1
|
Liu OX, Lin LB, Bunk S, Chew T, Wu SK, Motegi F, Low BC. A ZO-2 scaffolding mechanism regulates the Hippo signalling pathway. FEBS J 2024. [PMID: 39462647 DOI: 10.1111/febs.17304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
Contact inhibition of proliferation is a critical cell density control mechanism governed by the Hippo signalling pathway. The biochemical signalling underlying cell density-dependent cues regulating Hippo signalling and its downstream effectors, YAP, remains poorly understood. Here, we reveal that the tight junction protein ZO-2 is required for the contact-mediated inhibition of proliferation. We additionally determined that the well-established molecular players of this process, namely Hippo kinase LATS1 and YAP, are regulated by ZO-2 and that the scaffolding function of ZO-2 promotes the interaction with and phosphorylation of YAP by LATS1. Mechanistically, YAP is phosphorylated when ZO-2 brings LATS1 and YAP together via its SH3 and PDZ domains, respectively, subsequently leading to the cytoplasmic retention and inactivation of YAP. In conclusion, we demonstrate that ZO-2 maintains Hippo signalling pathway activation by promoting the stability of LATS1 to inactivate YAP.
Collapse
Affiliation(s)
- Olivia Xuan Liu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | - Soumya Bunk
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Tiweng Chew
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Selwin K Wu
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Fumio Motegi
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life-Sciences Laboratory, Singapore, Singapore
- Institute for Genetic Medicine, Hokkaido University, Japan
| | - Boon Chuan Low
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS College, National University of Singapore, Singapore
| |
Collapse
|
2
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
3
|
Morris T, Sue E, Geniesse C, Brieher WM, Tang VW. Synaptopodin stress fiber and contractomere at the epithelial junction. J Cell Biol 2022; 221:e202011162. [PMID: 35416930 PMCID: PMC9011326 DOI: 10.1083/jcb.202011162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 10/07/2021] [Accepted: 02/09/2022] [Indexed: 12/27/2022] Open
Abstract
The apical junction of epithelial cells can generate force to control cell geometry and perform contractile processes while maintaining barrier function and adhesion. Yet, the structural basis for force generation at the apical junction is not fully understood. Here, we describe two synaptopodin-dependent actomyosin structures that are spatially, temporally, and structurally distinct. The first structure is formed by the retrograde flow of synaptopodin initiated at the apical junction, creating a sarcomeric stress fiber that lies parallel to the apical junction. Contraction of the apical stress fiber is associated with either clustering of membrane components or shortening of junctional length. Upon junction maturation, apical stress fibers are disassembled. In mature epithelial monolayer, a motorized "contractomere" capable of "walking the junction" is formed at the junctional vertex. Actomyosin activities at the contractomere produce a compressive force evident by actin filament buckling and measurement with a new α-actinin-4 force sensor. The motility of contractomeres can adjust junctional length and change cell packing geometry during cell extrusion and intercellular movement. We propose a model of epithelial homeostasis that utilizes contractomere motility to support junction rearrangement while preserving the permeability barrier.
Collapse
Affiliation(s)
- Timothy Morris
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Eva Sue
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Caleb Geniesse
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - William M Brieher
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL
| |
Collapse
|
4
|
The intercalated disc: a mechanosensing signalling node in cardiomyopathy. Biophys Rev 2020; 12:931-946. [PMID: 32661904 PMCID: PMC7429531 DOI: 10.1007/s12551-020-00737-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiomyocytes, the cells generating contractile force in the heart, are connected to each other through a highly specialised structure, the intercalated disc (ID), which ensures force transmission and transduction between neighbouring cells and allows the myocardium to function in synchrony. In addition, cardiomyocytes possess an intrinsic ability to sense mechanical changes and to regulate their own contractile output accordingly. To achieve this, some of the components responsible for force transmission have evolved to sense changes in tension and to trigger a biochemical response that results in molecular and cellular changes in cardiomyocytes. This becomes of particular importance in cardiomyopathies, where the heart is exposed to increased mechanical load and needs to adapt to sustain its contractile function. In this review, we will discuss key mechanosensing elements present at the intercalated disc and provide an overview of the signalling molecules involved in mediating the responses to changes in mechanical force.
Collapse
|
5
|
Langford MB, O'Leary CJ, Veeraval L, White A, Lanoue V, Cooper HM. WNT5a Regulates Epithelial Morphogenesis in the Developing Choroid Plexus. Cereb Cortex 2020; 30:3617-3631. [PMID: 31912879 DOI: 10.1093/cercor/bhz330] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is the predominant supplier of cerebral spinal fluid (CSF) and the site of the blood-CSF barrier and is thus essential for brain development and central nervous system homeostasis. Despite these crucial roles, our understanding of the molecular and cellular processes giving rise to the CPs within the ventricles of the mammalian brain is very rudimentary. Here, we identify WNT5a as an important regulator of CP development, where it acts as a pivotal factor driving CP epithelial morphogenesis in all ventricles. We show that WNT5a is essential for the establishment of a cohesive epithelium in the developing CP. We find that in its absence all CPs are substantially reduced in size and complexity and fail to expand into the ventricles. Severe defects were observed in the epithelial cytoarchitecture of all Wnt5a-/- CPs, exemplified by loss of apicobasally polarized morphology and detachment from the ventricular surface and/or basement membrane. We also present evidence that the WNT5a receptor, RYK, and the RHOA kinase, ROCK, are required for normal CP epithelial morphogenesis. Our study, therefore, reveals important insights into the molecular and cellular mechanisms governing CP development.
Collapse
Affiliation(s)
- Michael B Langford
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Conor J O'Leary
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Lenin Veeraval
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Amanda White
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| | - Vanessa Lanoue
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and.,Victor Chang Cardiac Research Institute, Darlinghurst 2010, Australia
| | - Helen M Cooper
- The University of Queensland, Queensland Brain Institute, Brisbane 4072, Australia and
| |
Collapse
|
6
|
aPKCi triggers basal extrusion of luminal mammary epithelial cells by tuning contractility and vinculin localization at cell junctions. Proc Natl Acad Sci U S A 2019; 116:24108-24114. [PMID: 31699818 PMCID: PMC6883778 DOI: 10.1073/pnas.1906779116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study shows that an oncogenic mammary epithelial cell surrounded by normal cells can extrude basally in vivo and invade surrounding tissues without formation of a primary tumor. Here, we show that overexpression of the key polarity protein atypical protein kinase C ι (aPKCi) is sufficient for triggering basally oriented epithelial cell extrusion and early cell invasion into the mammary gland stroma. Moreover, we highlight the importance of the difference between the mechanical properties of aPKCi-overexpressing cells and those of the normal surrounding cells associated with the decrease of vinculin at the cell junction, which triggers cell segregation, the first step toward promoting and controlling the direction of cell extrusion. Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell–substratum contacts. Overall, this study shows that a balance between cell contractility and cell–cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.
Collapse
|
7
|
Abstract
For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, miR-21, is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins-without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.
Collapse
Affiliation(s)
- Michael Sheetz
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore 117411
- Molecular MechanoMedicine Program and Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA;
| |
Collapse
|
8
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
9
|
Abstract
It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.
Collapse
Affiliation(s)
- Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion Israel Institute of Technology, Haifa, Israel 31096;
| | - Bo Yang
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore;
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; .,Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
10
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
11
|
Kannan N, Tang VW. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. J Cell Sci 2018; 131:jcs.211334. [PMID: 29748378 DOI: 10.1242/jcs.211334] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.
Collapse
Affiliation(s)
- Nivetha Kannan
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| |
Collapse
|
12
|
Gao X, Acharya BR, Engl WCO, De Mets R, Thiery JP, Yap AS, Viasnoff V. Probing compression versus stretch activated recruitment of cortical actin and apical junction proteins using mechanical stimulations of suspended doublets. APL Bioeng 2018; 2:026111. [PMID: 31069308 PMCID: PMC6481720 DOI: 10.1063/1.5025216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/14/2018] [Indexed: 11/25/2022] Open
Abstract
We report an experimental approach to study the mechanosensitivity of cell-cell contact upon mechanical stimulation in suspended cell-doublets. The doublet is placed astride an hourglass aperture, and a hydrodynamic force is selectively exerted on only one of the cells. The geometry of the device concentrates the mechanical shear over the junction area. Together with mechanical shear, the system also allows confocal quantitative live imaging of the recruitment of junction proteins (e.g., E-cadherin, ZO-1, occludin, and actin). We observed the time sequence over which proteins were recruited to the stretched region of the contact. The compressed side of the contact showed no response. We demonstrated how this mechanism polarizes the stress-induced recruitment of junctional components within one single junction. Finally, we demonstrated that stabilizing the actin cortex dynamics abolishes the mechanosensitive response of the junction. Our experimental design provides an original approach to study the role of mechanical force at a cell-cell contact with unprecedented control over stress application and quantitative optical analysis.
Collapse
Affiliation(s)
- Xumei Gao
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Bipul R Acharya
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Wilfried Claude Otto Engl
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Richard De Mets
- Mechanobiology Institute, Singapore, Level 5, T-Lab Building, 5A Engineering Drive 1, Singapore 117411
| | - Jean Paul Thiery
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos building, Singapore 138673
| | - Alpha S Yap
- Division of Cell Biology and Molecular Medicine, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
13
|
Abstract
The lateral membrane plays an important role in the mechanical stability of epithelial cell sheet in steady state. In addition, the lateral membrane is continuously remodeled during dynamic processes such as cell extrusion, cytokinesis, and intercellular cell movement. In wound healing, the lateral membrane must be built from flat and spread cells that had crawled into the area of the wound. Thus, forming the lateral membrane is a phenomenon that occurs not only in development but also during homeostatic maintenance and regeneration of differentiated epithelial tissues.
Collapse
Affiliation(s)
- Vivian Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
14
|
Sigley J, Jarzen J, Scarpinato K, Guthold M, Pu T, Nelli D, Low J, Bonin K. Diffusion and Binding of Mismatch Repair Protein, MSH2, in Breast Cancer Cells at Different Stages of Neoplastic Transformation. PLoS One 2017; 12:e0170414. [PMID: 28125613 PMCID: PMC5268495 DOI: 10.1371/journal.pone.0170414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/04/2017] [Indexed: 12/19/2022] Open
Abstract
The interior of cells is a highly complex medium, containing numerous organelles, a matrix of different fibers and a viscous, aqueous fluid of proteins and small molecules. The interior of cells is also a highly dynamic medium, in which many components move, either by active transport or passive diffusion. The mobility and localization of proteins inside cells can provide important insights into protein function and also general cellular properties, such as viscosity. Neoplastic transformation affects numerous cellular properties, and our goal was to investigate the diffusional and binding behavior of the important mismatch repair (MMR) protein MSH2 in live human cells at various stages of neoplastic transformation. Toward this end, noncancerous, immortal, tumorigenic, and metastatic mammary epithelial cells were transfected with EGFP and EGFP-tagged MSH2. MSH2 forms two MMR proteins (MutSα and MutSβ) and we assume MSH2 is in the complex MutSα, though our results are similar in either case. Unlike the MutS complexes that bind to nuclear DNA, EGFP diffuses freely. EGFP and MutSα-EGFP diffusion coefficients were determined in the cytoplasm and nucleus of each cell type using fluorescence recovery after photobleaching. Diffusion coefficients were 14-24 μm2/s for EGFP and 3-7 μm2/s for MutSα-EGFP. EGFP diffusion increased in going from noncancerous to immortal cells, indicating a decrease in viscosity, with smaller changes in subsequent stages. MutSα produces an effective diffusion coefficient that, coupled with the free EGFP diffusion measurements, can be used to extract a pure diffusion coefficient and a pseudo-equilibrium constant K*. The MutSα nuclear K* increased sixfold in the first stage of cancer and then decreased in the more advanced stages. The ratio of nuclear to cytoplasmic K*for MutSα increased almost two orders of magnitude in going from noncancerous to immortal cells, suggesting that this quantity may be a sensitive metric for recognizing the onset of cancer.
Collapse
Affiliation(s)
- Justin Sigley
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - John Jarzen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Karin Scarpinato
- OVPR, University of Miami, Miami, Florida, United States of America
| | - Martin Guthold
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Tracey Pu
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Daniel Nelli
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Josiah Low
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Wu SK, Lagendijk AK, Hogan BM, Gomez GA, Yap AS. Active contractility at E-cadherin junctions and its implications for cell extrusion in cancer. Cell Cycle 2015; 14:315-22. [PMID: 25590779 DOI: 10.4161/15384101.2014.989127] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cellular contractility regulates tissue cohesion and morphogenesis. In epithelia, E-cadherin adhesion couples the contractile cortices of neighboring cells together to produce tension at junctions that can be transmitted across the epithelium in a planar fashion. We have recently demonstrated that contractility is also patterned in the apical-lateral axis within epithelial junctions. Our findings highlight the role that cytoskeletal regulation plays in controlling the levels of intra-junctional tension. Of note, dysregulation of this apicolateral pattern of tension can drive oncogenic cell extrusion. In this article, we provide a detailed description of the actomyosin cytoskeleton organization during oncogenic extrusion and discuss the implications of cell extrusion in cancer.
Collapse
Affiliation(s)
- Selwin K Wu
- a Divisions of Cell Biology and Molecular Medicine ; The University of Queensland ; St. Lucia , Brisbane , Australia
| | | | | | | | | |
Collapse
|
16
|
Papadopulos A, Gomez GA, Martin S, Jackson J, Gormal RS, Keating DJ, Yap AS, Meunier FA. Activity-driven relaxation of the cortical actomyosin II network synchronizes Munc18-1-dependent neurosecretory vesicle docking. Nat Commun 2015; 6:6297. [DOI: 10.1038/ncomms7297] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023] Open
|
17
|
R. Noppe A, Roberts AP, Yap AS, Gomez GA, Neufeld Z. Modelling wound closure in an epithelial cell sheet using the cellular Potts model. Integr Biol (Camb) 2015; 7:1253-64. [DOI: 10.1039/c5ib00053j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We use a two-dimensional cellular Potts model to represent the behavior of an epithelial cell layer and describe its dynamics in response to a microscopic wound.
Collapse
Affiliation(s)
- Adrian R. Noppe
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| | - Anthony P. Roberts
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| | - Alpha S. Yap
- Institute for Molecular Bioscience
- Division of Cell Biology and Molecular Medicine
- The University of Queensland
- Brisbane
- Australia 4072
| | - Guillermo A. Gomez
- Institute for Molecular Bioscience
- Division of Cell Biology and Molecular Medicine
- The University of Queensland
- Brisbane
- Australia 4072
| | - Zoltan Neufeld
- School of Mathematics and Physics
- The University of Queensland
- Brisbane
- Australia 4072
| |
Collapse
|
18
|
Moore T, Wu SK, Michael M, Yap AS, Gomez GA, Neufeld Z. Self-organizing actomyosin patterns on the cell cortex at epithelial cell-cell junctions. Biophys J 2014; 107:2652-61. [PMID: 25468344 PMCID: PMC4255218 DOI: 10.1016/j.bpj.2014.10.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/28/2014] [Accepted: 10/28/2014] [Indexed: 10/24/2022] Open
Abstract
The behavior of actomyosin critically determines morphologically distinct patterns of contractility found at the interface between adherent cells. One such pattern is found at the apical region (zonula adherens) of cell-cell junctions in epithelia, where clusters of the adhesion molecule E-cadherin concentrate in a static pattern. Meanwhile, E-cadherin clusters throughout lateral cell-cell contacts display dynamic movements in the plane of the junctions. To gain insight into the principles that determine the nature and organization of these dynamic structures, we analyze this behavior by modeling the 2D actomyosin cell cortex as an active fluid medium. The numerical simulations show that the stability of the actin filaments influences the spatial structure and dynamics of the system. We find that in addition to static Turing-type patterns, persistent dynamic behavior occurs in a wide range of parameters. In the 2D model, mechanical stress-dependent actin breakdown is shown to produce a continuously changing network of actin bridges, whereas with a constant breakdown rate, more isolated clusters of actomyosin tend to form. The model qualitatively reproduces the dynamic and stable patterns experimentally observed at the junctions between epithelial cells.
Collapse
Affiliation(s)
- Thomas Moore
- School of Mathematics and Physics, The University of Queensland, Brisbane, Australia
| | - Selwin K Wu
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Magdalene Michael
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Guillermo A Gomez
- Division of Molecular Cell Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, Brisbane, Australia.
| |
Collapse
|