1
|
Vlasova AD, Bukhalovich SM, Bagaeva DF, Polyakova AP, Ilyinsky NS, Nesterov SV, Tsybrov FM, Bogorodskiy AO, Zinovev EV, Mikhailov AE, Vlasov AV, Kuklin AI, Borshchevskiy VI, Bamberg E, Uversky VN, Gordeliy VI. Intracellular microbial rhodopsin-based optogenetics to control metabolism and cell signaling. Chem Soc Rev 2024; 53:3327-3349. [PMID: 38391026 DOI: 10.1039/d3cs00699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Microbial rhodopsin (MRs) ion channels and pumps have become invaluable optogenetic tools for neuroscience as well as biomedical applications. Recently, MR-optogenetics expanded towards subcellular organelles opening principally new opportunities in optogenetic control of intracellular metabolism and signaling via precise manipulations of organelle ion gradients using light. This new optogenetic field expands the opportunities for basic and medical studies of cancer, cardiovascular, and metabolic disorders, providing more detailed and accurate control of cell physiology. This review summarizes recent advances in studies of the cellular metabolic processes and signaling mediated by optogenetic tools targeting mitochondria, endoplasmic reticulum (ER), lysosomes, and synaptic vesicles. Finally, we discuss perspectives of such an optogenetic approach in both fundamental and applied research.
Collapse
Affiliation(s)
- Anastasiia D Vlasova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Siarhei M Bukhalovich
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Diana F Bagaeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Aleksandra P Polyakova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikolay S Ilyinsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Semen V Nesterov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Fedor M Tsybrov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Andrey O Bogorodskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Egor V Zinovev
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Anatolii E Mikhailov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Alexey V Vlasov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Alexander I Kuklin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Valentin I Borshchevskiy
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Ernst Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Valentin I Gordeliy
- Institut de Biologie Structurale Jean-Pierre Ebel, Université Grenoble Alpes-Commissariat à l'Energie Atomique et aux Energies Alternatives-CNRS, 38027 Grenoble, France.
| |
Collapse
|
2
|
Wang F, Fernandez-Gonzalez P, Ramon E, Gomez-Gutierrez P, Morillo M, Garriga P. Effect of Trace Metal Ions on the Conformational Stability of the Visual Photoreceptor Rhodopsin. Int J Mol Sci 2023; 24:11231. [PMID: 37446409 DOI: 10.3390/ijms241311231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Trace metals are essential elements that play key roles in a number of biochemical processes governing human visual physiology in health and disease. Several trace metals, such as zinc, have been shown to play important roles in the visual phototransduction process. In spite of this, there has been little research conducted on the direct effect of trace metal elements on the visual photoreceptor rhodopsin. In the current study, we have determined the effect of several metal ions, such as iron, copper, chromium, manganese, and nickel, on the conformational stability of rhodopsin. To this aim, we analyzed, by means of UV-visible and fluorescence spectroscopic methods, the effects of these trace elements on the thermal stability of dark rhodopsin, the stability of its active Metarhodopsin II conformation, and its chromophore regeneration. Our results show that copper prevented rhodopsin regeneration and slowed down the retinal release process after illumination. In turn, Fe3+, but not Fe2+, increased the thermal stability of the dark inactive conformation of rhodopsin, whereas copper ions markedly decreased it. These findings stress the important role of trace metals in retinal physiology at the photoreceptor level and may be useful for the development of novel therapeutic strategies to treat retinal disease.
Collapse
Affiliation(s)
- Feifei Wang
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pol Fernandez-Gonzalez
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Eva Ramon
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Patricia Gomez-Gutierrez
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici ETSEIB, Av. Diagonal 647, 08028 Barcelona, Catalonia, Spain
| | - Margarita Morillo
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| | - Pere Garriga
- Grup de Biotecnologia Molecular i Industrial, Centre de Biotecnologia Molecular, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya-Barcelona Tech, Edifici Gaia, Rambla de Sant Nebridi 22, 08222 Terrassa, Catalonia, Spain
| |
Collapse
|
3
|
Sadeghi M, Balke J, Schneider C, Nagano S, Stellmacher J, Lochnit G, Lang C, Weise C, Hughes J, Alexiev U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020; 59:1051-1062. [PMID: 32069394 DOI: 10.1021/acs.biochem.9b00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Jens Balke
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Constantin Schneider
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Soshichiro Nagano
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Günter Lochnit
- Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany
| | - Christina Lang
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Chris Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany
| | - Jon Hughes
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| |
Collapse
|
4
|
Kuroi K, Kamijo M, Ueki M, Niwa Y, Hiramatsu H, Nakabayashi T. Time-resolved FTIR study on the structural switching of human galectin-1 by light-induced disulfide bond formation. Phys Chem Chem Phys 2020; 22:1137-1144. [DOI: 10.1039/c9cp04881b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced disulfide bond technique, which we have previously developed, has enabled the time-resolved measurement of the disulfide-induced conformational switching of the lectin protein human galectin-1.
Collapse
Affiliation(s)
- Kunisato Kuroi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| | - Mana Kamijo
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Mutsuki Ueki
- Faculty of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Yusuke Niwa
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
| | - Hirotsugu Hiramatsu
- Department of Applied Chemistry and Institute of Molecular Science
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences
- Tohoku University
- Sendai 980-8578
- Japan
- Faculty of Pharmaceutical Sciences
| |
Collapse
|
5
|
Bombarda E, Ullmann GM. Continuum Electrostatic Calculation on Bovine Rhodopsin: Protonation and the Effect of the Membrane Potential. Photochem Photobiol 2017; 93:1388-1398. [DOI: 10.1111/php.12777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/15/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Elisa Bombarda
- Structural Biology/Bioinformatics; University of Bayreuth; Bayreuth Germany
| | | |
Collapse
|
6
|
Nanosecond Dynamics of Gαi1 Bound to Nucleotides or Ric-8A, a Gα Chaperone with GEF Activity. Biophys J 2017; 111:722-731. [PMID: 27558716 DOI: 10.1016/j.bpj.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 06/22/2016] [Accepted: 07/11/2016] [Indexed: 12/13/2022] Open
Abstract
Resistance to Inhibitors of Cholinesterase A (Ric-8A) is a 60-kDa cytosolic protein that has chaperone and guanine nucleotide exchange (GEF) activity toward heterotrimeric G protein α subunits of the i, q, and 12/13 classes, catalyzing the release of GDP from Gα and subsequent binding of GTP. In the absence of GTP or GTP analogs, and subsequent to GDP release, Gα forms a stable nucleotide-free complex with Ric-8A. In this study, time-resolved fluorescence anisotropy measurements were employed to detect local motions of Gαi1 labeled at selected sites with Alexa 488 (C5) fluorescent dye (Ax) in the GDP, GTPγS (collectively, GXP), and Ric-8A-bound states. Sites selected for Alexa 488 (C5) derivatization were in the α-helical domain (residue 106), the α-helical domain-Ras-like domain hinge (residue 63), Switch I (residue 180), Switch II (residue 209), Switch III (residue 238), the α4 helix (residue 305), and at the junction between the purine-binding subsite in the β6-α5 loop and the C-terminal α helix (residue 330). In the GXP-bound states, the Alexa fluorophore reports local motions with correlation times ranging from 1.0 to 1.8 ns. The dynamics at Ax180 is slower in Gαi1•GDP than in Gαi1•GTPγS. The reverse is true at Ax209. The order parameters, S(2), for Alexa probes at switch residues are high (0.78-0.88) in Gαi1•GDP and lower (0.67-0.75) in Gαi1•GTPγS, although in crystal structures, switch segments are more ordered in the latter. Local motions at Ax63, Ax180, Ax209, and Ax330 are all markedly slower (2.3-2.8 ns) in Gαi1:Ric-8A than in Gαi1•GXP, and only modest (± 0.1) differences in S(2) are observed at most sites in Gαi1:Ric-8A relative to Gαi1•GXP. The slow dynamics suggests long-range correlated transitions within an ensemble of states and, particularly in the hinge and switch segments that make direct contact with Ric-8A. Induction of Gαi1 structural heterogeneity by Ric-8A provides a mechanism for nucleotide release.
Collapse
|
7
|
Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur J Pharm Biopharm 2017; 110:39-46. [DOI: 10.1016/j.ejpb.2016.10.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/24/2016] [Accepted: 10/29/2016] [Indexed: 11/22/2022]
|
8
|
Boreham A, Volz P, Peters D, Keck CM, Alexiev U. Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur J Pharm Biopharm 2017; 110:31-38. [DOI: 10.1016/j.ejpb.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/11/2023]
|
9
|
Tian H, Fürstenberg A, Huber T. Labeling and Single-Molecule Methods To Monitor G Protein-Coupled Receptor Dynamics. Chem Rev 2016; 117:186-245. [DOI: 10.1021/acs.chemrev.6b00084] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- He Tian
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Alexandre Fürstenberg
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| | - Thomas Huber
- Laboratory of Chemical Biology
and Signal Transduction, The Rockefeller University, 1230 York
Avenue, New York, New York 10065, United States
| |
Collapse
|
10
|
Volz P, Krause N, Balke J, Schneider C, Walter M, Schneider F, Schlesinger R, Alexiev U. Light and pH-induced Changes in Structure and Accessibility of Transmembrane Helix B and Its Immediate Environment in Channelrhodopsin-2. J Biol Chem 2016; 291:17382-93. [PMID: 27268055 DOI: 10.1074/jbc.m115.711200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 11/06/2022] Open
Abstract
A variant of the cation channel channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2) was selectively labeled at position Cys-79 at the end of the first cytoplasmic loop and the beginning of transmembrane helix B with the fluorescent dye fluorescein (acetamidofluorescein). We utilized (i) time-resolved fluorescence anisotropy experiments to monitor the structural dynamics at the cytoplasmic surface close to the inner gate in the dark and after illumination in the open channel state and (ii) time-resolved fluorescence quenching experiments to observe the solvent accessibility of helix B at pH 6.0 and 7.4. The light-induced increase in final anisotropy for acetamidofluorescein bound to the channel variant with a prolonged conducting state clearly shows that the formation of the open channel state is associated with a large conformational change at the cytoplasmic surface, consistent with an outward tilt of helix B. Furthermore, results from solute accessibility studies of the cytoplasmic end of helix B suggest a pH-dependent structural heterogeneity that appears below pH 7. At pH 7.4 conformational homogeneity was observed, whereas at pH 6.0 two protein fractions exist, including one in which residue 79 is buried. This inaccessible fraction amounts to 66% in nanodiscs and 82% in micelles. Knowledge about pH-dependent structural heterogeneity may be important for CrChR2 applications in optogenetics.
Collapse
Affiliation(s)
- Pierre Volz
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Nils Krause
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Jens Balke
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Constantin Schneider
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Maria Walter
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Franziska Schneider
- the Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Ramona Schlesinger
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| | - Ulrike Alexiev
- From the Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany and
| |
Collapse
|
11
|
Application of single molecule fluorescence microscopy to characterize the penetration of a large amphiphilic molecule in the stratum corneum of human skin. Int J Mol Sci 2015; 16:6960-77. [PMID: 25826528 PMCID: PMC4424999 DOI: 10.3390/ijms16046960] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/16/2022] Open
Abstract
We report here on the application of laser-based single molecule total internal reflection fluorescence microscopy (TIRFM) to study the penetration of molecules through the skin. Penetration of topically applied drug molecules is often observed to be limited by the size of the respective drug. However, the molecular mechanisms which govern the penetration of molecules through the outermost layer of the skin are still largely unknown. As a model compound we have chosen a larger amphiphilic molecule (fluorescent dye ATTO-Oxa12) with a molecular weight >700 Da that was applied to excised human skin. ATTO-Oxa12 penetrated through the stratum corneum (SC) into the viable epidermis as revealed by TIRFM of cryosections. Single particle tracking of ATTO-Oxa12 within SC sheets obtained by tape stripping allowed us to gain information on the localization as well as the lateral diffusion dynamics of these molecules. ATTO-Oxa12 appeared to be highly confined in the SC lipid region between (intercellular space) or close to the envelope of the corneocytes. Three main distinct confinement sizes of 52 ± 6, 118 ± 4, and 205 ± 5 nm were determined. We conclude that for this amphiphilic model compound several pathways through the skin exist.
Collapse
|
12
|
Atta D, Okasha A. Single molecule laser spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 135:1173-1179. [PMID: 25156641 DOI: 10.1016/j.saa.2014.07.085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/10/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
In this article, we discussed some single molecule spectroscopy techniques and methods. We have chosen the simplicity in this survey based on our laboratory experience in this field. We concentrated on the imaging by both techniques the wide field and the scanning microscopes. Other imaging enhancements on the technique like extended resolution wide field, the total internal reflection imaging, and its derivatives are also reviewed. In addition to the imaging techniques, some diffusion techniques also are discussed like fluorescence correlation spectroscopy. The related methods like Forester resonance transfer, photo-induced electron transfer and anisotropy (steady state and time decay) are also discussed. In addition, we elucidated some simple details about the theory behind the FCS and its resulting curve fitting. This review is preceded by general introduction and ended with the conclusion.
Collapse
Affiliation(s)
- Diaa Atta
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt.
| | - Ali Okasha
- Spectroscopy Department, Physics Division, National Research Center, 12311 Dokki, Cairo, Egypt
| |
Collapse
|
13
|
Structure of signaling-competent neurotensin receptor 1 obtained by directed evolution in Escherichia coli. Proc Natl Acad Sci U S A 2014; 111:E655-62. [PMID: 24453215 DOI: 10.1073/pnas.1317903111] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Crystallography has advanced our understanding of G protein-coupled receptors, but low expression levels and instability in solution have limited structural insights to very few selected members of this large protein family. Using neurotensin receptor 1 (NTR1) as a proof of principle, we show that two directed evolution technologies that we recently developed have the potential to overcome these problems. We purified three neurotensin-bound NTR1 variants from Escherichia coli and determined their X-ray structures at up to 2.75 Å resolution using vapor diffusion crystallization experiments. A crystallized construct was pharmacologically characterized and exhibited ligand-dependent signaling, internalization, and wild-type-like agonist and antagonist affinities. Our structures are fully consistent with all biochemically defined ligand-contacting residues, and they represent an inactive NTR1 state at the cytosolic side. They exhibit significant differences to a previously determined NTR1 structure (Protein Data Bank ID code 4GRV) in the ligand-binding pocket and by the presence of the amphipathic helix 8. A comparison of helix 8 stability determinants between NTR1 and other crystallized G protein-coupled receptors suggests that the occupancy of the canonical position of the amphipathic helix is reduced to various extents in many receptors, and we have elucidated the sequence determinants for a stable helix 8. Our analysis also provides a structural rationale for the long-known effects of C-terminal palmitoylation reactions on G protein-coupled receptor signaling, receptor maturation, and desensitization.
Collapse
|
14
|
Sridharan R, Zuber J, Connelly SM, Mathew E, Dumont ME. Fluorescent approaches for understanding interactions of ligands with G protein coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1838:15-33. [PMID: 24055822 PMCID: PMC3926105 DOI: 10.1016/j.bbamem.2013.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 11/18/2022]
Abstract
G protein coupled receptors are responsible for a wide variety of signaling responses in diverse cell types. Despite major advances in the determination of structures of this class of receptors, the underlying mechanisms by which binding of different types of ligands specifically elicits particular signaling responses remain unclear. The use of fluorescence spectroscopy can provide important information about the process of ligand binding and ligand dependent conformational changes in receptors, especially kinetic aspects of these processes that can be difficult to extract from X-ray structures. We present an overview of the extensive array of fluorescent ligands that have been used in studies of G protein coupled receptors and describe spectroscopic approaches for assaying binding and probing the environment of receptor-bound ligands with particular attention to examples involving yeast pheromone receptors. In addition, we discuss the use of fluorescence spectroscopy for detecting and characterizing conformational changes in receptors induced by the binding of ligands. Such studies have provided strong evidence for diversity of receptor conformations elicited by different ligands, consistent with the idea that GPCRs are not simple on and off switches. This diversity of states constitutes an underlying mechanistic basis for biased agonism, the observation that different stimuli can produce different responses from a single receptor. It is likely that continued technical advances will allow fluorescence spectroscopy to play an important role in continued probing of structural transitions in G protein coupled receptors. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding.
Collapse
Affiliation(s)
- Rajashri Sridharan
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Jeffrey Zuber
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Sara M. Connelly
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Elizabeth Mathew
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
| | - Mark E. Dumont
- Department of Biochemistry and Biophysics, P.O. Box 712, University of Rochester Medical Center, Rochester, NY 14642
- Department of Pediatrics, P.O. Box 777, University of Rochester Medical Center, Rochester, NY 14642
| |
Collapse
|
15
|
Alexiev U, Farrens DL. Fluorescence spectroscopy of rhodopsins: insights and approaches. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:694-709. [PMID: 24183695 DOI: 10.1016/j.bbabio.2013.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/11/2013] [Accepted: 10/16/2013] [Indexed: 01/30/2023]
Abstract
Fluorescence spectroscopy has become an established tool at the interface of biology, chemistry and physics because of its exquisite sensitivity and recent technical advancements. However, rhodopsin proteins present the fluorescence spectroscopist with a unique set of challenges and opportunities due to the presence of the light-sensitive retinal chromophore. This review briefly summarizes some approaches that have successfully met these challenges and the novel insights they have yielded about rhodopsin structure and function. We start with a brief overview of fluorescence fundamentals and experimental methodologies, followed by more specific discussions of technical challenges rhodopsin proteins present to fluorescence studies. Finally, we end by discussing some of the unique insights that have been gained specifically about visual rhodopsin and its interactions with affiliate proteins through the use of fluorescence spectroscopy. This article is part of a Special Issue entitled: Retinal Proteins - You can teach an old dog new tricks.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Physics Department, Freie Universität Berlin, Berlin, Germany.
| | - David L Farrens
- Departments of Biochemistry and Molecular Biology, Oregon Health Sciences University, USA
| |
Collapse
|
16
|
Novikov GV, Sivozhelezov VS, Shaitan KV. Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis. BIOCHEMISTRY (MOSCOW) 2013; 78:403-11. [PMID: 23590443 DOI: 10.1134/s0006297913040093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structural dynamics of three different ligand-activated G-protein coupled receptors (GPCRs) and the photoreactive receptor rhodopsin from mammals were comparatively studied. As a result, diagrams demonstrating the main structural differences between the studied membrane receptors were obtained. These diagrams represent the projection of the crystal structures of rhodopsin photointermediates and ligand-activated receptors onto the plane defined by the principal components. Thus, we were able to associate the activation process of the receptors with large-scale movements of their individual transmembrane (TM) domains. In addition, the dynamics of extracellular loops of ligand-activated receptors responsible for recognition and initial binding of ligands was studied. Based on these results, two parameters of functionally significant structural dynamics of membrane receptors can be thoroughly analyzed simultaneously - movements of individual TM helices and of extracellular loops.
Collapse
Affiliation(s)
- G V Novikov
- Institute of Cell Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
17
|
Limitations of time-resolved fluorescence suggested by molecular simulations: assessing the dynamics of T cell receptor binding loops. Biophys J 2012; 103:2532-40. [PMID: 23260055 DOI: 10.1016/j.bpj.2012.10.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 10/23/2012] [Accepted: 10/31/2012] [Indexed: 11/21/2022] Open
Abstract
Time-resolved fluorescence anisotropy (TRFA) has a rich history in evaluating protein dynamics. Yet as often employed, TRFA assumes that the motional properties of a covalently tethered fluorescent probe accurately portray the motional properties of the protein backbone at the probe attachment site. In an extensive survey using TRFA to study the dynamics of the binding loops of a αβ T cell receptor, we observed multiple discrepancies between the TRFA data and previously published results that led us to question this assumption. We thus simulated several of the experimentally probed systems using a protocol that permitted accurate determination of probe and protein time correlation functions. We found excellent agreement in the decays of the experimental and simulated correlation functions. However, the motional properties of the probe were poorly correlated with those of the backbone of both the labeled and unlabeled protein. Our results warrant caution in the interpretation of TRFA data and suggest further studies to ascertain the extent to which probe dynamics reflect those of the protein backbone. Meanwhile, the agreement between experiment and computation validates the use of molecular dynamics simulations as an accurate tool for exploring the molecular motion of T cell receptors and their binding loops.
Collapse
|
18
|
Conformational dynamics of helix 8 in the GPCR rhodopsin controls arrestin activation in the desensitization process. Proc Natl Acad Sci U S A 2011; 108:18690-5. [PMID: 22039220 DOI: 10.1073/pnas.1015461108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arrestins are regulatory molecules for G-protein coupled receptor function. In visual rhodopsin, selective binding of arrestin to the cytoplasmic side of light-activated, phosphorylated rhodopsin (P-Rh*) terminates signaling via the G-protein transducin. While the "phosphate-sensor" of arrestin for the recognition of receptor-attached phosphates is identified, the molecular mechanism of arrestin binding and the involvement of receptor conformations in this process are still largely hypothetic. Here we used fluorescence pump-probe and time-resolved fluorescence depolarization measurements to investigate the kinetics of arrestin conformational changes and the corresponding nanosecond dynamical changes at the receptor surface. We show that at least two sequential conformational changes of arrestin occur upon interaction with P-Rh*, thus providing a kinetic proof for the suggested multistep nature of arrestin binding. At the cytoplasmic surface of P-Rh*, the structural dynamics of the amphipathic helix 8 (H8), connecting transmembrane helix 7 and the phosphorylated C-terminal tail, depends on the arrestin interaction state. We find that a high mobility of H8 is required in the low-affinity (prebinding) but not in the high-affinity binding state. High-affinity arrestin binding is inhibited when a bulky, inflexible group is bound to H8, indicating close interaction. We further show that this close steric interaction of H8 with arrestin is mandatory for the transition from prebinding to high-affinity binding; i.e., for arrestin activation. This finding implies a regulatory role for H8 in activation of visual arrestin, which shows high selectivity to P-Rh* in contrast to the broad receptor specificity displayed by the two nonvisual arrestins.
Collapse
|