1
|
Bouillon ME, Nash RJ, Pyne SG. Studies towards the synthesis of polyhydroxylated pyrrolidine alkaloids isolated from Broussonetia kazinoki (moraceae). Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
2
|
Tran TV, Désiré J, Auberger N, Blériot Y. Stereoselective Synthesis of 1- C-Diethylphosphonomethyl and -difluoromethyl Iminosugars from Sugar Lactams. J Org Chem 2022; 87:7581-7585. [PMID: 35584044 DOI: 10.1021/acs.joc.2c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy allowing the straightforward synthesis of 1-C-phosphonomethyl and 1-C-phosphonodifluoromethyl iminosugars is reported. Conversion of sugar lactams to the corresponding imines with Schwartz's reagent followed by their reaction with LiCH2P(O)(OEt)2 and LiCF2P(O)(OEt)2 stereoselectively afforded the 1,2-cis and 1,2-trans glycosyl phosphonates, respectively, in modest to good yields. Application of this methodology to C-2 orthogonally protected sugar lactams paved the way to 2-acetamido- and 2-deoxy-1-C-phosphonomethyl iminosugars.
Collapse
Affiliation(s)
- Thanh Van Tran
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Jérôme Désiré
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Nicolas Auberger
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| | - Yves Blériot
- Université de Poitiers, IC2MP, UMR CNRS 7285, Equipe "OrgaSynth", Groupe Glycochimie 4 rue Michel Brunet, 86073 Poitiers cedex 9, France
| |
Collapse
|
3
|
Taslimi P, Akhundova F, Kurbanova M, Türkan F, Tuzun B, Sujayev A, Sadeghian N, Maharramov A, Farzaliyev V, Gülçin İ. Biological Activity and Molecular Docking Study of Some Bicyclic Structures: Antidiabetic and Anticholinergic Potentials. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1981405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Fidan Akhundova
- Organic Chemistry Department, Baku State University, Baku, Azerbaijan
| | - Malahat Kurbanova
- Organic Chemistry Department, Baku State University, Baku, Azerbaijan
| | - Fikret Türkan
- Health Services Vocational School, Igdır University, Igdır, Turkey
| | - Burak Tuzun
- Department of Chemistry, Faculty of Science, Cumhuriyet University, Sivas, Turkey
| | - Afsun Sujayev
- Laboratory of Organic Chemistry, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Nastaran Sadeghian
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| | - Abel Maharramov
- Laboratory of Organic Chemistry, Institute of Chemistry of Additives, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
| | - Vagif Farzaliyev
- Organic Chemistry Department, Baku State University, Baku, Azerbaijan
| | - İlhami Gülçin
- Department of Chemistry, Faculty of Science, Atatürk University, Erzurum, Turkey
| |
Collapse
|
4
|
Abstract
Iminosugars are naturally occurring carbohydrate analogues known since 1967. These natural compounds and hundreds of their synthetic derivatives prepared over five decades have been mainly exploited to inhibit the glycosidases, the enzymes catalysing the glycosidic bond cleavage, in order to find new drugs for the treatment of type 2 diabetes and other diseases. However, iminosugars are also inhibitors of glycosyltransferases, the enzymes responsible for the synthesis of oligosaccharides and glycoconjugates. The selective inhibition of specific glycosyltransferases involved in cancer or bacterial infections could lead to innovative therapeutic agents. The synthesis and biological properties of all the iminosugars assayed to date as glycosyltransferase inhibitors are reviewed in the present article.
Collapse
Affiliation(s)
- Irene Conforti
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| | - Alberto Marra
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, Ecole Nationale Supérieure de Chimie de Montpellier, 8 Rue de l'Ecole Normale, 34296 Montpellier cedex 5, France.
| |
Collapse
|
5
|
Uhrig ML, Mora Flores EW, Postigo A. Approaches to the Synthesis of Perfluoroalkyl-Modified Carbohydrates and Derivatives: Thiosugars, Iminosugars, and Tetrahydro(thio)pyrans. Chemistry 2021; 27:7813-7825. [PMID: 33462910 DOI: 10.1002/chem.202005229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Fluoroalkyl-substituted carbohydrates play relevant roles in diverse areas such as supramolecular chemistry, glycoconjugation, liquid crystals, and surfactants, with direct applications as wetting, antifreeze, and coating agents. In light of these promising applications, new methodologies for the late-stage incorporation of fluoroalkyl RF groups into carbohydrates and derivatives are herein presented as they are relevant to the synthetic carbohydrate community. Previously reviewed protocols for the installation of RF groups onto carbohydrates and derivatives will be succinctly summarized in the light of the new achievements. Fluoroalkyl-substituted iminosugars, on the other hand, are also interesting glycomimetic derivatives with prominent roles as glycosidases and glycosyltransferases inhibitors, as has recently been demonstrated. Also, they positively contribute to the study of sugar-protein interactions and enzyme mechanisms. New advances in the syntheses of fluoroalkyl-substituted iminosugars will also be presented here.
Collapse
Affiliation(s)
- María Laura Uhrig
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias ExactasyNaturales, Pabellón 2, Ciudad Universitaria, C1428EG, Buenos Aires, Argentina.,Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET- Universidad de Buenos Aires, CP1428, Buenos Aires, Argentina
| | - Erwin W Mora Flores
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| | - Al Postigo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Junín 954, CP1113-, Buenos Aires, Argentina
| |
Collapse
|
6
|
Akhundova FN, Kurbanova MM, Huseynzada AE, Alves MJ, Sujayev AR. Synthesis and Bioactivity of New Analogue of Bicyclic 1‐Azafagomine. ChemistrySelect 2019. [DOI: 10.1002/slct.201903190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fidan N. Akhundova
- Baku State UniversityOrganic Chemistry Department Z. Khalilov 23 Baku AZ 1148
| | | | | | - Maria J. Alves
- Universidade do Minho de GualtarDepartment of Organic Chemistry 4710-057 Braga Portugal
| | - Afsun R. Sujayev
- Laboratory of Organic chemistryInstitute of Chemistry of AdditivesAzerbaijan National Academy of Sciences 1029 Baku, Azerbaijan
| |
Collapse
|
7
|
Massicot F, Messire G, Vallée A, Vasse JL, Py S, Behr JB. Regiospecific formation of sugar-derived ketonitrone towards unconventional C-branched pyrrolizidines and indolizidines. Org Biomol Chem 2019; 17:7066-7077. [DOI: 10.1039/c9ob01419e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of unprecedented branched pyrrolizidines and indolizidines was accomplished via nitrone chemistry.
Collapse
Affiliation(s)
| | - Gatien Messire
- Univ. Reims Champagne-Ardenne
- ICMR
- 51687 Reims Cedex 2
- France
| | - Alexis Vallée
- Univ. Reims Champagne-Ardenne
- ICMR
- 51687 Reims Cedex 2
- France
| | - Jean-Luc Vasse
- Univ. Reims Champagne-Ardenne
- ICMR
- 51687 Reims Cedex 2
- France
| | - Sandrine Py
- Univ. Grenoble Alpes
- DCM
- F-38000 Grenoble
- France
- CNRS
| | | |
Collapse
|
8
|
Nicolas C, Martin OR. Glycoside Mimics from Glycosylamines: Recent Progress. Molecules 2018; 23:molecules23071612. [PMID: 30004451 PMCID: PMC6100084 DOI: 10.3390/molecules23071612] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 01/08/2023] Open
Abstract
Glycosylamines are valuable sugar derivatives that have attracted much attention as synthetic intermediates en route to iminosugar-C-glycosyl compounds. Iminosugars are among the most important glycomimetics reported to date due to their powerful activities as inhibitors of a wide variety of glycosidases and glycosyltransferases, as well as for their use as pharmacological chaperones. As they provide ready access to these important glycoside mimics, we have reviewed the most significant glycosylamine-based methodologies developed to date, with a special emphasis on the literature reported after 2006. The groups of substrates covered include N-alkyl- and N-benzyl-glycosylamines, N-glycosylhydroxylamines, N-(alkoxycarbonyl)-, and N-tert-butanesulfinyl-glycosylamines.
Collapse
Affiliation(s)
- Cyril Nicolas
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, BP 6759, 45067 Orleans CEDEX 2, France.
| | - Olivier R Martin
- Institute of Organic and Analytical Chemistry, UMR 7311, University of Orleans and CNRS, Rue de Chartres, BP 6759, 45067 Orleans CEDEX 2, France.
| |
Collapse
|
9
|
Synthesis and glycosidase inhibition potency of all- trans substituted 1- C -perfluoroalkyl iminosugars. Carbohydr Res 2018; 464:2-7. [DOI: 10.1016/j.carres.2018.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 01/28/2023]
|
10
|
1-C-phosphonomethyl- and 1-C-difluorophosphonomethyl-1,4-imino-l-arabinitols as Galf transferase inhibitors: A comparison. Carbohydr Res 2018; 461:45-50. [DOI: 10.1016/j.carres.2018.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/09/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022]
|
11
|
Cocaud C, Nicolas C, Poisson T, Pannecoucke X, Legault CY, Martin OR. Tunable Approach for the Stereoselective Synthesis of 1-C-Diethylphosphono(difluoromethyl) Iminosugars as Glycosyl Phosphate Mimics. J Org Chem 2017; 82:2753-2763. [DOI: 10.1021/acs.joc.6b03071] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chloé Cocaud
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Cyril Nicolas
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| | - Thomas Poisson
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Xavier Pannecoucke
- Normandie
Université, COBRA, UMR 6014 et FR 3038, Université de Rouen; INSA Rouen; CNRS, 1 rue Tesnière, 76821 Mont Saint-Aignan Cedex, France
| | - Claude Y. Legault
- Department
of Chemistry, Centre in Green Chemistry and Catalysis, University of Sherbrooke, 2500 boul. de l’Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Olivier R. Martin
- Institut
de Chimie Organique et Analytique, UMR 7311, Université d’Orléans et CNRS, Rue de Chartres, BP 6759, 45067 Orléans cedex 2, France
| |
Collapse
|
12
|
Li YX, Kinami K, Hirokami Y, Kato A, Su JK, Jia YM, Fleet GWJ, Yu CY. Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars: synthesis and glycosidase inhibition. Org Biomol Chem 2016; 14:2249-63. [DOI: 10.1039/c5ob02474a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gem-difluoromethylated and trifluoromethylated derivatives of DMDP-related iminosugars have been synthesized from cyclic nitrones and assayed against various glycosidases.
Collapse
Affiliation(s)
- Yi-Xian Li
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Kyoko Kinami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Yuki Hirokami
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Atsushi Kato
- Department of Hospital Pharmacy
- University of Toyama
- 2630 Sugitani
- Japan
| | - Jia-Kun Su
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yue-Mei Jia
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - George W. J. Fleet
- Chemistry Research Laboratory
- Department of Chemistry
- University of Oxford
- Oxford
- UK
| | - Chu-Yi Yu
- Beijing National Laboratory for Molecular Science (BNLMS)
- CAS Key Laboratory of Molecular Recognition and Function
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
13
|
Im J. Synthesis of a Benzene-containing C1-Phosphonate Analogue of UDP-GlcNAc for the Inhibition ofO-GlcNAc Transferase. B KOREAN CHEM SOC 2015. [DOI: 10.1002/bkcs.10609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jungkyun Im
- Department of Nanochemical Engineering; Soonchunhyang University; Asan 336-745 Korea
| |
Collapse
|
14
|
Davies SG, Figuccia AL, Fletcher AM, Roberts PM, Thomson JE. Asymmetric syntheses of 2,5-dideoxy-2,5-imino-d-glucitol [(+)-DGDP] and 1,2,5-trideoxy-1-amino-2,5-imino-d-glucitol [(+)-ADGDP]. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.03.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
|
16
|
Flores M, García-García P, Garrido NM, Marcos IS, Sanz-González F, Díez D. Domino Elimination/Nucleophilic Addition in the Synthesis of Chiral Pyrrolidines. J Org Chem 2013; 78:7068-75. [DOI: 10.1021/jo400873c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Pilar García-García
- Instituto de Tecnología
Química (UPV-CSIC), Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | | | | | - Francisca Sanz-González
- Servicio General
de Rayos X and §Departamento de Química Orgánica, Facultad
de Ciencias Químicas, Universidad de Salamanca, Plaza de los Caídos 1-5, 37008 Salamanca, Spain
| | | |
Collapse
|
17
|
Hottin A, Wright DW, Steenackers A, Delannoy P, Dubar F, Biot C, Davies GJ, Behr JB. α-L-Fucosidase Inhibition by Pyrrolidine-Ferrocene Hybrids: Rationalization of Ligand-Binding Properties by Structural Studies. Chemistry 2013; 19:9526-33. [DOI: 10.1002/chem.201301001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 12/22/2022]
|
18
|
Ayers BJ, Ngo N, Jenkinson SF, Martínez RF, Shimada Y, Adachi I, Weymouth-Wilson AC, Kato A, Fleet GWJ. Glycosidase Inhibition by All 10 Stereoisomeric 2,5-Dideoxy-2,5-iminohexitols Prepared from the Enantiomers of Glucuronolactone. J Org Chem 2012; 77:7777-92. [DOI: 10.1021/jo301243s] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin J. Ayers
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Nigel Ngo
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Sarah F. Jenkinson
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1
3QU, U.K
| | - R. Fernando Martínez
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| | - Yousuke Shimada
- Department of Hospital
Pharmacy, University of Toyama, 2630 Sugitani,
Toyama 930-0194,
Japan
| | - Isao Adachi
- Department of Hospital
Pharmacy, University of Toyama, 2630 Sugitani,
Toyama 930-0194,
Japan
| | | | - Atsushi Kato
- Department of Hospital
Pharmacy, University of Toyama, 2630 Sugitani,
Toyama 930-0194,
Japan
| | - George W. J. Fleet
- Chemistry
Research Laboratory,
Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
- Oxford Glycobiology Institute, University of Oxford, South Parks Road, Oxford OX1
3QU, U.K
| |
Collapse
|
19
|
Zhuang JJ, Ye JL, Zhang HK, Huang PQ. An unexpected high erythro-selection in the Grignard reaction with an N,O-acetal: a concise asymmetric synthesis of indolizidine alkaloid (−)-2-epi-lentiginosine. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.12.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Monrad RN, Madsen R. Modern methods for shortening and extending the carbon chain in carbohydrates at the anomeric center. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.08.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Stocker BL, Dangerfield EM, Win‐Mason AL, Haslett GW, Timmer MSM. Recent Developments in the Synthesis of Pyrrolidine‐Containing Iminosugars. European J Org Chem 2010. [DOI: 10.1002/ejoc.200901320] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bridget L. Stocker
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
| | - Emma M. Dangerfield
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Anna L. Win‐Mason
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Gregory W. Haslett
- Malaghan Institute of Medical Research, P. O. Box 7060, Wellington, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P. O. Box 600, Wellington, New Zealand, Fax: +64‐4‐463‐5241
| |
Collapse
|
22
|
Guillarme S, Behr JB, Bello C, Vogel P, Saluzzo C. Synthesis and glycosidase inhibitory activity of 1-amino-3,6-anhydro-1-deoxy-D-sorbitol derivatives. Bioorg Chem 2010; 38:43-7. [PMID: 20060997 DOI: 10.1016/j.bioorg.2009.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Accepted: 12/02/2009] [Indexed: 11/19/2022]
Abstract
3,6-Anhydro-1-(aryl or alkylamino)-1-deoxy-D-sorbitol derivatives have been prepared in four steps from isosorbide, a by-product from the starch industry. The inhibitory activities of these new compounds have been evaluated towards 13 glycosidases. A first lead-compound was identified, which inhibited beta-N-acetylglucosaminidase from bovine kidney (82% inhibition at 1mM).
Collapse
Affiliation(s)
- Stéphane Guillarme
- UCO2M, UMR CNRS 6011, Université du Maine, Avenue O. Messiaen, 72085 Le Mans Cedex 09, France
| | | | | | | | | |
Collapse
|
23
|
Pearson MS, Floquet N, Bello C, Vogel P, Plantier-Royon R, Szymoniak J, Bertus P, Behr JB. The spirocyclopropyl moiety as a methyl surrogate in the structure of l-fucosidase and l-rhamnosidase inhibitors. Bioorg Med Chem 2009; 17:8020-6. [DOI: 10.1016/j.bmc.2009.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 09/28/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
|
24
|
Chang YC, Chir JL, Tsai SY, Juang WF, Wu AT. Microwave-assisted synthesis of pyrrolidine derivatives. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
|
26
|
|
27
|
Tsou EL, Yeh YT, Liang PH, Cheng WC. A convenient approach toward the synthesis of enantiopure isomers of DMDP and ADMDP. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.096] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Behr JB, Kalla A, Harakat D, Plantier-Royon R. Tandem Nucleophilic Addition/Cyclization Reaction in the Synthesis of Ketimine-Type Iminosugars. J Org Chem 2008; 73:3612-5. [DOI: 10.1021/jo702616x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jean-Bernard Behr
- Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences, CNRS, BP 1039, 51687 Reims Cedex 2, France
| | - Adel Kalla
- Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences, CNRS, BP 1039, 51687 Reims Cedex 2, France
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences, CNRS, BP 1039, 51687 Reims Cedex 2, France
| | - Richard Plantier-Royon
- Institut de Chimie Moléculaire de Reims (ICMR), UFR Sciences, CNRS, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
29
|
Donohoe TJ, Cheeseman MD, O'Riordan TJC, Kershaw JA. Synthesis of (+)-DGDP and (−)-7-epialexine. Org Biomol Chem 2008; 6:3896-8. [DOI: 10.1039/b815332a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Lee JH, Shin S, Kang J, Lee SG. Ir-catalyzed allylic amination/ring-closing metathesis: a new route to enantioselective synthesis of cyclic beta-amino alcohol derivatives. J Org Chem 2007; 72:7443-6. [PMID: 17705538 DOI: 10.1021/jo070998h] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ir-catalyzed allylic aminations of (E)-4-benzyloxy-2-butenyl methyl carbonate with benzylamine using Feringa's (Sa,Sc,Sc)-phosphoramidite as a chiral ligand afforded linear-aminated achiral product N,O-dibenzyl-4-amino-2-buten-1-ol regioselectively (linear/branched = >99/1), whereas the (E)-5-benzyloxy-2-pentenyl methyl carbonate showed completely opposite regioselectivity (linear/branched = >1/99) and afforded the optically active (3R)-N,O-dibenzylated 3-amino-1-penten-5-ol with very high enantioselectivity (96% ee), which was used as a key intermediate for the effective synthesis of various cyclic beta-amino alcohol derivatives through ring-closing metathesis in high yields.
Collapse
Affiliation(s)
- Jun Hee Lee
- Division of Nano Science (BK21)/Department of Chemistry, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, 120-750 Seoul, Korea
| | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
In this review, we discuss new insights in cell wall architecture and cell wall construction in the ascomycetous yeast Saccharomyces cerevisiae. Transcriptional profiling studies combined with biochemical work have provided ample evidence that the cell wall is a highly adaptable organelle. In particular, the protein population that is anchored to the stress-bearing polysaccharides of the cell wall, and forms the interface with the outside world, is highly diverse. This diversity is believed to play an important role in adaptation of the cell to environmental conditions, in growth mode and in survival. Cell wall construction is tightly controlled and strictly coordinated with progression of the cell cycle. This is reflected in the usage of specific cell wall proteins during consecutive phases of the cell cycle and in the recent discovery of a cell wall integrity checkpoint. When the cell is challenged with stress conditions that affect the cell wall, a specific transcriptional response is observed that includes the general stress response, the cell wall integrity pathway and the calcineurin pathway. This salvage mechanism includes increased expression of putative cell wall assemblases and some potential cross-linking cell wall proteins, and crucial changes in cell wall architecture. We discuss some more enzymes involved in cell wall construction and also potential inhibitors of these enzymes. Finally, we use both biochemical and genomic data to infer that the architectural principles used by S. cerevisiae to build its cell wall are also used by many other ascomycetous yeasts and also by some mycelial ascomycetous fungi.
Collapse
Affiliation(s)
- Frans M Klis
- Swammerdam Institute for Life Sciences, University of Amsterdam, BioCentrum Amsterdam, The Netherlands.
| | | | | |
Collapse
|