1
|
Cancino-Diaz ME, Guerrero-Barajas C, Betanzos-Cabrera G, Cancino-Diaz JC. Nucleotides as Bacterial Second Messengers. Molecules 2023; 28:7996. [PMID: 38138485 PMCID: PMC10745434 DOI: 10.3390/molecules28247996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
In addition to comprising monomers of nucleic acids, nucleotides have signaling functions and act as second messengers in both prokaryotic and eukaryotic cells. The most common example is cyclic AMP (cAMP). Nucleotide signaling is a focus of great interest in bacteria. Cyclic di-AMP (c-di-AMP), cAMP, and cyclic di-GMP (c-di-GMP) participate in biological events such as bacterial growth, biofilm formation, sporulation, cell differentiation, motility, and virulence. Moreover, the cyclic-di-nucleotides (c-di-nucleotides) produced in pathogenic intracellular bacteria can affect eukaryotic host cells to allow for infection. On the other hand, non-cyclic nucleotide molecules pppGpp and ppGpp are alarmones involved in regulating the bacterial response to nutritional stress; they are also considered second messengers. These second messengers can potentially be used as therapeutic agents because of their immunological functions on eukaryotic cells. In this review, the role of c-di-nucleotides and cAMP as second messengers in different bacterial processes is addressed.
Collapse
Affiliation(s)
- Mario E. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| | - Claudia Guerrero-Barajas
- Departamento de Bioprocesos, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto, La Laguna Ticoman, Gustavo A. Madero, Ciudad de México 07340, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición y Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Actopan Camino a Tilcuautla s/n, Pueblo San Juan Tilcuautla, Pachuca Hidalgo 42160, Mexico;
| | - Juan C. Cancino-Diaz
- Departamentos Microbiología and Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Manuel Carpio, Plutarco Elías Calles, Miguel Hidalgo, Ciudad de México 11350, Mexico
| |
Collapse
|
2
|
Tanudjaja E, Hoshi N, Yamamoto K, Ihara K, Furuta T, Tsujii M, Ishimaru Y, Uozumi N. Two Trk/Ktr/HKT-type potassium transporters, TrkG and TrkH, perform distinct functions in Escherichia coli K-12. J Biol Chem 2022; 299:102846. [PMID: 36586436 PMCID: PMC9898762 DOI: 10.1016/j.jbc.2022.102846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Escherichia coli K-12 possesses two versions of Trk/Ktr/HKT-type potassium ion (K+) transporters, TrkG and TrkH. The current paradigm is that TrkG and TrkH have largely identical characteristics, and little information is available regarding their functional differences. Here, we show using cation uptake experiments with K+ transporter knockout mutants that TrkG and TrkH have distinct ion transport activities and physiological roles. K+-transport by TrkG required Na+, whereas TrkH-mediated K+ uptake was not affected by Na+. An aspartic acid located five residues away from a critical glycine in the third pore-forming region might be involved in regulation of Na+-dependent activation of TrkG. In addition, we found that TrkG but not TrkH had Na+ uptake activity. Our analysis of K+ transport mutants revealed that TrkH supported cell growth more than TrkG; however, TrkG was able to complement loss of TrkH-mediated K+ uptake in E. coli. Furthermore, we determined that transcription of trkG in E. coli was downregulated but not completely silenced by the xenogeneic silencing factor H-NS (histone-like nucleoid structuring protein or heat-stable nucleoid-structuring protein). Taken together, the transport function of TrkG is clearly distinct from that of TrkH, and TrkG seems to have been accepted by E. coli during evolution as a K+ uptake system that coexists with TrkH.
Collapse
Affiliation(s)
- Ellen Tanudjaja
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Naomi Hoshi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | | | - Kunio Ihara
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
3
|
Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals. J Fungi (Basel) 2022; 8:jof8050432. [PMID: 35628688 PMCID: PMC9144525 DOI: 10.3390/jof8050432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/04/2023] Open
Abstract
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1’s KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter’s transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane.
Collapse
|
4
|
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, Devlin JR, Stockbridge RB, Hänelt I. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol 2021; 433:166968. [PMID: 33798529 DOI: 10.1016/j.jmb.2021.166968] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Potassium ion homeostasis is essential for bacterial survival, playing roles in osmoregulation, pH homeostasis, regulation of protein synthesis, enzyme activation, membrane potential adjustment and electrical signaling. To accomplish such diverse physiological tasks, it is not surprising that a single bacterium typically encodes several potassium uptake and release systems. To understand the role each individual protein fulfills and how these proteins work in concert, it is important to identify the molecular details of their function. One needs to understand whether the systems transport ions actively or passively, and what mechanisms or ligands lead to the activation or inactivation of individual systems. Combining mechanistic information with knowledge about the physiology under different stress situations, such as osmostress, pH stress or nutrient limitation, one can identify the task of each system and deduce how they are coordinated with each other. By reviewing the general principles of bacterial membrane physiology and describing the molecular architecture and function of several bacterial K+-transporting systems, we aim to provide a framework for microbiologists studying bacterial potassium homeostasis and the many K+-translocating systems that are still poorly understood.
Collapse
Affiliation(s)
- Janina Stautz
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Yvonne Hellmich
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Michael F Fuss
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jakob M Silberberg
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jason R Devlin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Schrecker M, Wunnicke D, Hänelt I. How RCK domains regulate gating of K+ channels. Biol Chem 2020; 400:1303-1322. [PMID: 31361596 DOI: 10.1515/hsz-2019-0153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 07/02/2019] [Indexed: 11/15/2022]
Abstract
Potassium channels play a crucial role in the physiology of all living organisms. They maintain the membrane potential and are involved in electrical signaling, pH homeostasis, cell-cell communication and survival under osmotic stress. Many prokaryotic potassium channels and members of the eukaryotic Slo channels are regulated by tethered cytoplasmic domains or associated soluble proteins, which belong to the family of regulator of potassium conductance (RCK). RCK domains and subunits form octameric rings, which control ion gating. For years, a common regulatory mechanism was suggested: ligand-induced conformational changes in the octameric ring would pull open a gate in the pore via flexible linkers. Consistently, ligand-dependent conformational changes were described for various RCK gating rings. Yet, recent structural and functional data of complete ion channels uncovered that the following signal transduction to the pore domains is divers. The different RCK-regulated ion channels show remarkably heterogeneous mechanisms with neither the connection from the RCK domain to the pore nor the gate being conserved. Some channels even lack the flexible linkers, while in others the gate cannot easily be assigned. In this review we compare available structures of RCK-gated potassium channels, highlight the similarities and differences of channel gating, and delineate existing inconsistencies.
Collapse
Affiliation(s)
- Marina Schrecker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, D-60438 Frankfurt Main, Germany
| |
Collapse
|
6
|
Mikušević V, Schrecker M, Kolesova N, Patiño-Ruiz M, Fendler K, Hänelt I. A channel profile report of the unusual K + channel KtrB. J Gen Physiol 2019; 151:1357-1368. [PMID: 31624134 PMCID: PMC6888753 DOI: 10.1085/jgp.201912384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 09/03/2019] [Accepted: 09/27/2019] [Indexed: 11/20/2022] Open
Abstract
KtrAB is a key player in bacterial K+ uptake required for K+ homeostasis and osmoadaptation. The system is unique in structure and function. It consists of the K+-translocating channel subunit KtrB, which forms a dimer in the membrane, and the soluble regulatory subunit KtrA, which attaches to the cytoplasmic side of the dimer as an octameric ring conferring Na+ and ATP dependency to the system. Unlike most K+ channels, KtrB lacks the highly conserved T(X)GYG selectivity filter sequence. Instead, only a single glycine residue is found in each pore loop, which raises the question of how selective the ion channel is. Here, we characterized the KtrB subunit from the Gram-negative pathogen Vibrio alginolyticus by isothermal titration calorimetry, solid-supported membrane-based electrophysiology, whole-cell K+ uptake, and ACMA-based transport assays. We found that, despite its simple selectivity filter, KtrB selectively binds K+ with micromolar affinity. Rb+ and Cs+ bind with millimolar affinities. However, only K+ and the poorly binding Na+ are efficiently translocated, based on size exclusion by the gating loop. Importantly, the physiologically required K+ over Na+ selectivity is provided by the channel's high affinity for potassium, which interestingly results from the presence of the sodium ions themselves. In the presence of the KtrA subunit, sodium ions further decrease the Michaelis-Menten constant for K+ uptake from milli- to micromolar concentrations and increase the Vmax, suggesting that Na+ also facilitates channel gating. In conclusion, high binding affinity and facilitated K+ gating allow KtrAB to function as a selective K+ channel.
Collapse
Affiliation(s)
- Vedrana Mikušević
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Marina Schrecker
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Natalie Kolesova
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| | - Miyer Patiño-Ruiz
- Department of Biophysical Chemistry, Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Klaus Fendler
- Department of Biophysical Chemistry, Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
7
|
Hellwig N, Peetz O, Ahdash Z, Tascón I, Booth PJ, Mikusevic V, Diskowski M, Politis A, Hellmich Y, Hänelt I, Reading E, Morgner N. Native mass spectrometry goes more native: investigation of membrane protein complexes directly from SMALPs. Chem Commun (Camb) 2018; 54:13702-13705. [PMID: 30452022 PMCID: PMC6289172 DOI: 10.1039/c8cc06284f] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 01/07/2023]
Abstract
Other than more widely used methods, the use of styrene maleic acid allows the direct extraction of membrane proteins from the lipid bilayer into SMALPs keeping it in its native lipid surrounding. Here we present the combined use of SMALPs and LILBID-MS, allowing determination of oligomeric states of membrane proteins of different functionality directly from the native nanodiscs.
Collapse
Affiliation(s)
- Nils Hellwig
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| | - Oliver Peetz
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| | - Zainab Ahdash
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Igor Tascón
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Paula J. Booth
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Vedrana Mikusevic
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Marina Diskowski
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Argyris Politis
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Yvonne Hellmich
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Inga Hänelt
- Institute of Biochemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 9
, 60438 Frankfurt
, Germany
| | - Eamonn Reading
- Department of Chemistry
, King's College London
,
7 Trinity Street
, SE1 1DB
, London
, UK
| | - Nina Morgner
- Institute of Physical and Theoretical Chemistry
, Goethe University Frankfurt
,
Max-von-Laue-Straße 7
, 60438 Frankfurt
, Germany
.
| |
Collapse
|
8
|
Hoffmann T, Bremer E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol Chem 2017; 398:193-214. [PMID: 27935846 DOI: 10.1515/hsz-2016-0265] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.
Collapse
|
9
|
Ariyarathna HACK, Francki MG. Phylogenetic relationships and protein modelling revealed two distinct subfamilies of group II HKT genes between crop and model grasses. Genome 2016; 59:509-17. [PMID: 27203707 DOI: 10.1139/gen-2016-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular evolution of large protein families in closely related species can provide useful insights on structural functional relationships. Phylogenetic analysis of the grass-specific group II HKT genes identified two distinct subfamilies, I and II. Subfamily II was represented in all species, whereas subfamily I was identified only in the small grain cereals and possibly originated from an ancestral gene duplication post divergence from the coarse grain cereal lineage. The core protein structures were highly analogous despite there being no more than 58% amino acid identity between members of the two subfamilies. Distinctly variable regions in known functional domains, however, indicated functional divergence of the two subfamilies. The subsets of codons residing external to known functional domains predicted signatures of positive Darwinian selection potentially identifying new domains of functional divergence and providing new insights on the structural function and relationships between protein members of the two subfamilies.
Collapse
Affiliation(s)
- H A Chandima K Ariyarathna
- a School of Plant Biology and Institute of Agriculture, The University of Western Australia, Crawley WA 6009, Australia.,b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia
| | - Michael G Francki
- b State Agricultural Biotechnology Centre, Murdoch University, Murdoch WA 6150, Australia.,c Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth WA 6151, Australia
| |
Collapse
|
10
|
Moscoso JA, Schramke H, Zhang Y, Tosi T, Dehbi A, Jung K, Gründling A. Binding of Cyclic Di-AMP to the Staphylococcus aureus Sensor Kinase KdpD Occurs via the Universal Stress Protein Domain and Downregulates the Expression of the Kdp Potassium Transporter. J Bacteriol 2016; 198:98-110. [PMID: 26195599 PMCID: PMC4686210 DOI: 10.1128/jb.00480-15] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Nucleotide signaling molecules are important intracellular messengers that regulate a wide range of biological functions. The human pathogen Staphylococcus aureus produces the signaling nucleotide cyclic di-AMP (c-di-AMP). This molecule is common among Gram-positive bacteria and in many organisms is essential for survival under standard laboratory growth conditions. In this study, we investigated the interaction of c-di-AMP with the S. aureus KdpD protein. The sensor kinase KdpD forms a two-component signaling system with the response regulator KdpE and regulates the expression of the kdpDE genes and the kdpFABC operon coding for the Kdp potassium transporter components. Here we show that the S. aureus KdpD protein binds c-di-AMP specifically and with an affinity in the micromolar range through its universal stress protein (USP) domain. This domain is located within the N-terminal cytoplasmic region of KdpD, and amino acids of a conserved SXS-X20-FTAXY motif are important for this binding. We further show that KdpD2, a second KdpD protein found in some S. aureus strains, also binds c-di-AMP, and our bioinformatics analysis indicates that a subclass of KdpD proteins in c-di-AMP-producing bacteria has evolved to bind this signaling nucleotide. Finally, we show that c-di-AMP binding to KdpD inhibits the upregulation of the kdpFABC operon under salt stress, thus indicating that c-di-AMP is a negative regulator of potassium uptake in S. aureus. IMPORTANCE Staphylococcus aureus is an important human pathogen and a major cause of food poisoning in Western countries. A common method for food preservation is the use of salt to drive dehydration. This study sheds light on the regulation of potassium uptake in Staphylococcus aureus, an important aspect of this bacterium's ability to tolerate high levels of salt. We show that the signaling nucleotide c-di-AMP binds to a regulatory component of the Kdp potassium uptake system and that this binding has an inhibitory effect on the expression of the kdp genes encoding a potassium transporter. c-di-AMP binds to the USP domain of KdpD, thus providing for the first time evidence for the ability of such a domain to bind a cyclic dinucleotide.
Collapse
Affiliation(s)
- Joana A Moscoso
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Hannah Schramke
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yong Zhang
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Tommaso Tosi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Amina Dehbi
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| | - Kirsten Jung
- Center for Integrated Protein Science (CiPSM), Department of Biology I, Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Angelika Gründling
- Section of Microbiology and MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Diskowski M, Mikusevic V, Stock C, Hänelt I. Functional diversity of the superfamily of K+ transporters to meet various requirements. Biol Chem 2015; 396:1003-14. [DOI: 10.1515/hsz-2015-0123] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 03/26/2015] [Indexed: 01/12/2023]
Abstract
Abstract
The superfamily of K+ transporters unites proteins from plants, fungi, bacteria, and archaea that translocate K+ and/or Na+ across membranes. These proteins are key components in osmotic regulation, pH homeostasis, and resistance to high salinity and dryness. The members of the superfamily are closely related to K+ channels such as KcsA but also show several striking differences that are attributed to their altered functions. This review highlights these functional differences, focusing on the bacterial superfamily members KtrB, TrkH, and KdpA. The functional variations within the family and comparison to MPM-type K+ channels are discussed in light of the recently solved structures of the Ktr and Trk systems.
Collapse
|
12
|
Kim H, Youn SJ, Kim SO, Ko J, Lee JO, Choi BS. Structural Studies of Potassium Transport Protein KtrA Regulator of Conductance of K+ (RCK) C Domain in Complex with Cyclic Diadenosine Monophosphate (c-di-AMP). J Biol Chem 2015; 290:16393-402. [PMID: 25957408 DOI: 10.1074/jbc.m115.641340] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
Although it was only recently identified as a second messenger, c-di-AMP was found to have fundamental importance in numerous bacterial functions such as ion transport. The potassium transporter protein, KtrA, was identified as a c-di-AMP receptor. However, the co-crystallization of c-di-AMP with the protein has not been studied. Here, we determined the crystal structure of the KtrA RCK_C domain in complex with c-di-AMP. The c-di-AMP nucleotide, which adopts a U-shaped conformation, is bound at the dimer interface of RCK_C close to helices α3 and α4. c-di-AMP interacts with KtrA RCK_C mainly by forming hydrogen bonds and hydrophobic interactions. c-di-AMP binding induces the contraction of the dimer, bringing the two monomers of KtrA RCK_C into close proximity. The KtrA RCK_C was able to interact with only c-di-AMP, but not with c-di-GMP, 3',3-cGAMP, ATP, and ADP. The structure of the KtrA RCK_C domain and c-di-AMP complex would expand our understanding about the mechanism of inactivation in Ktr transporters governed by c-di-AMP.
Collapse
Affiliation(s)
- Henna Kim
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Suk-Jun Youn
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Seong Ok Kim
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Junsang Ko
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Jie-Oh Lee
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Byong-Seok Choi
- From the Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
13
|
Baxter BK, Gunde-Cimerman N, Oren A. Salty sisters: The women of halophiles. Front Microbiol 2014; 5:192. [PMID: 24926287 PMCID: PMC4045239 DOI: 10.3389/fmicb.2014.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/10/2014] [Indexed: 01/02/2023] Open
Abstract
A history of halophile research reveals the commitment of scientists to uncovering the secrets of the limits of life, in particular life in high salt concentration and under extreme osmotic pressure. During the last 40 years, halophile scientists have indeed made important contributions to extremophile research, and prior international halophiles congresses have documented both the historical and the current work. During this period of salty discoveries, female scientists, in general, have grown in number worldwide. But those who worked in the field when there were small numbers of women sometimes saw their important contributions overshadowed by their male counterparts. Recent studies suggest that modern female scientists experience gender bias in matters such as conference invitations and even representation among full professors. In the field of halophilic microbiology, what is the impact of gender bias? How has the participation of women changed over time? What do women uniquely contribute to this field? What are factors that impact current female scientists to a greater degree? This essay emphasizes the “her story” (not “history”) of halophile discovery.
Collapse
Affiliation(s)
- Bonnie K Baxter
- Great Salt Lake Institute, Westminster College Salt Lake City, UT, USA
| | - Nina Gunde-Cimerman
- Molecular Genetics and Microbiology, University of Ljubljana Ljubljana, Slovenia ; Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Edmond J. Safra Campus, The Hebrew University of Jerusalem Givat Ram, Israel
| |
Collapse
|
14
|
Role for cis-acting RNA sequences in the temperature-dependent expression of the multiadhesive lig proteins in Leptospira interrogans. J Bacteriol 2013; 195:5092-101. [PMID: 24013626 DOI: 10.1128/jb.00663-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The spirochete Leptospira interrogans causes a systemic infection that provokes a febrile illness. The putative lipoproteins LigA and LigB promote adhesion of Leptospira to host proteins, interfere with coagulation, and capture complement regulators. In this study, we demonstrate that the expression level of the LigA and LigB proteins was substantially higher when L. interrogans proliferated at 37°C instead of the standard culture temperature of 30°C. The RNA comprising the 175-nucleotide 5' untranslated region (UTR) and first six lig codons, whose sequence is identical in ligA and ligB, is predicted to fold into two distinct stem-loop structures separated by a single-stranded region. The ribosome-binding site is partially sequestered in double-stranded RNA within the second structure. Toeprint analysis revealed that in vitro formation of a 30S-tRNA(fMet)-mRNA ternary complex was inhibited unless a 5' deletion mutation disrupted the second stem-loop structure. To determine whether the lig sequence could mediate temperature-regulated gene expression in vivo, the 5' UTR and the first six codons were inserted between the Escherichia coli l-arabinose promoter and bgaB (β-galactosidase from Bacillus stearothermophilus) to create a translational fusion. The lig fragment successfully conferred thermoregulation upon the β-galactosidase reporter in E. coli. The second stem-loop structure was sufficient to confer thermoregulation on the reporter, while sequences further upstream in the 5' UTR slightly diminished expression at each temperature tested. Finally, the expression level of β-galactosidase was significantly higher when point mutations predicted to disrupt base pairs in the second structure were introduced into the stem. Compensatory mutations that maintained base pairing of the stem without restoring the wild-type sequence reinstated the inhibitory effect of the 5' UTR on expression. These results indicate that ligA and ligB expression is limited by double-stranded RNA that occludes the ribosome-binding site. At elevated temperatures, the ribosome-binding site is exposed to promote translation initiation.
Collapse
|
15
|
Corrigan RM, Gründling A. Cyclic di-AMP: another second messenger enters the fray. Nat Rev Microbiol 2013; 11:513-24. [PMID: 23812326 DOI: 10.1038/nrmicro3069] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nucleotide signalling molecules contribute to the regulation of cellular pathways in all forms of life. In recent years, the discovery of new signalling molecules in bacteria and archaea, as well as the elucidation of the pathways they regulate, has brought insights into signalling mechanisms not only in bacterial and archaeal cells but also in eukaryotic host cells. Here, we provide an overview of the synthesis and regulation of cyclic di-AMP (c-di-AMP), one of the latest cyclic nucleotide second messengers to be discovered in bacteria. We also discuss the currently known receptor proteins and pathways that are directly or indirectly controlled by c-di-AMP, the domain structure of the enzymes involved in its production and degradation, and the recognition of c-di-AMP by the eukaryotic host.
Collapse
Affiliation(s)
- Rebecca M Corrigan
- Section of Microbiology and Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, UK
| | | |
Collapse
|
16
|
Systematic identification of conserved bacterial c-di-AMP receptor proteins. Proc Natl Acad Sci U S A 2013; 110:9084-9. [PMID: 23671116 DOI: 10.1073/pnas.1300595110] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nucleotide signaling molecules are important messengers in key pathways that allow cellular responses to changing environments. Canonical secondary signaling molecules act through specific receptor proteins by direct binding to alter their activity. Cyclic diadenosine monophosphate (c-di-AMP) is an essential signaling molecule in bacteria that has only recently been discovered. Here we report on the identification of four Staphylococcus aureus c-di-AMP receptor proteins that are also widely distributed among other bacteria. Using an affinity pull-down assay we identified the potassium transporter-gating component KtrA as a c-di-AMP receptor protein, and it was further shown that this protein, together with c-di-AMP, enables S. aureus to grow in low potassium conditions. We defined the c-di-AMP binding activity within KtrA to the RCK_C (regulator of conductance of K(+)) domain. This domain is also found in a second S. aureus protein, a predicted cation/proton antiporter, CpaA, which as we show here also directly binds c-di-AMP. Because RCK_C domains are found in proteinaceous channels, transporters, and antiporters from all kingdoms of life, these findings have broad implications for the regulation of different pathways through nucleotide-dependent signaling. Using a genome-wide nucleotide protein interaction screen we further identified the histidine kinase protein KdpD that in many bacteria is also involved in the regulation of potassium transport and a PII-like signal transduction protein, which we renamed PstA, as c-di-AMP binding proteins. With the identification of these widely distributed c-di-AMP receptor proteins we link the c-di-AMP signaling network to a central metabolic process in bacteria.
Collapse
|
17
|
The structure of the KtrAB potassium transporter. Nature 2013; 496:323-8. [PMID: 23598340 DOI: 10.1038/nature12055] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 03/05/2013] [Indexed: 12/23/2022]
Abstract
In bacteria, archaea, fungi and plants the Trk, Ktr and HKT ion transporters are key components of osmotic regulation, pH homeostasis and resistance to drought and high salinity. These ion transporters are functionally diverse: they can function as Na(+) or K(+) channels and possibly as cation/K(+) symporters. They are closely related to potassium channels both at the level of the membrane protein and at the level of the cytosolic regulatory domains. Here we describe the crystal structure of a Ktr K(+) transporter, the KtrAB complex from Bacillus subtilis. The structure shows the dimeric membrane protein KtrB assembled with a cytosolic octameric KtrA ring bound to ATP, an activating ligand. A comparison between the structure of KtrAB-ATP and the structures of the isolated full-length KtrA protein with ATP or ADP reveals a ligand-dependent conformational change in the octameric ring, raising new ideas about the mechanism of activation in these transporters.
Collapse
|