1
|
Grinco M, Marina AG, Bîrcă N, Boșcanean D, Barba A, Gîrbu V, Ungur N, Kulcițki V. Simultaneous quantitative determination of triterpenic acids in apple pomace by heteronuclear two-dimensional qNMR. Pomolic acid re-visited. Food Chem 2025; 481:144057. [PMID: 40168867 DOI: 10.1016/j.foodchem.2025.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025]
Abstract
An alternative procedure for the analysis of the content of triterpenic acids in apple pomace is presented. The use of a quantitative two-dimensional NMR spectroscopy based on a HSQC experiment proved to be a competitive alternative to HPLC analysis, ensuring sample preparation simplicity, unambiguous compound identification and reliable quantification. Simultaneous determination of oleanolic, ursolic and pomolic acids is presented. The quantitative determination of pomolic acid in apple pomace is demonstrated for the first time. Identification of high pomolic acid content in pomace-derived extracts opens new exploitation perspectives for this compound of high nutraceutical and industrial value.
Collapse
Affiliation(s)
- Marina Grinco
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Alex-Gabriel Marina
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Natalia Bîrcă
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Daniel Boșcanean
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Alic Barba
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Vladilena Gîrbu
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Nicon Ungur
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova
| | - Veaceslav Kulcițki
- Moldova State University, Institute of Chemistry, 3 Academiei str., Chișinău MD-2028, Republic of Moldova.
| |
Collapse
|
2
|
Huang G, Lin Y, Zhao J, Zhang J, Du Y, Xiao M, Li H, Chen Z, Kang N, Khan IA, Liu Y, Huang B, Xu Q. Corosolic acid and its derivatives targeting MCCC1 against insulin resistance and their hypoglycemic effect on type 2 diabetic mice. Eur J Med Chem 2025; 284:117184. [PMID: 39731787 DOI: 10.1016/j.ejmech.2024.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
Corosolic acid (CA), a natural triterpenoid, exhibits various biological activities and is often called as plant-derived insulin due to its significant hypoglycemic effects, making it especially beneficial for individuals with diabetes or high blood glucose levels. However, CA has notable in vitro toxicity, low water solubility, and poor pharmacokinetic properties. To address these limitations, a series of CA derivatives were synthesized, resulting in the identification of derivative H26, which demonstrates a significantly enhanced hypoglycemic effect, reduced toxicity, and improved pharmacokinetic characteristics compared to CA. To identify the target protein of CA and investigate its therapeutic potential, a chemical probe derived from natural products, called CA-biotin, was designed and synthesized. By employing an avidin-biotin affinity binding system, we distinguished the differential protein bands between CA-biotin and biotin. This quantitative proteomic analysis revealed, for the first time, that the biotin-containing enzyme methylcrotonoyl-CoA carboxylase 1 (MCCC1) directly binds to CA. The interaction between H26 and MCCC1 was examined in vitro. The research on the mechanisms by which CA and H26 address Type 2 diabetes mellitus (T2DM) focused on the insulin resistance signaling pathway, specifically targeting MCCC1. The results indicated that H26 shows significant promise as a potential hypoglycemic agent, while MCCC1 may serve as a valuable target for addressing insulin resistance. This presents a promising opportunity for developing new medications aimed at improving the health of patients with type 2 diabetes mellitus (T2DM) or hyperglycemia.
Collapse
Affiliation(s)
- Guiyan Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Lin
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Junlei Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yexin Du
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mingyue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Heng Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Naixin Kang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bin Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
3
|
Shen T, Zhao J, Ren X, Liu ZQ, Liu S. Metal-Free Electrochemical Allylic C-H Aerobic Oxidation. J Org Chem 2025; 90:1148-1158. [PMID: 39772507 DOI: 10.1021/acs.joc.4c02793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
A scalable and sustainable electrochemical protocol for allylic C-H aerobic oxidation has been developed, enabling the formation of enones without the use of stoichiometric toxic oxidants or metal catalysts and offering an environmentally benign alternative to traditional chemical oxidation techniques. The process has been successfully applied to selectively oxidize a series of natural products and drug molecules, underscoring its potential for widespread adoption in both academic and industrial contexts.
Collapse
Affiliation(s)
- Tong Shen
- College of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian 210023, China
| | - Jianyou Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuanxuan Ren
- College of Pharmaceutical Engineering, Jiangsu Food & Pharmaceutical Science College, Huaian 210023, China
| | - Zhong-Quan Liu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Shuai Liu
- Department of Chemistry, University of Konstanz, Konstanz 78467, Germany
| |
Collapse
|
4
|
Silva VBD, Almeida-Bezerra JW, Pereira RLS, Alcântara BMD, Furlan CM, Coelho JJ, Coutinho HDM, Morais-Braga MFB, Oliveira AFMD. Chemical composition, antibacterial potential, and toxicity of the extracts from the stem bark of Hancornia speciosa Gomes (Apocynaceae). JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118631. [PMID: 39067831 DOI: 10.1016/j.jep.2024.118631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hancornia speciosa is a medicinal plant popularly used to treat different medical issues, including infectious diseases. Exploring the therapeutic potentialities of the extracts from medicinal plants combined with conventional antibiotic drugs is a promising horizon, especially considering the rising microbial resistance. AIM OF THE STUDY This study aimed to characterize the chemical composition of the ethereal (EEHS) and methanolic (MEHS) extracts of the stem bark of H. speciosa, and also evaluate their antibacterial and drug-modifying activity, and toxicity. MATERIALS AND METHODS The extracts were characterized by gas chromatography coupled to mass spectrometry (GC-MS). Additionally, total phenol and flavonoid contents were determined. The antibacterial and antibiotic-modifying activity was evaluated against strains of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa using the serial microdilution method, obtaining the minimum inhibitory concentration (MIC). The toxicity assay was carried out using the Drosophila melanogaster model. RESULTS Thirty compounds were identified in the extracts of the stem bark of H. speciosa, with triterpenoids being predominant in both extracts. Additionally, fatty alcohols, carbohydrates, fatty acids, phenolic acids, and phytosterols were identified in both extracts. EEHS and MEHS extracts had considerable phenol contents (346.4 and 340.0 mg GAE/g, respectively). Flavonoids were detected in a lower proportion (7.6 and 6.9 mg QE/g, respectively). H. speciosa extracts did not display intrinsic antibacterial activity against the bacterial strains evaluated, however, they were capable of modifying the activity of gentamicin, erythromycin, and norfloxacin. EEHS increased the efficacy of norfloxacin against E. coli and S. aureus, reducing MIC values by 50%. MEHS potentiated the action of gentamicin against all bacterial strains, especially against E. coli. The extracts did not display toxicity at clinically relevant concentrations against D. melanogaster. CONCLUSION The stem bark of H. speciosa was considered a rich source of bioactive compounds. Our findings evidenced the therapeutic potential of H. speciosa extracts for the development of new pharmaceutical therapeutics against bacteria. Although the extracts did not exhibit intrinsic antibacterial activity, they enhanced the efficacy of commercial antibiotic drugs and were non-toxic at clinically relevant concentrations. Future studies are needed to elucidate the mechanisms of action of these extracts, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Viviane Bezerra da Silva
- Departamento de Botânica, Universidade Federal de Pernambuco - UFPE, Rua Professor Moraes Rego, s/n, Recife, Pernambuco, 50.670-901, Brazil.
| | - José Weverton Almeida-Bezerra
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Raimundo Luiz Silva Pereira
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Bruno Melo de Alcântara
- Departamento de Ciências Biológicas, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | - Cláudia Maria Furlan
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, 05508-090, Brazil
| | - Janerson José Coelho
- Universidade Estadual do Ceará - UECE, Faculdade de Educação, Ciências e Letras dos Inhamuns - CECITEC, Tauá, 63660-000, Ceará, Brazil
| | - Henrique Douglas Melo Coutinho
- Departamento de Química Biológica, Universidade Regional do Cariri - URCA, Rua Cel. Antônio Luiz, 1161, Crato, Ceará, 63.105-000, Brazil
| | | | | |
Collapse
|
5
|
Zakirova L, Baikova I, Lobov A, Каzakova O. Ursolic acid-based 24-nor- and A- seco-24-oxy-triterpenoids. Nat Prod Res 2024:1-6. [PMID: 39165132 DOI: 10.1080/14786419.2024.2394093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Using methyl 2-cyano-3,4-seco-12(13),4(23)-diene-ursolate as a starting scaffold a series of 3-oxo-24-nor-ursolate and A-seco-ursanes holding hydroxy-, furoyloxy-, p-tosyloxy- as well as aldehyde fragments at C24 that possess cytotoxic activity has been synthesised. The structures of the new ursanes were confirmed by detailed spectral data analysis. The chemoselectivity of methyl 2-cyano-3,4-seco-12(13),4(23)-diene-ursolate oxidation involving the double bond in the A cycle was observed.
Collapse
Affiliation(s)
- Liana Zakirova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Irina Baikova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Alexander Lobov
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| | - Oxana Каzakova
- Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
6
|
Similie D, Minda D, Bora L, Kroškins V, Lugiņina J, Turks M, Dehelean CA, Danciu C. An Update on Pentacyclic Triterpenoids Ursolic and Oleanolic Acids and Related Derivatives as Anticancer Candidates. Antioxidants (Basel) 2024; 13:952. [PMID: 39199198 PMCID: PMC11351203 DOI: 10.3390/antiox13080952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer is a global health problem, with the incidence rate estimated to reach 40% of the population by 2030. Although there are currently several therapeutic methods, none of them guarantee complete healing. Plant-derived natural products show high therapeutic potential in the management of various types of cancer, with some of them already being used in current practice. Among different classes of phytocompounds, pentacyclic triterpenoids have been in the spotlight of research on this topic. Ursolic acid (UA) and its structural isomer, oleanolic acid (OA), represent compounds intensively studied and tested in vitro and in vivo for their anticancer and chemopreventive properties. Since natural compounds can rarely be used in practice as such due to their characteristic physico-chemical properties, to tackle this problem, their derivatization has been attempted, obtaining compounds with improved solubility, absorption, stability, effectiveness, and reduced toxicity. This review presents various UA and OA derivatives that have been synthesized and evaluated in recent studies for their anticancer potential. It can be observed that the most frequent structural transformations were carried out at the C-3, C-28, or both positions simultaneously. It has been demonstrated that conjugation with heterocycles or cinnamic acid, derivatization as hydrazide, or transforming OH groups into esters or amides increases anticancer efficacy.
Collapse
Affiliation(s)
- Diana Similie
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Daliana Minda
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Larisa Bora
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Vladislavs Kroškins
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Jevgeņija Lugiņina
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Māris Turks
- Institute of Chemistry and Chemical Technology, Faculty of Natural Sciences and Technology, Riga Technical University, Paula Valdena Str. 3, LV-1048 Riga, Latvia; (V.K.); (J.L.); (M.T.)
| | - Cristina Adriana Dehelean
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Corina Danciu
- Department of Pharmacognosy, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.S.); (L.B.); (C.D.)
- Research and Processing Center of Medicinal and Aromatic Plants, “Victor Babeș” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
7
|
Vishwakarma S, Srivastava SK, Khare NK, Chaubey S, Chaturvedi V, Trivedi P, Khan S, Khan F. Synthesis and Structural Activity Relationship Study of Ursolic Acid Derivatives as Antitubercular Agent. Med Chem 2024; 20:630-645. [PMID: 37946341 DOI: 10.2174/0115734064256660231027042758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE The chemical transformation of ursolic acid (UA) into novel C-3 aryl ester derivatives and in vitro and silico assessment of their antitubercular potential. BACKGROUND UA is a natural pentacyclic triterpenoid with many pharmacological properties. Semisynthetic UA analogs have demonstrated enhanced anticancer, antimalarial, and antifilarial properties in our previous studies. METHODS The C-30 carboxylic group of previously isolated UA was protected, and various C-3 aryl ester derivatives were semi-synthesized. The agar dilution method was used to evaluate the in vitro antitubercular efficacy of Mycobacterium tuberculosis (Mtb) H37Ra. In silico docking studies of the active derivative were carried out against Mtb targets, catalase peroxidase (PDB: 1SJ2), dihydrofolate reductase (PDB: 4M2X), enoyl-ACP reductase (PDB: 4TRO), and cytochrome bc1 oxidase (PDB: 7E1V). RESULTS The derivative 3-O-(2-amino,3-methyl benzoic acid)-ethyl ursolate (UA-1H) was the most active among the eight derivatives (MIC1 2.5 μg/mL) against Mtb H37Ra. Also, UA-1H demonstrated significant binding affinity in the range of 10.8-11.4 kcal/mol against the antiTb target proteins, which was far better than the positive control Isoniazid, Ethambutol, and co-crystallized ligand (HEM). Moreover, the predicted hit UA-1H showed no inhibition of Cytochrome P450 2D6 (CYP2D6), suggesting its potential for favorable metabolism in Phase I clinical studies. CONCLUSION The ursolic acid derivative UA-1H possesses significant in vitro antitubercular potential with favorable in silico pharmacokinetics. Hence, further in vivo assessments are suggested for UA-1H for its possible development into a secure and efficient antitubercular drug.
Collapse
Affiliation(s)
- Sadhna Vishwakarma
- Department of Medicinal Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Santosh K Srivastava
- Department of Medicinal Chemistry, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Naveen K Khare
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Shiwa Chaubey
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Vinita Chaturvedi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Priyanka Trivedi
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sana Khan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| | - Feroz Khan
- Department of Metabolic and Structural Biology, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, 226015, India
| |
Collapse
|
8
|
Carpio-Paucar GN, Palo-Cardenas AI, Rondón-Ortiz AN, Pino-Figueroa A, Gonzales-Condori EG, Villanueva-Salas JA. Cytotoxic Activity of Saponins and Sapogenins Isolated from Chenopodium quinoa Willd. in Cancer Cell Lines. SCIENTIFICA 2023; 2023:8846387. [PMID: 38146491 PMCID: PMC10749722 DOI: 10.1155/2023/8846387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
The cytotoxic properties of two extracts from Chenopodium quinoa Willd. and three synthetic sapogenins were evaluated in different cancer cell lines (A549, SH-SY5Y, HepG2, and HeLa) to investigate their cytotoxic effects and determine if these cell lines activate the caspase pathway for apoptosis in response to saponin and sapogenin treatment. The saponin extracts were isolated from the agro-industrial waste of Chenopodium quinoa Willd., while the sapogenins were identified and quantitatively determined by High-Performance Liquid Chromatography (HPLC). Among these compounds, ursolic acid was the most active compound, with high IC50 values measured in all cell lines. In addition, hederagenin demonstrated higher caspase-3 activity than staurosporine in HeLa cells, suggesting an anti-cytotoxic activity via a caspase-dependent apoptosis pathway. HPLC analysis showed that the concentration of hederagenin was higher than that of oleanolic acid in ethanolic extracts of white and red quinoa. The ethanolic extracts of white and red quinoa did not show cytotoxic activity. On the other hand, the synthetic sapogenins such as ursolic acid, oleanolic acid, and hederagenin significantly decreased the viability of the four cell lines studied. Finally, by Caspase-3 assay, it was found that HeLa undergoes apoptosis during cell death because hederagenin produces a significant increase in PARP-1 hydrolysis in HeLa cells.
Collapse
|
9
|
Zhang Y, Zeng M, Zhang X, Yu Q, Zeng W, Yu B, Gan J, Zhang S, Jiang X. Does an apple a day keep away diseases? Evidence and mechanism of action. Food Sci Nutr 2023; 11:4926-4947. [PMID: 37701204 PMCID: PMC10494637 DOI: 10.1002/fsn3.3487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 05/16/2023] [Accepted: 05/24/2023] [Indexed: 09/14/2023] Open
Abstract
Apples and their products exemplify the recently reemphasized link between dietary fruit intake and the alleviation of human disease. Their consumption does indeed improve human health due to their high phytochemical content. To identify potentially relevant articles from clinical trials, some epidemiological studies and meta-analyses, and in vitro and in vivo studies (cell cultures and animal models), PubMed was searched from January 1, 2012, to May 15, 2022. This review summarized the potential effects of apple and apple products (juices, puree, pomace, dried apples, extracts rich in apple bioactives and single apple bioactives) on health. Apples and apple products have protective effects against cardiovascular diseases, cancer, as well as mild cognitive impairment and promote hair growth, healing of burn wounds, improve the oral environment, prevent niacin-induced skin flushing, promote the relief of UV-induced skin pigmentation, and improve the symptoms of atopic dermatitis as well as cedar hay fever among others. These effects are associated with various mechanisms, such as vascular endothelial protection, blood lipids lowering, anti-inflammatory, antioxidant, antiapoptotic, anti-invasion, and antimetastatic effects. Meanwhile, it has provided an important reference for the application and development of medicine, nutrition, and other fields.
Collapse
Affiliation(s)
- Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Miao Zeng
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaolu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qun Yu
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wenyun Zeng
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Bin Yu
- School of International EducationTianjin University of Chinese MedicineTianjinChina
| | - Jiali Gan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Xijuan Jiang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
10
|
Zhang JD, Xue C, Kolachalama VB, Donald WA. Interpretable Machine Learning on Metabolomics Data Reveals Biomarkers for Parkinson's Disease. ACS CENTRAL SCIENCE 2023; 9:1035-1045. [PMID: 37252351 PMCID: PMC10214508 DOI: 10.1021/acscentsci.2c01468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 05/31/2023]
Abstract
The use of machine learning (ML) with metabolomics provides opportunities for the early diagnosis of disease. However, the accuracy of ML and extent of information obtained from metabolomics can be limited owing to challenges associated with interpreting disease prediction models and analyzing many chemical features with abundances that are correlated and "noisy". Here, we report an interpretable neural network (NN) framework to accurately predict disease and identify significant biomarkers using whole metabolomics data sets without a priori feature selection. The performance of the NN approach for predicting Parkinson's disease (PD) from blood plasma metabolomics data is significantly higher than other ML methods with a mean area under the curve of >0.995. PD-specific markers that predate clinical PD diagnosis and contribute significantly to early disease prediction were identified including an exogenous polyfluoroalkyl substance. It is anticipated that this accurate and interpretable NN-based approach can improve diagnostic performance for many diseases using metabolomics and other untargeted 'omics methods.
Collapse
Affiliation(s)
- J. Diana Zhang
- School
of Chemistry, University of New South Wales, Sydney 2052, Australia
- Department
of Medicine, Boston University School of
Medicine, Boston, Massachusetts 02118, United States
| | - Chonghua Xue
- Department
of Medicine, Boston University School of
Medicine, Boston, Massachusetts 02118, United States
| | - Vijaya B. Kolachalama
- Department
of Medicine, Boston University School of
Medicine, Boston, Massachusetts 02118, United States
- Department
of Computer Science and Faculty of Computing & Data Sciences, Boston University, Boston, Massachusetts 02215, United States
| | - William A. Donald
- School
of Chemistry, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
11
|
Michalak O, Cybulski M, Szymanowski W, Gornowicz A, Kubiszewski M, Ostrowska K, Krzeczyński P, Bielawski K, Trzaskowski B, Bielawska A. Synthesis, Biological Activity, ADME and Molecular Docking Studies of Novel Ursolic Acid Derivatives as Potent Anticancer Agents. Int J Mol Sci 2023; 24:ijms24108875. [PMID: 37240221 DOI: 10.3390/ijms24108875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A series of new ursolic acid (UA) derivatives substituted with various amino acids (AAs) or dipeptides (DP) at the C-3 position of the steroid skeleton was designed and synthesized. The compounds were obtained by the esterification of UA with the corresponding AAs. The cytotoxic activity of the synthesized conjugates was determined using the hormone-dependent breast cancer cell line MCF-7 and the triple-negative breast cancer cell line MDA. Three derivatives (l-seryloxy-, l-prolyloxy- and l-alanyl-l-isoleucyloxy-) showed micromolar IC50 values and reduced the concentrations of matrix metalloproteinases 2 and 9. Further studies revealed that for two compounds (l-seryloxy- and l-alanyl-l-isoleucyloxy-), a possible mechanism of their antiproliferative action is the activation of caspase-7 and the proapoptotic Bax protein in the apoptotic pathway. The third compound (l-prolyloxy- derivative) showed a different mechanism of action as it induced autophagy as measured by an increase in the concentrations of three autophagy markers: LC3A, LC3B, and beclin-1. This derivative also showed statistically significant inhibition of the proinflammatory cytokines TNF-α and IL-6. Finally, for all synthesized compounds, we computationally predicted their ADME properties as well as performed molecular docking to the estrogen receptor to assess their potential for further development as anticancer agents.
Collapse
Affiliation(s)
- Olga Michalak
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Marcin Cybulski
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Wojciech Szymanowski
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Marek Kubiszewski
- Analytical Research Section, Pharmaceutical Analysis Laboratory, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Kinga Ostrowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Str., 02-097 Warsaw, Poland
| | - Piotr Krzeczyński
- Chemistry Section, Pharmacy, Cosmetic Chemistry and Biotechnology Research Group, Łukasiewicz Research Network-Industrial Chemistry Institute, 8 Rydygiera Str., 01-793 Warsaw, Poland
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| | - Bartosz Trzaskowski
- Chemical and Biological Systems Simulation Lab, Center of New Technologies, University of Warsaw, 2C Banacha Str., 02-097 Warsaw, Poland
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, 1 Kilińskiego Str., 15-089 Bialystok, Poland
| |
Collapse
|
12
|
Henríquez JC, Duarte LV, Sierra LJ, Fernández-Alonso JL, Martínez JR, Stashenko EE. Chemical Composition and In Vitro Antioxidant Activity of Salvia aratocensis (Lamiaceae) Essential Oils and Extracts. Molecules 2023; 28:4062. [PMID: 37241803 PMCID: PMC10223537 DOI: 10.3390/molecules28104062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Salvia aratocensis (Lamiaceae) is an endemic shrub from the Chicamocha River Canyon in Santander (Colombia). Its essential oil (EO) was distilled from the aerial parts of the plant via steam distillation and microwave-assisted hydrodistillation and analyzed using GC/MS and GC/FID. Hydroethanolic extracts were isolated from dry plants before distillation and from the residual plant material after distillation. The extracts were characterized via UHPLC-ESI(+/-)-Orbitrap-HRMS. The S. aratocensis essential oil was rich in oxygenated sesquiterpenes (60-69%) and presented τ-cadinol (44-48%) and 1,10-di-epi-cubenol (21-24%) as its major components. The in vitro antioxidant activity of the EOs, measured via an ABTS+• assay, was 32-49 μmol Trolox® g-1 and that measured using the ORAC assay was 1520-1610 μmol Trolox® g-1. Ursolic acid (28.9-39.8 mg g-1) and luteolin-7-O-glucuronide (1.16-25.3 mg g-1) were the major S. aratocensis extract constituents. The antioxidant activity of the S. aratocensis extract, obtained from undistilled plant material, was higher (82 ± 4 μmol Trolox® g-1, ABTS+•; 1300 ± 14 μmol Trolox® g-1, ORAC) than that of the extracts obtained from the residual plant material (51-73 μmol Trolox® g-1, ABTS+•; 752-1205 μmol Trolox® g-1, ORAC). S. aratocensis EO and extract had higher ORAC antioxidant capacity than the reference substances butyl hydroxy toluene (98 μmol Trolox® g-1) and α-tocopherol (450 μmol Trolox® g-1). S. aratocensis EOs and extracts have the potential to be used as natural antioxidants for cosmetics and pharmaceutical products.
Collapse
Affiliation(s)
- Juan C. Henríquez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Laura V. Duarte
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Lady J. Sierra
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | | | - Jairo R. Martínez
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| | - Elena E. Stashenko
- Centro de Cromatografía y Espectrometría de Masas, CROM-MASS, Grupo de Investigación en Biomoléculas CIBIMOL, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
| |
Collapse
|
13
|
Vilkickyte G, Petrikaite V, Marksa M, Ivanauskas L, Jakstas V, Raudone L. Fractionation and Characterization of Triterpenoids from Vaccinium vitis-idaea L. Cuticular Waxes and Their Potential as Anticancer Agents. Antioxidants (Basel) 2023; 12:antiox12020465. [PMID: 36830023 PMCID: PMC9952570 DOI: 10.3390/antiox12020465] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Fruit and leaf cuticular waxes are valuable source materials for the isolation of triterpenoids that can be applied as natural antioxidants and anticancer agents. The present study aimed at the semi-preparative fractionation of triterpenoids from cuticular wax extracts of Vaccinium vitis-idaea L. (lingonberry) leaves and fruits and the evaluation of their cytotoxic potential. Qualitative and quantitative characterization of obtained extracts and triterpenoid fractions was performed using HPLC-PDA method, followed by complementary analysis by GC-MS. For each fraction, cytotoxic activities towards the human colon adenocarcinoma cell line (HT-29), malignant melanoma cell line (IGR39), clear renal carcinoma cell line (CaKi-1), and normal endothelial cells (EC) were determined using MTT assay. Furthermore, the effect of the most promising samples on cancer spheroid growth and viability was examined. This study allowed us to confirm that particular triterpenoid mixtures from lingonberry waxes may possess stronger cytotoxic activities than crude unpurified extracts. Fractions containing triterpenoid acids plus fernenol, complexes of oleanolic:ursolic acids, and erythrodiol:uvaol were found to be the most potent therapeutic candidates in the management of cancer diseases. The specificity of cuticular wax extracts of lingonberry leaves and fruits, leading to different purity and anticancer potential of obtained counterpart fractions, was also enclosed. These findings contribute to the profitable utilization of lingonberry cuticular waxes and provide considerable insights into the anticancer effects of particular triterpenoids and pharmacological interactions.
Collapse
Affiliation(s)
- Gabriele Vilkickyte
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| | - Vilma Petrikaite
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Mindaugas Marksa
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Liudas Ivanauskas
- Department of Analytical and Toxicological Chemistry, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Valdas Jakstas
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
| | - Lina Raudone
- Laboratory of Biopharmaceutical Research, Institute of Pharmaceutical Technologies, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Department of Pharmacognosy, Lithuanian University of Health Sciences, Sukileliu Av. 13, LT-50162 Kaunas, Lithuania
- Correspondence: (G.V.); (L.R.)
| |
Collapse
|
14
|
Analytical method development for exploring pharmacokinetic profile of ursolic acid in rat tissues by high-performance thin-layer chromatography. JPC-J PLANAR CHROMAT 2023. [DOI: 10.1007/s00764-023-00228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
15
|
Ursolic Acid Analogs as Potential Therapeutics for Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248981. [PMID: 36558113 PMCID: PMC9785537 DOI: 10.3390/molecules27248981] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene isolated from a large variety of vegetables, fruits and many traditional medicinal plants. It is a structural isomer of Oleanolic Acid. The medicinal application of UA has been explored extensively over the last two decades. The diverse pharmacological properties of UA include anti-inflammatory, antimicrobial, antiviral, antioxidant, anti-proliferative, etc. Especially, UA holds a promising position, potentially, as a cancer preventive and therapeutic agent due to its relatively non-toxic properties against normal cells but its antioxidant and antiproliferative activities against cancer cells. Cell culture studies have shown interference of UA with multiple pharmacological and molecular targets that play a critical role in many cells signaling pathways. Although UA is considered a privileged natural product, its clinical applications are limited due to its low absorption through the gastro-intestinal track and rapid elimination. The low bioavailability of UA limits its use as a therapeutic drug. To overcome these drawbacks and utilize the importance of the scaffold, many researchers have been engaged in designing and developing synthetic analogs of UA via structural modifications. This present review summarizes the synthetic UA analogs and their cytotoxic antiproliferative properties reported in the last two decades.
Collapse
|
16
|
Sołtys A, Galanty A, Zagrodzki P, Grabowska K, Malarz J, Podolak I. Sorbus intermedia (EHRH.) PERS. fruits as a novel source of biologically active triterpenoids - Comparative studies of ursolic acid derivatives with cytotoxic potential. Biomed Pharmacother 2022; 154:113592. [PMID: 36027609 DOI: 10.1016/j.biopha.2022.113592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022] Open
Abstract
In the current study, the fruits of a popular ornamental tree, Sorbus intermedia, were investigated phytochemically and biologically as potential source of bioactive triterpenes. Six terpenoids were isolated and examined with respect to their cytotoxic activity using a broad screening in vitro model and multivariate analysis for better demonstration of the effects on cancer cells. This chemometric approach allowed us to confirm that the structural characteristics of the compounds significantly affected their impact on cell lines. Ursolic acid was found to be the most potent cytotoxic agent with IC50 predominantly < 10 μg/mL after 24 h of incubation. Its 3-acetoxy derivative was less active, however, an improvement in selectivity with regard to prostate panel was observed. Reduction of the carboxylic moiety at C28, as well as introduction of the hydroxyl group at 19α position led to complete loss of cytotoxic activity.
Collapse
Affiliation(s)
- Agnieszka Sołtys
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Kraków, Poland.
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Kraków, Poland.
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy Medical College, Jagiellonian University, Kraków, Poland.
| | - Karolina Grabowska
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Kraków, Poland.
| | - Janusz Malarz
- Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
17
|
Guilhon-Simplicio F, Serrão CKR, Pinto ACDS, Pacheco PAF, Faria RX, da Rocha DR, Ferreira VF, Pereira-Junior RC, Matheeussen A, Baán A, Kiekens F, de Meneses Pereira M, Lima ES, Winter HD, Cos P. Semisynthetic triterpenes led to the generation of selective antitrypanosomal lead compounds. Chem Biol Drug Des 2022; 99:868-883. [PMID: 35313075 DOI: 10.1111/cbdd.14040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 12/25/2020] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
Abstract
Triterpenes α,β-amyrin are naturally occurring molecules that can serve as building blocks for synthesizing new chemical entities. This study synthesized acyl, carboxyesther, NSAID, and nitrogenous derivatives and evaluated their antimicrobial activity. A cyclodextrin complexation method was developed to improve the solubility of the derivatives. Of the 17 derivatives tested, five exhibited activity against Trypanosoma cruzi, T. brucei, Leishmania infantum, Candida albicans, Staphylococcus aureus, and Escherichia coli. The 9a/9b mixture showed weak activity against the parasites (IC50 24.45-40.32 μM). However, it showed no activity for the other microorganisms. Derivatives 14a/14b exhibited potent activity against T. cruzi (IC50 2.0 nM) in this tested concentration did not show activity to the other microorganisms and were not cytotoxic. Derivatives 15a/15b and 16a/16b demonstrated relevant activity against the parasites (IC50 2.24-5.44 μM), but were also cytotoxic. Derivatives 17a/17b showed low activity against the tested parasites (IC50 21.70-22.79 μM), but they were selective since they did not show activity against other microorganisms. In docking studies, in general, all derivatives showed complementarity with the CYP51 binding site of the trypanosomatid mainly by hydrophobic interactions; thus, it is not conclusive that the molecules act by inhibiting this enzyme. Our results showed that triterpenes derivatives with antitrypanosomal activity could be synthesized by an inexpensive and rapid method.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Adrienn Baán
- Laboratory of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Filip Kiekens
- Laboratory of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, Brazil
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
18
|
Ahmed SR, Al-Sanea MM, Mostafa EM, Qasim S, Abelyan N, Mokhtar FA. A Network Pharmacology Analysis of Cytotoxic Triterpenes Isolated from Euphorbia abyssinica Latex Supported by Drug-likeness and ADMET Studies. ACS OMEGA 2022; 7:17713-17722. [PMID: 35664578 PMCID: PMC9161416 DOI: 10.1021/acsomega.2c00750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/06/2022] [Indexed: 05/30/2023]
Abstract
Euphorbia plants have been identified as potential sources of antitumor lead compounds. The current study aimed to isolate and identify the main active constituents of Euphorbia abyssinica latex followed by a cytotoxic evaluation. A network pharmacology approach was employed to predict the underlying mechanism. Finally, drug-likeness and ADMET studies were conducted for active compounds. The phytochemical investigation of the latex of E. abyssinica resulted in the isolation of two triterpenes, 3-acetyloxy-(3α)-urs-12-en-28-oic methyl ester (1) and lup-20(29)-en-3α,23-diol (2). The dichloromethane extract displayed potent cytotoxic activity against the MCF7 cell line with an IC50 value of 4.27 ± 0.12 μg/mL but weak activity against HepG2 and HeLa cell lines (IC50 = 20.47 ± 1.17 and 26.73 ± 2.99 μg/mL, respectively) compared to doxorubicin. Compound 1 showed an encouraging cytotoxic effect against MCF7 with IC50 = 4.20 ± 0.20 μg/mL, followed by compound 2 (IC50 = 5.8 ± 0.35 μg/mL). The network analysis revealed that the two isolated compounds are linked to 68 targets of human nature, among which 51 genes are linked to breast carcinomas and 5 targets (AR, CYP19A1, EGFR, PGR, and PTGS2) might be the top therapeutic targets of isolated compounds on breast cancer. Furthermore, the gene-enrichment analysis revealed that E. abyssinica could play a role in the treatment of breast cancer by striking 51 potential targets via mainly three signaling pathways: P13K-AKT, Wnt, and VEGF. Therefore, isolated triterpenes could be considered effective antitumor agents for breast cancer by elucidating their candidate target to alleviate breast cancer and related signaling pathways of the targets.
Collapse
Affiliation(s)
- Shaimaa R. Ahmed
- Department
of Pharmacognosy, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mohammad M. Al-Sanea
- Pharmaceutical
Chemistry Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ehab M. Mostafa
- Department
of Pharmacognosy, College of Pharmacy, Jouf
University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Sumera Qasim
- Pharmacology
Department, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Narek Abelyan
- Foundation
for Armenian Science and Technology, 0033 Yerevan, Armenia
| | - Fatma Alzahraa Mokhtar
- Department
of Pharmacognosy, Faculty of Pharmacy, Alsalam
University, Kafr El-Zayat 31612, Al Gharbiyah, Egypt
| |
Collapse
|
19
|
Apaza Ticona L, Slowing K, Serban AM, Humanes Bastante M, Hernáiz MJ. Wound healing, anti-inflammatory and anti-melanogenic activities of ursane-type triterpenes from Semialarium mexicanum (Miers) Mennega. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115009. [PMID: 35077827 DOI: 10.1016/j.jep.2022.115009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The bark of Semialarium mexicanum commonly known as 'Cancerina' is used as an infusion in Central America and Mexico to treat various wound infections, as well as skin and vaginal ulcers. AIM OF THE STUDY This study aimed to determine the wound healing, anti-inflammatory and anti-melanogenic activities of the aqueous extract of Semialarium mexicanum and to identify the compounds related to these activities. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Semialarium mexicanum was carried out, selecting the sub-extracts and fractions depending on their wound healing, anti-inflammatory and anti-melanogenic activities in the RAW 264.7, NIH/3T3 and B16-F10 cells. RESULTS Three compounds were obtained and characterised by nuclear magnetic resonance and mass spectrometry. These compounds are (3β)-3-Hydroxy-urs-12-en-28-oic acid (1), (3β)-Urs-12-ene-3,28-diol (2) and (2α, 19α)-2,19-Dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Regarding the anti-inflammatory activity, the three compounds inhibited the production of NF-κB and NO, however, compound 3 was the most active with IC50 values of 8.15-8.19 μM and 8.94-9.14 μM, respectively, in all cell lines. The anti-melanogenic activity of these compounds was evaluated by the inhibition of tyrosinase and melanin in the B16-F10 cell line. The three compounds showed anti-melanogenic activity, however, compound 3 was the most active with an IC50 of 8.03 μM for the inhibition of tyrosinase production, and an IC50 of 8.53 μM for the inhibition of melanin production. Finally, concerning the wound healing activity, the three compounds presented proliferative activity in all the tested cell lines, however, compound 3 showed higher cell proliferation percentages than compounds 1 and 2 (88.89-89.60% compared to 64.92-65.71% and 71.53-71.99%, respectively). CONCLUSION The wound healing, anti-inflammatory and anti-melanogenic activity of the aqueous extract of Semialarium mexicanum was tested and analysed in the present study, after having isolated three ursane-type triterpenes.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
20
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
21
|
Chatterjee A, Paul S, Bisht B, Bhattacharya S, Sivasubramaniam S, Paul MK. Advances in targeting the WNT/β-catenin signaling pathway in cancer. Drug Discov Today 2022; 27:82-101. [PMID: 34252612 DOI: 10.1016/j.drudis.2021.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/27/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling orchestrates various physiological processes, including embryonic development, growth, tissue homeostasis, and regeneration. Abnormal WNT/β-catenin signaling is associated with various cancers and its inhibition has shown effective antitumor responses. In this review, we discuss the pathway, potential targets for the development of WNT/β-catenin inhibitors, available inhibitors, and their specific molecular interactions with the target proteins. We also discuss inhibitors that are in clinical trials and describe potential new avenues for therapeutically targeting the WNT/β-catenin pathway. Furthermore, we introduce emerging strategies, including artificial intelligence (AI)-assisted tools and technology-based actionable approaches, to translate WNT/β-catenin inhibitors to the clinic for cancer therapy.
Collapse
Affiliation(s)
- Avradip Chatterjee
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sayan Paul
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India; Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India
| | - Bharti Bisht
- Department of Thoracic Surgery, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Shelley Bhattacharya
- Environmental Toxicology Laboratory, Department of Zoology (Centre for Advanced Studies), Visva Bharati (A Central University), Santiniketan 731235, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu 627012, India
| | - Manash K Paul
- Department of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
22
|
Liu HR, Ahmad N, Lv B, Li C. Advances in production and structural derivatization of the promising molecule ursolic acid. Biotechnol J 2021; 16:e2000657. [PMID: 34096160 DOI: 10.1002/biot.202000657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023]
Abstract
Ursolic acid (UA) is a ursane-type pentacyclic triterpenoid compound, naturally produced in plants via specialized metabolism and exhibits vast range of remarkable physiological activities and pharmacological manifestations. Owing to significant safety and efficacy in different medical conditions, UA may serve as a backbone to produce its derivatives with novel therapeutic functions. This review aims to provide ideas for exploring more diverse structures to improve UA pharmacological activity and increasing its biological yield to meet the industrial requirements by systematically reviewing the current research progress of UA. We first provides an overview of the pharmacological activities, acquisition methods and structural modifications of UA. Among them, we focused on the synthetic modifications of UA to yield valuable derivatives with enhanced therapeutic potential. Furthermore, harnessing the essential advances for green synthesis of UA and its derivatives by advent of metabolic engineering and synthetic biology are of great concern. In this regard, all pivotal advances for enhancing the production of UA have been discussed. In combination with the advantages of UA biosynthesis and transformation strategy, large-scale microbial production of UA is a promising platform for further exploration.
Collapse
Affiliation(s)
- Hao-Ran Liu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
23
|
Sołtys A, Galanty A, Zagrodzki P, Podolak I. Relationship between Maturity Stage, Triterpenoid Content and Cytotoxicity of Sorbus intermedia (EHRH.) PERS. Fruits - A Chemometric Approach. Chem Biodivers 2021; 18:e2100552. [PMID: 34669249 DOI: 10.1002/cbdv.202100552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/16/2021] [Indexed: 12/17/2022]
Abstract
In this study, two ursane-type triterpenes, i. e., ursolic acid (UA) and 3-O-β-acetoxyursolic acid (AUA), were isolated and quantified in Sorbus intermedia (EHRH.) PERS. fruits. UA and AUA levels differed slightly throughout fruit maturation, and both triterpenes showed similar dynamics of accumulation with the highest levels found in ripe fruits (up to 6.33±0.56 and 1.17±0.18 mg/g dw. of UA and AUA, respectively). The extracts derived from unripe fruits displayed significant cytotoxic effects against WM793, DU-145, PC3, 8505C, Caco2 and A549 cells, but no correlation between UA and AUA levels and cytotoxicity was found. On the other hand, extracts from mature fruits were not active towards almost all of the tested cell lines. The chemometric approach showed that the extracts derived from fruits harvested earlier clustered to form a clearly distanced group from extracts prepared from more-mature fruits. The extracts at higher concentrations formed separate groups, which indicated the concentration-dependent effect of these extracts on the cells.
Collapse
Affiliation(s)
- Agnieszka Sołtys
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Galanty
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Paweł Zagrodzki
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| | - Irma Podolak
- Department of Pharmacognosy, Faculty of Pharmacy Medical College, Jagiellonian University, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
24
|
Schioppa L, Beaufay C, Bonneau N, Sanchez M, Girardi C, Leverrier A, Ortiz S, Palermo J, Poupaert JH, Quetin‐Leclercq J. Design, Synthesis and Biological Activity of C3 Hemisynthetic Triterpenic Esters as Novel Antitrypanosomal Hits. ChemistryOpen 2021; 10:896-903. [PMID: 34499412 PMCID: PMC8428374 DOI: 10.1002/open.202100159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Indexed: 11/07/2022] Open
Abstract
Research for innovative drugs is crucial to contribute to parasitic infections control and eradication. Inspired by natural antiprotozoal triterpenes, a library of 12 hemisynthetic 3-O-arylalkyl esters was derived from ursolic and oleanolic acids through one-step synthesis. Compounds were tested on Trypanosoma, Leishmania and the WI38 cell line alongside with a set of triterpenic acids. Results showed that the triterpenic C3 esterification keeps the antitrypanosomal activity (IC50 ≈1.6-5.5 μm) while reducing the cytotoxicity compared to parent acids. Unsaturation of the ester alkyl chain leads to an activity loss interestingly kept when a sterically hindered group replaces the double bond or shields the ester group. An ursane/oleanane C3 hydroxylation was the only important feature for antileishmanial activity. Two candidates, dihydrocinnamoyl and 2-fluorophenylpropionyl ursolic acids, were tested on an acute mouse model of African trypanosomiasis with significant parasitemia reduction at day 5 post-infection for the dihydrocinnamoyl derivative. Further evaluation on other alkyl/protective groups should be investigated both in vitro and in vivo.
Collapse
Affiliation(s)
- Laura Schioppa
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| | - Claire Beaufay
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| | - Natacha Bonneau
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| | - Marianela Sanchez
- Departamento de Química OrgánicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Universitaria, Pab. 21428Buenos AiresArgentina
| | - Cynthia Girardi
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| | - Aurélie Leverrier
- Departamento de Química OrgánicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Universitaria, Pab. 21428Buenos AiresArgentina
| | - Sergio Ortiz
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| | - Jorge Palermo
- Departamento de Química OrgánicaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad Universitaria, Pab. 21428Buenos AiresArgentina
| | - Jacques H. Poupaert
- Medicinal Chemistry Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.04LouvainB-1200Belgium
| | - Joëlle Quetin‐Leclercq
- Pharmacognosy Research GroupLouvain Drug Research Institute (LDRI)UCLouvainAvenue E. Mounier B1.72.03LouvainB-1200Belgium
| |
Collapse
|
25
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
26
|
Cheng Z, Li Y, Zhu X, Wang K, Ali Y, Shu W, Zhang T, Zhu L, Murray M, Zhou F. The Potential Application of Pentacyclic Triterpenoids in the Prevention and Treatment of Retinal Diseases. PLANTA MEDICA 2021; 87:511-527. [PMID: 33761574 DOI: 10.1055/a-1377-2596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Retinal diseases are a leading cause of impaired vision and blindness but some lack effective treatments. New therapies are required urgently to better manage retinal diseases. Natural pentacyclic triterpenoids and their derivatives have a wide range of activities, including antioxidative, anti-inflammatory, cytoprotective, neuroprotective, and antiangiogenic properties. Pentacyclic triterpenoids have great potential in preventing and/or treating retinal pathologies. The pharmacological effects of pentacyclic triterpenoids are often mediated through the modulation of signalling pathways, including nuclear factor erythroid-2 related factor 2, high-mobility group box protein 1, 11β-hydroxysteroid dehydrogenase type 1, and Src homology region 2 domain-containing phosphatase-1. This review summarizes recent in vitro and in vivo evidence for the pharmacological potential of pentacyclic triterpenoids in the prevention and treatment of retinal diseases. The present literature supports the further development of pentacyclic triterpenoids. Future research should now attempt to improve the efficacy and pharmacokinetic behaviour of the agents, possibly by the use of medicinal chemistry and targeted drug delivery strategies.
Collapse
Affiliation(s)
- Zhengqi Cheng
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Yue Li
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Xue Zhu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Ke Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu, China
| | - Youmna Ali
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| | - Wenying Shu
- Department of Pharmacy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ting Zhang
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, Australia
| | - Michael Murray
- Discipline of Pharmacology, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Camperdown, Australia
| |
Collapse
|
27
|
Yang L, Zhang J, Zheng S, Hou A, Wang S, Yu H, Wang X, Xu Y, Kuang H, Jiang H. The phytochemistry, pharmacology and traditional medicinal use of Glechomae Herba - a systematic review. RSC Adv 2021; 11:19221-19237. [PMID: 35478616 PMCID: PMC9033597 DOI: 10.1039/d1ra01366a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
Glechomae Herba is a Chinese herb, which has been used in China for thousands of years, mainly for the treatment of nephrolithiasis. This paper summarizes the modern research progress on Glechomae Herba from the aspects of botany, traditional medicinal use, phytochemistry, pharmacology, pharmacokinetics, analytical methods and quality control. In addition, it also points out the deficiencies of current research on this herb and provides possible directions for its development. So far, more than 190 chemical components have been isolated and identified from Glechomae Herba, including organic acids and their esters, volatile oils, flavonoids and their glycosides, terpenes and other chemical components. Its extracts and compounds have a wide range of pharmacological effects, including anti-stone, anti-inflammatory, bacteriostatic, cholagogic and diuretic, effect on ileum smooth muscle, anti-tumor effect on tumor and hypoglycemic effects. However, future studies should focus on drug metabolism, clarify its pharmacodynamic mechanism, and establish a reasonable quality control standards for Glechomae Herba.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Jiaxu Zhang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Senwang Zheng
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Ajiao Hou
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Song Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Huan Yu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Xuejiao Wang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Yingjie Xu
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| | - Hai Jiang
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Heilongjiang University of Chinese Medicine Harbin 150040 China
| |
Collapse
|
28
|
Malík M, Velechovský J, Tlustoš P. Natural pentacyclic triterpenoid acids potentially useful as biocompatible nanocarriers. Fitoterapia 2021; 151:104845. [PMID: 33684460 DOI: 10.1016/j.fitote.2021.104845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
The importance of natural raw materials has grown recently because of their ready availability, renewable nature, biocompatibility and controllable degradability. One such group of plant-derived substances includes the triterpenoid acids, terpenic compounds consisting of six isoprene units, a carboxyl group and other functional groups producing various isomers. Most can be easily extracted from different parts of the plant and modified successfully. By themselves or as aglycones (genins) of triterpene saponins, they have potentially useful pharmaceutical activity. This review focuses on the supramolecular properties of triterpenoid acids with regard to their subsequent use as biocompatible nanocarriers. The review also considers the current list of pentacyclic triterpene acids for which molecular self-assembly has been confirmed without the need for structural modification.
Collapse
Affiliation(s)
- Matěj Malík
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Jiří Velechovský
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6 - Suchdol, Czech Republic.
| |
Collapse
|
29
|
Yue Q, Deng X, Li Y, Zhang Y. Effects of Betulinic Acid Derivative on Lung Inflammation in a Mouse Model of Chronic Obstructive Pulmonary Disease Induced by Particulate Matter 2.5. Med Sci Monit 2021; 27:e928954. [PMID: 33612710 PMCID: PMC7885291 DOI: 10.12659/msm.928954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is mainly induced by the increased content of particulate matter 2.5 (PM2.5) in the atmosphere. This study aimed to evaluate the effects of betulinic acid derivative on lung inflammation in a mouse model of chronic obstructive pulmonary disease induced by particulate matter 2.5. MATERIAL AND METHODS The mice were given a PM2.5 (25 μl) suspension for 7 days by the intranasal route to establish a COPD model. The content of TNF-alpha and IL-6 in the BALF samples was measured by commercially available ELISA kits. RESULTS The PM2.5-induced higher LDH and ACP levels were significantly alleviated in mouse lung tissues by treatment with betulinic acid derivative. Treatment with betulinic acid derivative also suppressed PM2.5-induced increase in AKP and ALB levels in mouse lung tissues. Betulinic acid derivative reversed PM2.5-mediated suppression of SOD activity and elevation of NOS level in mouse BALF. Moreover, the PM2.5-induced excessive NO and MDA levels in mouse BALF were significantly reduced (P.
Collapse
Affiliation(s)
- Qianyu Yue
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Xiaoli Deng
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yuntao Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| | - Yunhui Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China (mainland)
| |
Collapse
|
30
|
Malus domestica: A Review on Nutritional Features, Chemical Composition, Traditional and Medicinal Value. PLANTS 2020; 9:plants9111408. [PMID: 33105724 PMCID: PMC7690411 DOI: 10.3390/plants9111408] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023]
Abstract
Fruit-derived bioactive substances have been spotlighted as a regulator against various diseases due to their fewer side effects compared to chemical drugs. Among the most frequently consumed fruits, apple is a rich source of nutritional molecules and contains high levels of bioactive compounds. The main structural classes of apple constituents include polyphenols, polysaccharides (pectin), phytosterols, and pentacyclic triterpenes. Also, vitamins and trace elements complete the nutritional features of apple fruit. There is now considerable scientific evidence that these bioactive substances present in apple and peel have the potential to improve human health, for example contributing to preventing cardiovascular disease, diabetes, inflammation, and cancer. This review will focus on the current knowledge of bioactive substances in apple and their medicinal value for human health.
Collapse
|
31
|
AlQathama A, Shao L, Bader A, Khondkar P, Gibbons S, M Prieto J. Differential Anti-Proliferative and Anti-Migratory Activities of Ursolic Acid, 3- O-Acetylursolic Acid and Their Combination Treatments with Quercetin on Melanoma Cells. Biomolecules 2020; 10:E894. [PMID: 32545262 PMCID: PMC7356947 DOI: 10.3390/biom10060894] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/10/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023] Open
Abstract
We evaluate how 3-acetylation modulates the in vitro activity of ursolic acid in melanoma cells alone or in combination treatments with quercetin. Anti-proliferative studies on A375 cells and adult human dermal fibroblasts included analyses on cell cycle distribution, caspase activity, phosphatidylserine translocation, cell morphology and Bax/Bcl-2 protein expression. Then, 2D and 3D migration of B16F10 cells were studied using scratch and Transwell assays, respectively. Ursolic acid and 3-O-acetylursolic acid have shown similar GI50 on A375 cells (26 µM vs. 32 µM, respectively) significantly increased both early and late apoptotic populations, activated caspases 3/7 (48-72 h), and enhanced Bax whilst attenuating Bcl-2 expression. Ursolic acid caused elevation of the sub-G1 population whilst its 3-acetyl derivative arrested cell cycle at S phase and induced strong morphological changes. Combination treatments showed that ursolic acid and quercetin act synergistically in migration assays but not against cell proliferation. In summary, 3-O-acetylursolic acid maintains the potency and overall apoptotic mechanism of the parent molecule with a more aggressive influence on the morphology of A375 melanoma cells but the 3-acetylation suppresses its anti-migratory properties. We also found that ursolic acid can act in synergy with quercetin to reduce cell migration.
Collapse
Affiliation(s)
- Aljawharah AlQathama
- School of Pharmacy, University College London, London WC1N 1AX, UK; (L.S.); (P.K.); (S.G.)
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Luying Shao
- School of Pharmacy, University College London, London WC1N 1AX, UK; (L.S.); (P.K.); (S.G.)
| | - Ammar Bader
- Department of Pharmacognosy, Pharmacy College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Proma Khondkar
- School of Pharmacy, University College London, London WC1N 1AX, UK; (L.S.); (P.K.); (S.G.)
| | - Simon Gibbons
- School of Pharmacy, University College London, London WC1N 1AX, UK; (L.S.); (P.K.); (S.G.)
- School of Pharmacy, University East Anglia, Norwich NR4 7TJ, UK
| | - Jose M Prieto
- School of Pharmacy, University College London, London WC1N 1AX, UK; (L.S.); (P.K.); (S.G.)
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
32
|
Chemical Characterization and Wound Healing Property of Jacaranda decurrens Cham. (Bignoniaceae): An Experimental Study Based on Molecular Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4749712. [PMID: 32382292 PMCID: PMC7191437 DOI: 10.1155/2020/4749712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Background Jacaranda decurrens Cham., known as carobinha, is prevalent in the Cerrado biome and presents popular use in treatment of dermatological diseases. The present study aimed to investigate the healing action of topical formulation of Jacaranda decurrens Cham. (FtEHJ) in mice cutaneous lesions. Methods Phytochemical analysis of J. decurrens hydroalcoholic extract was carried out by using HPLC-PDA-ESI-MS and FIA-ESI-IT-MSn. Swiss mice were treated topically with formulation base (FtB) or Fibrinase® or ointment FtEHJ (15 mg/g; 50 mg/Kg). At the end of treatment periods, the inflammatory cytokines (TNF-α, IL-1β, and IL-6) in the lesions were measured by using ELISA and gene expression of TGF-β, Collagen I, and Collagen III was demonstrated by RTqPCR method and histological evaluation. Results Ten compounds were identified in the extract, distributed among the classes of flavonoids and triterpenes. Treatment with FtEHJ increased the wound contraction in 24 hours, such as reduction of TNF-α, IL-1β, and IL-6 (pg/mL) cytokines in the lesion. The TGF-β and collagen gene expression was increased and the wound closure accelerated to nine days, with discrete inflammation, collagenization, and accented reepithelialization. Conclusions. The results obtained suggest chemical compounds present in the FtEHJ accelerates wound healing by being a gene expression modulator, and protein content of different molecules are involved in tissue repair.
Collapse
|
33
|
Li C, Chen J, Yuan W, Zhang W, Chen H, Tan H. Preventive effect of ursolic acid derivative on particulate matter 2.5-induced chronic obstructive pulmonary disease involves suppression of lung inflammation. IUBMB Life 2020; 72:632-640. [PMID: 31840927 DOI: 10.1002/iub.2201] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/31/2019] [Indexed: 01/07/2023]
Abstract
Respiratory diseases like chronic obstructive pulmonary disease (COPD) are associated with the presence of particulate matter 2.5 (PM2.5) in the air. In the present study, the effect of synthesized ursolic acid derivatives on mice model of PM2.5-induced COPD was investigated in vivo. The mice model of COPD was established by the administration of 25 μL of PM2.5 suspension through intranasal route daily for 1 week. The levels of oxidative stress markers and inflammatory cytokines like tumor necrosis factors-α and interleukin-6 in the mice bronchoalveolar fluids increased markedly on administration with PM2.5. However, treatment with ursolic acid derivative caused a significant suppression in PM2.5-induced increase in oxidative stress markers and inflammatory cytokines in dose-dependent manner. Hematoxylin and eosin staining showed excessive inflammatory cell infiltration in pulmonary tissues in mice with COPD. The inflammatory cell infiltration was inhibited on treatment of the mice with ursolic acid derivative. The ursolic acid derivative treatment increased level of superoxide dismutase in mice with COPD. The lung injury induced by PM2.5 in mice was also prevented on treatment with ursolic acid derivative. Thus, ursolic acid derivative inhibits pulmonary tissues damage in mice through suppression of inflammatory cytokine and oxidative enzymes. Therefore, ursolic acid derivative can be of therapeutic importance for treatment of PM2.5-induced COPD.
Collapse
Affiliation(s)
- Cuini Li
- Department of Pharmacy, Guangzhou Haizhu District Changgang Street Community Service Center, Guangzhou, Guangdong, China
| | - Junxian Chen
- The First College of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiwei Yuan
- Department of Internal Medicine, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangdong, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hong Chen
- Department of Internal Medicine, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangdong, China
| | - Hongtao Tan
- Department of Traditional Chinese Medicine, Huizhou Huiyang Maternity and Child Health Care Hospital, Huizhou, Guangdong, China
| |
Collapse
|
34
|
Meng YQ, Xu CD, Yu TT, Li W, Li QW, Li XX. Synthesis and antitumor activity evaluation of ursolic acid derivatives. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:359-369. [PMID: 30829054 DOI: 10.1080/10286020.2019.1571488] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Eighteen uronic acid derivatives were designed and synthesized, and the cytotoxicities in vitro of two cancer cell lines (BEL7402 and SGC7901) were evaluated by MTT assay. The results showed that the inhibitory rate of the compounds on both cell lines was significantly higher than the parent compound. The IC50 of compounds II4, II6, III4, and III6 are comparable or stronger than the positive control drug, the interactions between compounds II4, II6, III4, III6, and NF-κB were also studied by docking simulations.
Collapse
Affiliation(s)
- Yan-Qiu Meng
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Chuan-Dong Xu
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ting-Ting Yu
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Wei Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qian-Wen Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiao-Xiao Li
- Department of Pharmaceutical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
35
|
Seixas N, Dalcol II, Ravanello B, Alessio K, Duarte FA, Bender V, Morel AF. Evaluation of Acetylcholinesterase and Prolyl Oligopeptidase Inhibition of Novel Amino acid-functionalized Stigmasterol and Ursolic Acid Derivatives. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191014154939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Triterpenes and phytosterols are classes of natural compounds widespread in
plants possessing a great number of pharmacological activities. In our continued search
for new compounds from natural sources with pharmacological potential, we prepared a
series of novel stigmasterol and ursolic acid (UA) derivatives by coupling with L-proline,
L-cysteine and L-glutamic acid. Unlike stigmasterol, the eight derivatives obtained
showed good inhibitory capacity against acetylcholinesterase (AChE) or prolyl oligopeptidase
(POP). Among these derivatives, we highlight 3 and 5 with IC50 values of 99.0 ± 8.8
and 97.5 ± 5.0 µM against AChE, respectively, and derivative 8 with a POP IC50 value of
75.7 ± 6.3 µM. The ursolic acid derivative 19 was the most promising compound of its
class, with IC50 against AChE of 98.3 ± 7.7 µM. These results demonstrate that simple
structural modifications on triterpenes and phytosterols can enhance their performance as enzymatic inhibitors.
Collapse
Affiliation(s)
- Nalin Seixas
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ionara I. Dalcol
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Bruno Ravanello
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Keiti Alessio
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Fábio A. Duarte
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Vanessa Bender
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Ademir F. Morel
- Departamento de Quimica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
36
|
Zhang L, Cai QY, Liu J, Peng J, Chen YQ, Sferra TJ, Lin JM. Ursolic acid suppresses the invasive potential of colorectal cancer cells by regulating the TGF-β1/ZEB1/miR-200c signaling pathway. Oncol Lett 2019; 18:3274-3282. [PMID: 31452805 PMCID: PMC6676672 DOI: 10.3892/ol.2019.10604] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/19/2019] [Indexed: 01/02/2023] Open
Abstract
Ursolic acid (UA) is a biologically active compound, commonly used in traditional Chinese medicine (TCM). It has been reported to exhibit strong anticancer properties against a variety of cancers. Our previous studies showed that UA promoted apoptosis in colorectal cancer (CRC) cells and inhibited cellular proliferation and angiogenesis. However, the effect and underlying molecular mechanism of UA in CRC progression remain unclear. In the present study, the role of UA in suppressing the migration and invasion of human colon cancer HCT116 and HCT-8 cells was investigated, using Transwell assays. In addition, to evaluate whether the anticancer properties of UA were mediated by the regulation of a double-negative feedback loop consisting of the transforming growth factor-β1 (TGF-β1)/zinc finger E-box-binding homeobox (ZEB1) pathway and microRNA (miR)-200a/b/c, reverse transcription-quantitative PCR and western blot analysis were performed. The results indicated that UA treatment significantly suppressed cellular growth, migration and invasion in HCT116 and HCT-8 cells in a dose-dependent manner. Furthermore, following UA treatment, several crucial mediators of the TGF-β1 signaling pathway, including TGF-β1, phosphorylated (p)-Smad2/3, p-focal adhesion kinase and ZEB1, were significantly downregulated in the HCT116 and HCT-8 cell lines compared with the control group. Furthermore, the ratio of N-cadherin/E-cadherin, two proteins directly downstream of the TGF-β1 signaling pathway, was found to be downregulated in UA treated CRC cells. Finally, UA significantly upregulated miR200a/b/c, with miR-200c exhibiting the highest increase in expression levels following UA treatment. Collectively, the present study suggested that inhibition of CRC cell invasion by UA occurred via regulation of the TGF-β1/ZEB1/miR-200c signaling network, which may be one of the mechanisms by which UA appears to be an effective therapeutic agent against colon cancer.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Qiao-Yan Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jianxin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - You-Qin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Thomas J. Sferra
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH 44106, USA
| | - Jiu-Mao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
37
|
Fontana G, Bruno M, Notarbartolo M, Labbozzetta M, Poma P, Spinella A, Rosselli S. Cytotoxicity of oleanolic and ursolic acid derivatives toward hepatocellular carcinoma and evaluation of NF-κB involvement. Bioorg Chem 2019; 90:103054. [PMID: 31212180 DOI: 10.1016/j.bioorg.2019.103054] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/29/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Oleanolic and ursolic acids are two ubiquitous isomeric triterpene phytochemicals known for their anticancer activity. A set of derivatives of the two compounds with a modified oxidation state and lipophylicity at C-3 and C-28 positions, were prepared and tested as anticancer agents versus the lines HepG2, Hep3B and HA22T/VGH of hepatocarcinoma, a strongly aggressive tumor that is not responsive toward the standard therapies. New derivatives containing a three carbons side chain on the C-3 position were synthetized in both stereoisomeric forms by the Barbier-Grignard procedure and three of them were found to be active toward all of the three targets. The implication of the transcriptional nuclear factor NF-κB in the mechanism of action was assessed for the more active compounds in the set, as hepatocellular carcinoma (HCC) cyto-types are known to overexpress NF-κB.
Collapse
Affiliation(s)
- Gianfranco Fontana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128 Palermo, Italy.
| | - Maurizio Bruno
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128 Palermo, Italy.
| | - Monica Notarbartolo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128 Palermo, Italy.
| | - Manuela Labbozzetta
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128 Palermo, Italy.
| | - Paola Poma
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze, ed. 17, I-90128 Palermo, Italy.
| | - Alberto Spinella
- Centro Grandi Apparecchiature (CGA) - ATeN Center, University of Palermo, via F. Marini 14, 90128 Palermo, Italy.
| | - Sergio Rosselli
- Dipartimento di Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Viale delle Scienze, ed. 4, I-90128 Palermo, Italy.
| |
Collapse
|
38
|
Fan H, Geng L, Yang F, Dong X, He D, Zhang Y. Ursolic acid derivative induces apoptosis in glioma cells through down-regulation of cAMP. Eur J Med Chem 2019; 176:61-67. [PMID: 31096119 DOI: 10.1016/j.ejmech.2019.04.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/13/2023]
Abstract
The present study was designed to synthesize and evaluate ursolic acid hybrid compounds against glioma cells. Initial screening revealed that most of the synthesized compounds displayed better inhibitory effect on glioma cell proliferation compared to parent ursolic acid. The mechanism of inhibitory effect of the most potent compound 6d on glioma cells was investigated in detail. Treatment with compound 6d significantly (p < 0.001) reduced U251 and C6 cell proliferation at 48 h. The growth of U251 and C6 glioma cells was reduced to minimum level (17 and 21%) on treatment with 10 μM concentration of compound 6d. Treatment of the U251 cells with 10 μM concentration of compound 6d caused a significant (p < 0.05) inhibition of cAMP level. In U251 cell cultures treatment with compound 6d at 10 μM concentration enhanced proportion of apoptotic cells to 69.32% compared to 2.34% in the control cultures. The compound 6d treatment of U251 cells for 48 h caused arrest of cell cycle in the G0/G1 phase with consequent decrease of cell population in G2/M and S phases. The results from TEM showed that compound 6d treatment of U251 cells for 48 h caused blebbing of the cell membranes, chromatin condensation, appearance of foamy cytoplasmic material and autophagic vacuoles. The results from SEM revealed that compound 6d treatment of U251 cells caused a marked inhibition of microvilli and extensions on the cell surfaces. Thus present study demonstrates that compound 6d inhibits glioma cell growth, induces apoptosis and arrest cell cycle through metabolic pathway down-regulation. Therefore, compound 6d can be evaluated further for the treatment of glioma.
Collapse
Affiliation(s)
- Haitao Fan
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Li Geng
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Fan Yang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Xushuai Dong
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Dong He
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China
| | - Yongchao Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
39
|
Kahnt M, Hoenke S, Fischer L, Al-Harrasi A, Csuk R. Synthesis and Cytotoxicity Evaluation of DOTA-Conjugates of Ursolic Acid. Molecules 2019; 24:E2254. [PMID: 31212958 PMCID: PMC6630699 DOI: 10.3390/molecules24122254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 01/25/2023] Open
Abstract
In this study, we report the synthesis of several amine-spacered conjugates of ursolic acid (UA) and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Thus, a total of 11 UA-DOTA conjugates were prepared holding various oligo-methylene diamine spacers as well as different substituents at the acetate units of DOTA including tert-butyl, benzyl, and allyl esters. Furthermore, three synthetic approaches were compared for the ethylenediamine-spacered conjugate 29 regarding reaction steps, yields, and precursor availability. The prepared conjugates were investigated regarding cytotoxicity using SRB assays and a set of human tumor cell lines. The highest cytotoxicity was observed for piperazinyl spacered compound 22. Thereby, EC50 values of 1.5 µM (for A375 melanoma) and 1.7 µM (for A2780 ovarian carcinoma) were determined. Conjugates 22 and 24 were selected for further cytotoxicity investigations including fluorescence microscopy, annexin V assays and cell cycle analysis.
Collapse
Affiliation(s)
- Michael Kahnt
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Sophie Hoenke
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Lucie Fischer
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, PO Box 33, Birkat Al-Mauz, Nizwa 616, Oman.
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
40
|
Frolova TS, Lipeeva AV, Baev DS, Baiborodin SI, Orishchenko КE, Kochetov AV, Sinitsyna OI. Fluorescent labeling of ursolic acid with FITC for investigation of its cytotoxic activity using confocal microscopy. Bioorg Chem 2019; 87:876-887. [PMID: 30538052 DOI: 10.1016/j.bioorg.2018.11.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/17/2022]
Abstract
Fluorescent labeling is a widely-used approach in the study of intracellular processes. This method is becoming increasingly popular for studying small bioactive molecules of natural origin; it allows us to estimate the vital intracellular changes which occur under their influence. We propose a new approach for visualization of the intracellular distribution of triterpene acids, based on fluorescent labeling by fluoresceine isothiocyanate. As a model compound we took the most widely-used and best-studied acid in the ursane series - ursolic acid, as this enabled us to compare the results obtained during our research with the available data, in order to evaluate the validity of the proposed method. Experimental tracing of the dynamics of penetration and distribution of the labeled ursolic acid has shown that when the acid enters the cell, it initially localizes on the inner membranes where the predicted target Akt1/protein kinase B - a protein that inhibits apoptosis - is located.
Collapse
Affiliation(s)
- Tatiana S Frolova
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia; Federal Research Center of Fundamental and Translational Medicine of Siberian Branch of the Russian Academy of Sciences, 2, Timakov Street, 630117 Novosibirsk, Russia.
| | - Alla V Lipeeva
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Sergey I Baiborodin
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Кonstantin E Orishchenko
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia
| | - Alexey V Kochetov
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| | - Olga I Sinitsyna
- Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, 10, Lavrentyev Ave., 630090 Novosibirsk, Russia; Novosibirsk State University, 2, Pirogov Street, 630090 Novosibirsk, Russia
| |
Collapse
|
41
|
Pourmirzaee Sheikhali Kelayeh T, Abedinzade M, Ghorbani A. A review on biological effects of Lamium album (white dead nettle) and its components. JOURNAL OF HERBMED PHARMACOLOGY 2019. [DOI: 10.15171/jhp.2019.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Lamium album, commonly known as white dead nettle, is a plant in the family of Lamiaceae. This plant is distributed all over Asia, Europe, and Africa. In the traditional medicine of Asia, it has been used for the treatment of a number of diseases such as trauma, fracture, paralysis, leucorrhoea, hypertension women’s pain, uterine hemorrhage, menorrhagia, vaginal and cervical inflammation. In recent years, L. album has been the subject of intensive experimental studies to evaluate its traditional use to reveal new biological properties. A wide range of pharmacological effects, including antimicrobial, anti-inflammatory, anticancer, and antidiabetic properties have been reported by these studies. This review presents an up-to-date overview of the current literature on the pharmacological and physiological effects of L. album. Also, phytochemical constituents responsible for the biological properties of L. album are presented and discussed.
Collapse
Affiliation(s)
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
42
|
Chan EWC, Soon CY, Tan JBL, Wong SK, Hui YW. Ursolic acid: An overview on its cytotoxic activities against breast and colorectal cancer cells. JOURNAL OF INTEGRATIVE MEDICINE 2019; 17:155-160. [PMID: 30928277 DOI: 10.1016/j.joim.2019.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
Abstract
Ursolic acid (UA) is a pentacyclic triterpene of the ursane type. As a common chemical constituent among species of the family Lamiaceae, UA possesses a broad spectrum of pharmacological properties. This overview focuses on the anticancer properties of UA against breast cancer (BC) and colorectal cancer (CRC) that are most common among women and men, respectively. In vitro studies have shown that UA inhibited the growth of BC and CRC cell lines through various molecular targets and signaling pathways. There are several in vivo studies on the cytotoxic activity of UA against BC and CRC. UA also inhibits the growth of other types of cancer. Studies on structural modifications of UA have shown that the -OH groups at C3 and at C28 are critical factors influencing the cytotoxic activity of UA and its derivatives. Some needs for future research are suggested. Sources of information were from ScienceDirect, Google Scholar and PubMed.
Collapse
Affiliation(s)
- Eric Wei Chiang Chan
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Chu Yong Soon
- Faculty of Applied Sciences, UCSI University, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Joash Ban Lee Tan
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Siu Kuin Wong
- School of Science, Monash University Sunway, 46150 Petaling Jaya, Selangor, Malaysia
| | - Yew Woh Hui
- Xiamen University Malaysia, Bandar Sunsuria, 43900 Sepang, Selangor, Malaysia
| |
Collapse
|
43
|
Bahadori MB, Vandghanooni S, Dinparast L, Eskandani M, Ayatollahi SA, Ata A, Nazemiyeh H. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoterapia 2019; 134:493-500. [PMID: 30898728 DOI: 10.1016/j.fitote.2019.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 12/27/2022]
Abstract
Hypoxia-inducible factor-1 is a target for the management of cancer. Here, the anti-proliferation properties of corosolic acid (CA) against A549 human lung epithelial cancer cells in CoCl2-induced hypoxia is reported. CA was isolated from the roots of Salvia syriaca based on a bioassay-guided isolation platform and identified by 1D and 2D NMR experiments. Several cytotoxicies and genotoxicity analyses were performed using MTT, DAPI, cell cycle, DNA ladder, and annexin V/PI detection. Cobalt chloride (CoCl2) was used to stimulate hypoxia. The adaptation of A549 cells to a stimulated hypoxic condition in the presence of CA was evaluated. CA decreased the growth of A549 cells with an IC50 of 12 μg/mL at 48 h. Also, chromatin condensation and DNA fragmentation were detected as signs of apoptosis occurrence. CA induced ~85% apoptosis and even 1% necrosis. The expression of hypoxia-inducible factor-1 α (HIF-1α), HIF-1β and downstream genes was strongly suppressed in the presence of CA in CoCl2-stimulated hypoxia condition. Results indicated that CA has remarkable cytotoxicity against the cancerous cell in hypoxia condition and may be regarded for preparation of new formulations for possible uses as supplement and medicine in cancer therapy.
Collapse
Affiliation(s)
- Mir Babak Bahadori
- Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Dinparast
- Biotechnology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Abdulmajid Ayatollahi
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg MB R3B 2G3, Canada.
| | - Athar Ata
- Department of Chemistry, Richardson College for the Environmental Science Complex, The University of Winnipeg, Winnipeg MB R3B 2G3, Canada
| | - Hossein Nazemiyeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacognosy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
44
|
Wu J, Zhang ZH, Zhang LH, Jin XJ, Ma J, Piao HR. Design, synthesis, and screening of novel ursolic acid derivatives as potential anti-cancer agents that target the HIF-1α pathway. Bioorg Med Chem Lett 2019; 29:853-858. [DOI: 10.1016/j.bmcl.2018.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 11/16/2022]
|
45
|
Zou J, Lin J, Li C, Zhao R, Fan L, Yu J, Shao J. Ursolic Acid in Cancer Treatment and Metastatic Chemoprevention: From Synthesized Derivatives to Nanoformulations in Preclinical Studies. Curr Cancer Drug Targets 2019; 19:245-256. [PMID: 30332961 DOI: 10.2174/1568009618666181016145940] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/15/2018] [Accepted: 06/22/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Cancer metastasis has emerged as a major public health threat that causes majority of cancer fatalities. Traditional chemotherapeutics have been effective in the past but suffer from low therapeutic efficiency and harmful side-effects. Recently, it has been reported ursolic acid (UA), one of the naturally abundant pentacyclic triterpenes, possesses a wide range of biological activities including anti-inflammatory, anti-atherosclerotic, and anti-cancer properties. More importantly, UA has the features of low toxicity, liver protection and the potential of anti-cancer metastasis. OBJECTIVE This article aimed at reviewing the great potential of UA used as a candidate drug in the field of cancer therapy relating to suppression of tumor initiation, progression and metastasis. METHODS Selective searches were conducted in Pubmed, Google Scholar and Web of Science using the keywords and subheadings from database inception to December 2017. Systemic reviews are summarized here. RESULTS UA has exhibited chemopreventive and therapeutic effects of cancer mainly through inducing apoptosis, inhibiting cell proliferation, preventing tumor angiogenesis and metastatic. UA nanoformulations could enhance the solubility and bioavailability of UA as well as exhibit better inhibitory effect on tumor growth and metastasis. CONCLUSION The information presented in this article can provide useful references for further studies on making UA a promising anti-cancer drug, especially as a prophylactic metastatic agent for clinical applications.
Collapse
Affiliation(s)
- Junjie Zou
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Juanfang Lin
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Chao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Ruirui Zhao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Lulu Fan
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jesse Yu
- Department of Pharmaceutics, University of Washington, Seattle, WA, United States
| | - Jingwei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
46
|
Serra S, Sullivan N, Mattheis JP, Musacchi S, Rudell DR. Canopy attachment position influences metabolism and peel constituency of European pear fruit. BMC PLANT BIOLOGY 2018; 18:364. [PMID: 30563450 PMCID: PMC6299602 DOI: 10.1186/s12870-018-1544-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/20/2018] [Indexed: 05/07/2023]
Abstract
BACKGROUND Inconsistent pear fruit ripening resulting from variable harvest maturity within tree canopies can contribute to postharvest losses through senescence and spoilage that would otherwise be effectively managed using crop protectant and storage regimes. Because those inconsistencies are likely based on metabolic differences, non-targeted metabolic profiling peel of 'd'Anjou' pears harvested from the external or internal canopy was used to determine the breadth of difference and link metabolites with canopy position during long-term controlled atmosphere storage. RESULTS Differences were widespread, encompassing everything from expected distinctions in flavonol glycoside levels between peel of fruit from external and internal canopy positions to increased aroma volatile production and sucrose hydrolysis with ripening. Some of the most substantial differences were in levels of triterpene and phenolic peel cuticle components among which acyl esters of ursolic acid and fatty acyl esters of p-coumaryl alcohol were higher in the cuticle of fruit from external tree positions, and acyl esters of α-amyrin were elevated in peel of fruit from internal positions. Possibly the most substantial dissimilarities were those that were directly related to fruit quality. Phytosterol conjugates and sesquiterpenes related to elevated superficial scald risk were higher in pears from external positions which were to be potentially rendered unmarketable by superficial scald. Other metabolites associated with fruit aroma and flavor became more prevalent in external fruit peel as ripening progressed and, likewise, with differential soluble solids and ethylene levels, suggesting the final product not only ripens differentially but the final fruit quality following ripening is actually different based on the tree position. CONCLUSIONS Given the impact tree position appears to have on the most intrinsic aspects of ripening and quality, every supply chain management strategy would likely lead to diverse storage outcomes among fruit from most orchards, especially those with large canopies. Metabolites consistently associated with peel of fruit from a particular canopy position may provide targets for non-destructive pre-storage sorting used to reduce losses contributed by this inconsistency.
Collapse
Affiliation(s)
- Sara Serra
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801 USA
| | - Nathanael Sullivan
- Tree Fruit Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Wenatchee, WA 98801 USA
| | - James P. Mattheis
- Tree Fruit Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Wenatchee, WA 98801 USA
| | - Stefano Musacchi
- Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801 USA
| | - David R. Rudell
- Tree Fruit Research Laboratory, Agricultural Research Service, U.S. Department of Agriculture, Wenatchee, WA 98801 USA
| |
Collapse
|
47
|
A comparative study for the extraction methods and solvent selection for isolation, quantitative estimation and validation of ursolic acid in the leaves of Lantana camara by HPTLC method. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
48
|
Kahnt M, Fischer Née Heller L, Al-Harrasi A, Csuk R. Ethylenediamine Derived Carboxamides of Betulinic and Ursolic Acid as Potential Cytotoxic Agents. Molecules 2018; 23:E2558. [PMID: 30297604 PMCID: PMC6222718 DOI: 10.3390/molecules23102558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/26/2018] [Accepted: 10/03/2018] [Indexed: 01/03/2023] Open
Abstract
Two easily accessible, natural occurring triterpenoids, betulinic and ursolic acid, were used as starting materials for the synthesis of novel cytotoxic agents. A set of 28 ethylenediamine-spacered carboxamides was prepared holding an additional substituent connected to the ethylenediamine group. The compounds were screened in SRB assays to evaluate their cytotoxic activity employing several human tumor cell lines. Betulinic acid-derived carboxamides 17⁻30 showed significantly higher cytotoxicity than their ursolic acid analogs 3⁻16. In particular, compounds 25 and 26 were highly cytotoxic, as indicated by EC50 values lower than 1 μM.
Collapse
Affiliation(s)
- Michael Kahnt
- Division of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Lucie Fischer Née Heller
- Division of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| | - Ahmed Al-Harrasi
- Chair of Oman's Medicinal Plants and Marine Natural Products, University of Nizwa, P.O. Box 33, Birkat Al-Mauz, Nizwa 611, Oman.
| | - René Csuk
- Division of Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany.
| |
Collapse
|
49
|
Kahnt M, Heller L, Al-Harrasi A, Schäfer R, Kluge R, Wagner C, Otgonbayar C, Csuk R. Platanic acid-derived methyl 20-amino-30-norlupan-28-oates are potent cytotoxic agents acting by apoptosis. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2189-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
50
|
Wolfram RK, Heller L, Csuk R. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis. Eur J Med Chem 2018; 152:21-30. [PMID: 29684707 DOI: 10.1016/j.ejmech.2018.04.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/10/2018] [Accepted: 04/15/2018] [Indexed: 12/24/2022]
Abstract
Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan.
Collapse
Affiliation(s)
- Ratna Kancana Wolfram
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - Lucie Heller
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany
| | - René Csuk
- Martin-Luther-Universität Halle-Wittenberg, Bereich Organische Chemie, Kurt-Mothes-Str. 2, D-06120, Halle (Saale), Germany.
| |
Collapse
|