in support of the generally accepted view that group II introns are the ancestors of the eukaryotic spliceosomal introns.
Collapse
Affiliation(s)
- Jessica Jacobs
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christina Marx
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Vera Kock
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Olga Reifschneider
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Benjamin Fränzel
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Christoph Krisp
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Dirk Wolters
- ¶Department of Analytical Chemistry, Ruhr-University Bochum, D-44780 Bochum, Germany
| | - Ulrich Kück
- From the ‡Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| |
Collapse
|
12
|
Islam MS, Studer B, Byrne SL, Farrell JD, Panitz F, Bendixen C, Møller IM, Asp T. The genome and transcriptome of perennial ryegrass mitochondria. BMC Genomics 2013; 14:202. [PMID: 23521852 PMCID: PMC3664089 DOI: 10.1186/1471-2164-14-202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/05/2013] [Indexed: 01/05/2023] Open
Abstract
Background Perennial ryegrass (Lolium perenne L.) is one of the most important forage and turf grass species of temperate regions worldwide. Its mitochondrial genome is inherited maternally and contains genes that can influence traits of agricultural importance. Moreover, the DNA sequence of mitochondrial genomes has been established and compared for a large number of species in order to characterize evolutionary relationships. Therefore, it is crucial to understand the organization of the mitochondrial genome and how it varies between and within species. Here, we report the first de novo assembly and annotation of the complete mitochondrial genome from perennial ryegrass. Results Intact mitochondria from perennial ryegrass leaves were isolated and used for mtDNA extraction. The mitochondrial genome was sequenced to a 167-fold coverage using the Roche 454 GS-FLX Titanium platform, and assembled into a circular master molecule of 678,580 bp. A total of 34 proteins, 14 tRNAs and 3 rRNAs are encoded by the mitochondrial genome, giving a total gene space of 48,723 bp (7.2%). Moreover, we identified 149 open reading frames larger than 300 bp and covering 67,410 bp (9.93%), 250 SSRs, 29 tandem repeats, 5 pairs of large repeats, and 96 pairs of short inverted repeats. The genes encoding subunits of the respiratory complexes – nad1 to nad9, cob, cox1 to cox3 and atp1 to atp9 – all showed high expression levels both in absolute numbers and after normalization. Conclusions The circular master molecule of the mitochondrial genome from perennial ryegrass presented here constitutes an important tool for future attempts to compare mitochondrial genomes within and between grass species. Our results also demonstrate that mitochondria of perennial ryegrass contain genes crucial for energy production that are well conserved in the mitochondrial genome of monocotyledonous species. The expression analysis gave us first insights into the transcriptome of these mitochondrial genes in perennial ryegrass.
Collapse
|
13
|
Glanz S, Jacobs J, Kock V, Mishra A, Kück U. Raa4 is a trans-splicing factor that specifically binds chloroplast tscA intron RNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 69:421-431. [PMID: 21954961 DOI: 10.1111/j.1365-313x.2011.04801.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
During trans-splicing of discontinuous organellar introns, independently transcribed coding sequences are joined together to generate a continuous mRNA. The chloroplast psaA gene from Chlamydomonas reinhardtii encoding the P(700) core protein of photosystem I (PSI) is split into three exons and two group IIB introns, which are both spliced in trans. Using forward genetics, we isolated a novel PSI mutant, raa4, with a defect in trans-splicing of the first intron. Complementation analysis identified the affected gene encoding the 112.4 kDa Raa4 protein, which shares no strong sequence identity with other known proteins. The chloroplast localization of the protein was confirmed by confocal fluorescence microscopy, using a GFP-tagged Raa4 fusion protein. RNA-binding studies showed that Raa4 binds specifically to domains D2 and D3, but not to other conserved domains of the tripartite group II intron. Raa4 may play a role in stabilizing folding intermediates or functionally active structures of the split intron RNA.
Collapse
Affiliation(s)
- Stephanie Glanz
- Department for General and Molecular Botany, Ruhr-University Bochum, D-44780 Bochum, Germany
| | | | | | | | | |
Collapse
|
14
|
|
15
|
The falsifiability of the models for the origin of eukaryotes. Curr Genet 2011; 57:367-90. [DOI: 10.1007/s00294-011-0357-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/13/2023]
|
16
|
Jacobs J, Kück U. Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 2011; 68:735-48. [PMID: 20848156 PMCID: PMC11115000 DOI: 10.1007/s00018-010-0523-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/25/2010] [Accepted: 08/30/2010] [Indexed: 12/18/2022]
Abstract
Chloroplasts are eukaryotic organelles which represent evolutionary chimera with proteins that have been derived from either a prokaryotic endosymbiont or a eukaryotic host. Chloroplast gene expression starts with transcription of RNA and is followed by multiple post-transcriptional processes which are mediated mainly by an as yet unknown number of RNA-binding proteins. Here, we review the literature to date on the structure and function of these chloroplast RNA-binding proteins. For example, the functional protein domains involved in RNA binding, such as the RNA-recognition motifs, the chloroplast RNA-splicing and ribosome maturation domains, and the pentatricopeptide-repeat motifs, are summarized. We also describe biochemical and forward genetic approaches that led to the identification of proteins modifying RNA stability or carrying out RNA splicing or editing. Such data will greatly contribute to a better understanding of the biogenesis of a unique organelle found in all photosynthetic organisms.
Collapse
Affiliation(s)
- Jessica Jacobs
- Department for General and Molecular Biology, Ruhr-University Bochum, Universitätsstraße 150, Bochum, Germany.
| | | |
Collapse
|