1
|
Staronova L, Yamazaki K, Xu X, Shi H, Bickelhaupt FM, Hamlin TA, Dixon DJ. Cobalt-Catalyzed Enantio- and Regioselective C(sp 3 )-H Alkenylation of Thioamides. Angew Chem Int Ed Engl 2024; 63:e202316021. [PMID: 38143241 DOI: 10.1002/anie.202316021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
An enantioselective cobalt-catalyzed C(sp3 )-H alkenylation of thioamides with but-2-ynoate ester coupling partners employing thioamide directing groups is presented. The method is operationally simple and requires only mild reaction conditions, while providing alkenylated products as single regioisomers in excellent yields (up to 85 %) and high enantiomeric excess [up to 91 : 9 enantiomeric ratio (er), or up to >99 : 1 er after a single recrystallization]. Diverse downstream derivatizations of the products are demonstrated, delivering a range of enantioenriched constructs. Extensive computational studies using density functional theory provide insight into the detailed reaction mechanism, origin of enantiocontrol, and the unusual regioselectivity of the alkenylation reaction.
Collapse
Affiliation(s)
- Lucia Staronova
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Ken Yamazaki
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Xing Xu
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Heyao Shi
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - F Matthias Bickelhaupt
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
- Institute of Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
- Department of Chemical Sciences, University of Johannesburg, Auckland Park, Johannesburg, 2006, South Africa
| | - Trevor A Hamlin
- Department of Chemistry and Pharmaceutical Sciences, AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, The Netherlands
| | - Darren J Dixon
- Department of Chemistry, Chemistry Research Laboratory University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
2
|
Bielenica A, Stefańska J, Stępień K, Napiórkowska A, Augustynowicz-Kopeć E, Sanna G, Madeddu S, Boi S, Giliberti G, Wrzosek M, Struga M. Synthesis, cytotoxicity and antimicrobial activity of thiourea derivatives incorporating 3-(trifluoromethyl)phenyl moiety. Eur J Med Chem 2015; 101:111-25. [PMID: 26119992 DOI: 10.1016/j.ejmech.2015.06.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 06/09/2015] [Accepted: 06/09/2015] [Indexed: 10/23/2022]
Abstract
A total of 31 of thiourea derivatives was prepared reacting 3-(trifluoromethyl)aniline and commercial aliphatic and aromatic isothiocyanates. The yields varied from 35% to 82%. All compounds were evaluated in vitro for antimicrobial activity. Derivatives 3, 5, 6, 9, 15, 24 and 27 showed the highest inhibition against Gram-positive cocci (standard and hospital strains). The observed MIC values were in the range of 0.25-16 μg/ml. Inhibitory activity of thioureas 5 and 15 against topoisomerase IV isolated from Staphylococcus aureus was studied. Products 5 and 15 effectively inhibited the formation of biofilms of methicillin-resistant and standard strains of Staphylococcus epidermidis. Moreover, all obtained thioureas were evaluated for cytotoxicity and antiviral activity against a large panel of DNA and RNA viruses. Compounds 5, 6, 8-12, 15 resulted cytotoxic against MT-4 cells (CC50 ≤ 10 μM).
Collapse
Affiliation(s)
- Anna Bielenica
- Chair and Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
| | - Joanna Stefańska
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland
| | - Karolina Stępień
- Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland
| | - Agnieszka Napiórkowska
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warszawa, Poland
| | - Ewa Augustynowicz-Kopeć
- Department of Microbiology, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warszawa, Poland
| | - Giuseppina Sanna
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Silvia Madeddu
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Stefano Boi
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Gabriele Giliberti
- Department of Biomedical Science, University of Cagliari, 09042 Monserrato, CA, Italy
| | - Małgorzata Wrzosek
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, 02-097 Warszawa, Poland
| | - Marta Struga
- Department of Pharmacogenomics, Faculty of Pharmacy, Medical University, 02-097 Warszawa, Poland
| |
Collapse
|
3
|
Mikláš R, Miklášová N, Bukovský M, Horváth B, Kubincová J, Devínsky F. Synthesis, surface and antimicrobial properties of some quaternary ammonium homochiral camphor sulfonamides. Eur J Pharm Sci 2014; 65:29-37. [PMID: 25218991 DOI: 10.1016/j.ejps.2014.08.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/15/2014] [Accepted: 08/30/2014] [Indexed: 10/24/2022]
Abstract
A group of homochiral quaternary ammonium sulfonamides bearing hydrophobic camphor derived moieties were synthesized and characterized. The described synthetic procedure is quick and efficient. The novel quaternary ammonium bromides were tested as antimicrobial and antifungal agents. They exhibited strong antimicrobial and also antifungal activity, especially N-{2-[((1S, 4R)-7,7-dimethyl-2-oxobicyclo[2.2.1]heptan-1-yl)methylsulfonamido] ethyl}-N,N-dimethyltetradecan-1-aminium bromide 1c. The surface properties of prepared compounds were evaluated by surface tension measurements and critical micelle concentration (CMC) with surface tension at CMC (γCMC) was calculated.
Collapse
Affiliation(s)
- R Mikláš
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia.
| | - N Miklášová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - M Bukovský
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - B Horváth
- NMR Laboratory, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - J Kubincová
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| | - F Devínsky
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Slovakia
| |
Collapse
|
4
|
Struga M, Krawiecka M, Kossakowski J, Stefańska J, Miroslaw B, Koziol AE. Synthesis and Structural Characterisation of Derivatives of Tricyclo[5.2.1.02,6]Dec-8-Ene-3,5-Dione with an Expected Antimicrobial Activity. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200800187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Singh GS, Mollet K, D’hooghe M, De Kimpe N. Epihalohydrins in Organic Synthesis. Chem Rev 2012; 113:1441-98. [DOI: 10.1021/cr3003455] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Girija S. Singh
- Chemistry Department, Faculty
of Science, University of Botswana, Private
Bag 0022, Gaborone, Botswana
| | - Karen Mollet
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| | - Matthias D’hooghe
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| | - Norbert De Kimpe
- Department of Sustainable Organic
Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent,
Belgium
| |
Collapse
|
6
|
4-Hydroxy-1-methyl-7-(propan-2-yl)-4-azatricyclo [5.2.2.02,6]undec-8-ene-3,5-dione. MOLBANK 2012. [DOI: 10.3390/m767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
7
|
Synthesis and antimicrobial properties of binaphthyl derived quaternary ammonium bromides. ACTA FACULTATIS PHARMACEUTICAE UNIVERSITATIS COMENIANAE 2012. [DOI: 10.2478/v10219-012-0017-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Synthesis and antimicrobial properties of binaphthyl derived quaternary ammonium bromides(S)-N-(2-(4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-1-yl)ethyl)-N, N-dimethyl-N-dodecyl ammonium bromide (S)-1a and (S)-N-(2-(4,5-dihydro-3H-dinaphtho[2,1-c:1',2'-e]azepin-1-yl)ethyl)-N, N-dimethyl-N-tetradecylammonium bromide (S)-1b have been synthesized as optically active quaternary ammonium salts starting from 1,1'-binaphthyl-2,2'-diol. Their antimicrobial activity expressed as minimal inhibition concentration (MIC) was tested against Gram-positive human pathogenic bacteria S. Aureus, Gram-negative bacteria E. coli and human fungal pathogen C. Albicans.
Collapse
|
8
|
Stopiglia CDO, Collares FM, Ogliari FA, Piva E, Fortes CBB, Samuel SMW, Scroferneker ML. Antimicrobial activity of [2-(methacryloyloxy)ethyl]trimethylammonium chloride against Candida spp. Rev Iberoam Micol 2011; 29:20-3. [PMID: 21473928 DOI: 10.1016/j.riam.2011.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 01/14/2011] [Accepted: 03/07/2011] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Candida-associated denture stomatitis is the most common manifestation of oral candidal infection, caused mainly by Candida albicans. Several authors have attempted to add antifungal agents or antiseptics to denture temporary soft lining materials or to denture acrylic resins, without relevant results. Therefore, the investigation of a quaternary ammonium functionalized compound [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT), which copolymerizes with methacrylates and which could act as a fungal inhibitor, is of paramount importance. AIMS To evaluate the in vitro activity of MADQUAT against Candida species. METHODS Thirty-one Candida strains were used to determine the in vitro antifungal activity of this compound. The minimum inhibitory concentrations and minimum fungicidal concentrations of MADQUAT and nystatin were determined. RESULTS MADQUAT showed antifungal properties at concentrations of 6.25 to > 100mg/ml, and fungicidal activity between 25 and > 100mg/ml. The quantitative determinations of the fungistatic and fungicidal activity of MADQUAT showed fungistatic activity against all Candida albicans, Candida krusei and Candida parapsilosis strains, revealing fungicidal activity against some strains of the other species. CONCLUSIONS MADQUAT has antifungal activity against Candida spp. Moreover, the sensitivity to this substance varies across the different species in terms of MIC values and fungicidal or fungistatic activity.
Collapse
|
9
|
9-Methyl-3,5-dioxo-4-azatricyclo[5.2.2.02,6]undec-8-ene-1,8-diyl Diacetate. MOLBANK 2010. [DOI: 10.3390/m685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Struga M, Rosolowski S, Kossakowski J, Stefanska J. Synthesis and microbiological activity of thiourea derivatives of 4-azatricyclo[5.2.2.02,6]undec-8-ene-3,5-dione. Arch Pharm Res 2010; 33:47-54. [DOI: 10.1007/s12272-010-2223-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 10/20/2009] [Accepted: 10/20/2009] [Indexed: 11/30/2022]
|
11
|
Struga M, Miroslaw B, Pakosinska-Parys M, Drzewiecka A, Borowski P, Kossakowski J, Koziol AE. Synthesis, characterization and supramolecular synthons in crystals of new derivatives of 10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione. J Mol Struct 2010. [DOI: 10.1016/j.molstruc.2009.11.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Antimicrobial activity of 10-(diphenylmethylene)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione derivatives. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-009-0013-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
13
|
Synthesis of new derivatives of 2,2-dimethyl-2,3-dihydro-7-benzo[b]furanol with potential antimicrobial activity. Med Chem Res 2008. [DOI: 10.1007/s00044-008-9149-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|