1
|
Tocci P, Caprara V, Roman C, Sestito R, Rosanò L, Bagnato A. YAP signaling orchestrates the endothelin-1-guided invadopodia formation in high-grade serous ovarian cancer. Biosci Rep 2024; 44:BSR20241320. [PMID: 39495612 DOI: 10.1042/bsr20241320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/06/2024] Open
Abstract
The high-grade serous ovarian cancer (HG-SOC) is a notoriously challenging disease, characterized by a rapid peritoneal dissemination. HG-SOC cells leverage actin-rich membrane protrusions, known as invadopodia, to degrade the surrounding extracellular matrix (ECM) and invade, initiating the metastatic cascade. In HG-SOC, the endothelin-1 (ET-1)/endothelin A receptor (ETAR)-driven signaling coordinates invadopodia activity, however how this axis integrates pro-oncogenic signaling routes, as YAP-driven one, impacting on the invadopodia-mediated ECM degradation and metastatic progression, deserves a deeper investigation. Herein, we observed that downstream of the ET-1/ET-1R axis, the RhoC and Rac1 GTPases, acting as signaling intermediaries, promote the de-phosphorylation and nuclear accumulation of YAP. Conversely, the treatment with the dual ETA/ETB receptor antagonist, macitentan, inhibits the ET-1-driven YAP activity. Similarly, RhoC silencing, or cell transfection with a dominant inactive form of Rac1, restores YAP phosphorylation. Mechanistically, the ET-1R/YAP signal alliance coordinates invadopodia maturation into ECM-degrading structures, indicating how such ET-1R-guided protein network represents a route able to enhance the HG-SOC invasive potential. At functional level, we found that the interconnection between the ET-1R/RhoC and YAP signals is required for MMP-2 and MMP-9 proteolytic functions, cell invasion, and cytoskeleton architecture changes, supporting the HG-SOC metastatic strength. In HG-SOC patient-derived xenografts (PDX) macitentan, turning-off the invadopodia regulators RhoC/YAP, halts the metastatic colonization. ET-1R targeting, hindering the YAP activity, weakens the invadopodia machinery, embodying a promising therapeutic avenue to prevent peritoneal dissemination in HG-SOC.
Collapse
Affiliation(s)
- Piera Tocci
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Valentina Caprara
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Celia Roman
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), Rome 00185, Italy
| | - Anna Bagnato
- Preclinical Models and New Therapeutic Agents Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
2
|
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K, Arend RC. Targeted therapy in high grade serous ovarian Cancer: A literature review. Gynecol Oncol Rep 2024; 54:101450. [PMID: 39092168 PMCID: PMC11292514 DOI: 10.1016/j.gore.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Ovarian cancer continues to have a high mortality rate despite therapeutic advances. Traditionally, treatment has focused on surgery followed by systemic platinum- based chemotherapy. Unfortunately, most patients develop resistance to platinum agents, highlighting the need for targeted therapies. PARP inhibitors and anti-angiogenic agents, such as bevacizumab, have more recently changed upfront therapy. Unfortunately, other targeted therapies including immunotherapy have not seen the same success. Emerging therapeutic targets and modalities such as small molecule tyrosine kinase inhibitors, lipid metabolism targeting agents, gene therapy, ribosome targeted drugs as well as several other therapeutic classes have been and are currently under investigation. In this review, we discuss targeted therapies in high grade serous ovarian cancer from preclinical studies to phase III clinical trials.
Collapse
Affiliation(s)
- Kaitlyn Dinkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Wade Barton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren Wheeler
- Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL
| | - Haller J. Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karthikeyan Mythreye
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
3
|
Sanchez C, Ramirez A, Hodgson L. Unravelling molecular dynamics in living cells: Fluorescent protein biosensors for cell biology. J Microsc 2024. [PMID: 38357769 PMCID: PMC11324865 DOI: 10.1111/jmi.13270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Genetically encoded, fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are microscopy imaging tools tailored for the precise monitoring and detection of molecular dynamics within subcellular microenvironments. They are characterised by their ability to provide an outstanding combination of spatial and temporal resolutions in live-cell microscopy. In this review, we begin by tracing back on the historical development of genetically encoded FP labelling for detection in live cells, which lead us to the development of early biosensors and finally to the engineering of single-chain FRET-based biosensors that have become the state-of-the-art today. Ultimately, this review delves into the fundamental principles of FRET and the design strategies underpinning FRET-based biosensors, discusses their diverse applications and addresses the distinct challenges associated with their implementation. We place particular emphasis on single-chain FRET biosensors for the Rho family of guanosine triphosphate hydrolases (GTPases), pointing to their historical role in driving our understanding of the molecular dynamics of this important class of signalling proteins and revealing the intricate relationships and regulatory mechanisms that comprise Rho GTPase biology in living cells.
Collapse
Affiliation(s)
- Colline Sanchez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Andrea Ramirez
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Louis Hodgson
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Zeng C, Li H, Liang W, Chen J, Zhang Y, Zhang H, Xiao H, Li Y, Guan H. Loss of STARD13 contributes to aggressive phenotype transformation and poor prognosis in papillary thyroid carcinoma. Endocrine 2024; 83:127-141. [PMID: 37541962 DOI: 10.1007/s12020-023-03468-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored. METHODS The gene expression and clinical information of thyroid cancer were downloaded using "TCGAbiolinks" R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting. RESULTS In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT). CONCLUSION Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.
Collapse
Affiliation(s)
- Chuimian Zeng
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hai Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Junxin Chen
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hanrong Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haipeng Xiao
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
5
|
Meng K, Hu Y, Wang D, Li Y, Shi F, Lu J, Wang Y, Cao Y, Zhang CZ, He QY. EFHD1, a novel mitochondrial regulator of tumor metastasis in clear cell renal cell carcinoma. Cancer Sci 2023; 114:2029-2040. [PMID: 36747492 PMCID: PMC10154798 DOI: 10.1111/cas.15749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
The biological function of many mitochondrial proteins in mechanistic detail has not been well investigated in clear cell renal cell carcinoma (ccRCC). A seven-mitochondrial-gene signature was generated by Lasso regression analysis to improve the prediction of prognosis of patients with ccRCC, using The Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium cohort. Among those seven genes, EFHD1 is less studied and its role in the progression of ccRCC remains unknown. The decreased expression of EFHD1 was validated in clinical samples and was correlated with unfavorable outcome. Overexpression of EFHD1 in ccRCC cells resulted in the reduction of mitochondrial Ca2+ , and the inhibition of cell migration and invasion in vitro and tumor metastasis in vivo. Mechanistically, EFHD1 physically bound to the core mitochondrial calcium transporter (mitochondrial calcium uniporter, MCU) through its N-terminal domain. The interaction between EFHD1 and MCU suppressed the uptake of Ca2+ into mitochondria, and deactivated the Hippo/YAP signaling pathway. Further data revealed that the ectopic expression of EFHD1 upregulated STARD13 to enhance the phosphorylation of YAP protein at Ser-127. The knockdown of STARD13 or the overexpression of MCU partly abrogated the EFHD1-mediated induction of phosphorylation of YAP at Ser-127 and suppression of cell migration. Taken together, the newly identified EFHD1-MCU-STARD13 axis participates in the modulation of the Hippo/YAP pathway and serves as a novel regulator in the progression of ccRCC.
Collapse
Affiliation(s)
- Kun Meng
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuyu Hu
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Dingkang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yuying Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Fujin Shi
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jiangli Lu
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yang Wang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Yun Cao
- Department of Pathology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chris Zhiyi Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China.,The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|