1
|
Puerta A, González-Bakker A, Brandão P, Pineiro M, Burke AJ, Giovannetti E, Fernandes MX, Padrón JM. Early pharmacological profiling of isatin derivatives as potent and selective cytotoxic agents. Biochem Pharmacol 2024; 222:116059. [PMID: 38364984 DOI: 10.1016/j.bcp.2024.116059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Isatin derivatives have attracted a lot of interest for their potential in the development of new anticancer drugs. A library of 38 isatin derivatives, created through an Ugi four-component reaction, underwent an initial screening in a panel of six human solid tumor cell lines. The four most active derivatives were then selected for further testing. These compounds showed selectivity towards the non-small cell lung cancer (NSCLC) cell line SW1573, whilst NSCLC A549 cells were barely affected. The combination of phenotypic assays, including wound healing, clonogenic and continuous live cell imaging provided a deeper understanding of the compounds' mode of action. In particular, the latter demonstrated that isatin derivatives were able to induce necroptosis in SW1573 cells. The kinetics of cell death showed that necroptosis appeared after 2.5 h of exposure, which could be delayed to 7 h when co-treated with necrostatin-1. Interaction between the isatin derivatives and the KRAS G12C protein variant was discarded after in silico studies. Further studies are warranted to identify the cellular target responsible for the observed selectivity among cell lines.
Collapse
Affiliation(s)
- Adrián Puerta
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Aday González-Bakker
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain
| | - Pedro Brandão
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal; iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, and Associate Laboratory i4HB-Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Marta Pineiro
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Anthony J Burke
- Centro de Química de Coimbra - Institute of Molecular Sciences (CQC-IMS), Departamento de Química, Faculdade de Ciências e Tecnologia, University of Coimbra, 3004-535 Coimbra, Portugal; Faculty Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers (Amsterdam UMC), Vrije Universiteit Amsterdam, The Netherlands; Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Miguel X Fernandes
- Department of Engineering and Chemical Sciences, Karlstad University, 65188 Karlstad, Sweden
| | - José M Padrón
- BioLab, Instituto Universitario de Bio-Orgánica Antonio González (IUBO-AG), Universidad de La Laguna, PO Box 456, 38200 La Laguna, Spain.
| |
Collapse
|
2
|
Hassanzadeh F, Hejazi SH, Jafari E, fard AM, Sadeghi-aliabadi H. Molecular docking and synthesis of N-alkyl-isatin-3-imino aromatic amine derivatives and their antileishmanial and cytotoxic activities. Res Pharm Sci 2024; 19:238-250. [PMID: 39035577 PMCID: PMC11257207 DOI: 10.4103/rps.rps_244_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 06/06/2023] [Accepted: 03/17/2024] [Indexed: 07/23/2024] Open
Abstract
Background and purpose Isatin derivatives have excited attention due to their biological attractions, especially, anticancer properties. Isatin analogs such as semaxanib and sunitinib were exposed to tyrosine kinase inhibitory properties. N-substituted isatins were reported to show cytotoxic activity. On the other, the extension of impressive and cost-effective agents against leishmaniasis is necessary in third-world countries. The capability of isatin derivatives to create novel anticancer and anti-leishmanial compounds has been identified in medicinal chemistry research. The current study aimed to synthesize N-alkyl-isatin-3-imino aromatic amine compounds and evaluate their biological effects. Experimental approach Synthesis started with the formation of 2-chloro-N-phenylacetamide derivatives by the reaction of aniline derivatives with chloroacetyl chloride. N-alkylation of isatin was performed in the presence of K2CO3 in N, N-dimethylformamide. Final products were prepared via the condensation of N-alkyl isatin derivatives with aromatic amines. Cell viability was checked out by using the MTT assay against cancer cells. Final compounds were screened for anti-leishmanial activity. The molecules were docked in the active sites of the epidermal growth factor receptor tyrosine kinase to define the possible interactions. Findings/Results Compounds 5c and 4d with IC50 value of 50 μΜ showed cytotoxic activity on the MCF-7 cell line. Compound 5b presented anti-leishmanial activity against promastigote form after 48 h (IC50:59 μΜ) and 72 h (IC50: 41 μΜ) incubations. The highest docking score was -7.33 kcal/mol for compound 4d. Conclusions and implications The nature of substitution in the N1 region of isatin seems to be able to influence the cytotoxic activity. Based on the obtained results of docking and cytotoxic tests, compound 4d seems to be a good compound for further investigations.
Collapse
Affiliation(s)
- Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Seyed Hossein Hejazi
- Skin Disease and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Jafari
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Atefeh Mohammadi fard
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Hojjat Sadeghi-aliabadi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
3
|
O N, Bodke YD, B T, Venkatesh T, B M. Synthesis, characterization and biological evaluation of heterocyclic compounds containing 4-methylumbelliferone. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Insighting isatin derivatives as potential antiviral agents against NSP3 of COVID-19. CHEMICAL PAPERS 2022; 76:6271-6285. [PMID: 35757111 PMCID: PMC9216297 DOI: 10.1007/s11696-022-02298-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/23/2022] [Indexed: 12/18/2022]
Abstract
The world is now facing intolerable damage in all sectors of life because of the deadly COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2. The discovery and development of anti-SARS-CoV-2 drugs have become pragmatic in the time needed to fight against this pandemic. The non-structural protein 3 is essential for the replication of transcriptase complex (RTC) and may be regarded as a possible target against SARS-CoV-2. Here, we have used a comprehensive in silico technique to find potent drug molecules against the NSP3 receptor of SARS-CoV-2. Virtual screening of 150 Isatin derivatives taken from PubChem was performed based on their binding affinity estimated by docking simulations, resulting in the selection of 46 ligands having binding energy greater than -7.1 kcal/mol. Moreover, the molecular interactions of the nine best-docked ligands having a binding energy of ≥ -8.5 kcal/mol were analyzed. The molecular interactions showed that the three ligands (S5, S16, and S42) were stabilized by forming hydrogen bonds and other significant interactions. Molecular dynamic simulations were performed to mimic an in vitro protein-like aqueous environment and to check the stability of the best three ligands and NSP3 complexes in an aqueous environment. The binding energy of the S5, S16, and S42 systems obtained from the molecular mechanics Poisson-Boltzmann surface area also favor the system's stability. The MD and MM/PBSA results explore that S5, S16, and S42 are more stable and can be considered more potent drug candidates against COVID-19 disease. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-022-02298-7.
Collapse
|
5
|
Verma H, Narendra G, Raju B, Kumar M, Jain SK, Tung GK, Singh PK, Silakari O. 3D-QSAR and scaffold hopping based designing of benzo[d]ox-azol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective aldehyde dehydrogenase 1A1 inhibitors: Synthesis and biological evaluation. Arch Pharm (Weinheim) 2022; 355:e2200108. [PMID: 35618489 DOI: 10.1002/ardp.202200108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/16/2023]
Abstract
Aldehyde dehydrogenase 1 (ALDH1A1), an oxidoreductase class of enzymes, is overexpressed in various types of cancer cell lines and is the major cause of resistance to the Food and Drug Administration (FDA)-approved drug, cyclophosphamide (CP). In cancer conditions, CP undergoes a sequence of biotransformations to form an active metabolite, aldophosphamide, which further biotransforms to its putative cytotoxic metabolite, phosphoramide mustard. However, in resistant cancer conditions, aldophosphamide is converted into its inactive metabolite, carboxyphosphamide, via oxidation with ALDH1A1. Herein, to address the issue of ALDH1A1 mediated CP resistance, we report a series of benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one derivatives as selective ALDH1A1 inhibitors. These inhibitors were designed using a validated 3D-quantitative structure activity relationship (3D-QSAR) model coupled with scaffold hopping. The 3D-QSAR model was developed using reported indole-2,3-diones based ALDH1A1 inhibitors, which provided field points in terms of electrostatic, van der Waals and hydrophobic potentials required for selectively inhibiting ALDH1A1. The most selective indole-2,3-diones-based compound, that is, cmp 3, was further considered for scaffold hopping. Two top-ranked bioisosteres, that is, benzo[d]oxazol-2(3H)-one and 2-oxazolo[4,5-b]pyridin-2(3H)-one, were selected for designing new inhibitors by considering the field pattern of 3D-QSAR. All designed molecules were mapped perfectly on the 3D-QSAR model and found to be predictive with good inhibitory potency (pIC50 range: 7.5-6.8). Molecular docking was carried out for each designed molecule to identify key interactions that are required for ALDH1A1 inhibition and to authenticate the 3D-QSAR result. The top five inhibitor-ALDH1A1 complexes were also submitted for molecular dynamics simulations to access their stability. In vitro enzyme assays of 21 compounds suggested that these compounds are selective toward ALDH1A1 over the other two isoforms, that is, ALDH2 and ALDH3A1. All the compounds were found to be at least three and two times more selective toward ALDH1A1 over ALDH2 and ALDH3A1, respectively. All the compounds showed an IC50 value in the range of 0.02-0.80 μM, which indicates the potential for these to be developed as adjuvant therapy for CP resistance.
Collapse
Affiliation(s)
- Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Gera Narendra
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Baddipadige Raju
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Manoj Kumar
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - Subheet K Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Gurleen K Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, India
| | - Pankaj K Singh
- Faculty of Medicine, Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| |
Collapse
|
6
|
Sahin K, Saripinar E, Durdagi S. Combined 4D-QSAR and target-based approaches for the determination of bioactive Isatin derivatives. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:769-792. [PMID: 34530651 DOI: 10.1080/1062936x.2021.1971760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
The hybrid method of the Electron-Conformational Genetic Algorithm (EC-GA) was used to determine the pharmacophore groups and to estimate anticancer activity in isatin derivatives using a robust 4D-QSAR software (EMRE). To build the model, each compound is represented by a set of conformers rather than a single conformation. The Electron Conformational Matrix of Congruity (ECMC) is composed via EMRE software. Electron Conformational Submatrix of Activity (ECSA) was calculated by the comparison of these matrices. Genetic algorithm was used to select important variables to predict theoretical activity. The model with the best seven parameters produced satisfactory results. The E statistics technique was applied to the generated EC-GA model to evaluate the individual contribution of each of the descriptors on biological activity. The r2 and q2 values of the training set compounds were found to be 0.95 and 0.93, respectively. Because no previous 4D-QSAR studies on isatin derivatives have been conducted, this study is important in the development of new isatin derivatives. In this study, 27 isatin derivatives whose activities were estimated using the hybrid EC-GA method were also investigated through molecular docking and molecular dynamics simulations for their BCL-2 inhibitory activity.
Collapse
Affiliation(s)
- K Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - E Saripinar
- Faculty of Science, Department of Chemistry, Erciyes University, Kayseri, Turkey
| | - S Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| |
Collapse
|
7
|
Synthesis, structure characterization and quantum chemical study on relationship between structure and antioxidant properties of novel Schiff bases bearing (thio)/carbohydrazones. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04576-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
|
9
|
Tugcu G, Sipahi H, Aydin A. Application of a Validated QSTR Model for Repurposing COX-2 Inhibitor Coumarin Derivatives as Potential Antitumor Agents. Curr Top Med Chem 2019; 19:1121-1128. [DOI: 10.2174/1568026619666190618143552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/23/2019] [Accepted: 04/15/2019] [Indexed: 11/22/2022]
Abstract
Background:
The discovery of novel potent molecules for both cancer prevention and
treatment has been continuing over the past decade. In recent years, identification of new, potent, and
safe anticancer agents through drug repurposing has been regarded as an expeditious alternative to traditional
drug development. The cyclooxygenase-2 is known to be over-expressed in several types of
human cancer. For this reason cyclooxygenase-2 inhibition may be useful tool for cancer chemotherapy.
Objective:
The first aim of the study was to develop a validated linear model to predict antitumor activity.
Subsequently, applicability of the model for repurposing these cyclooxygenase-2 inhibitors as
antitumor compounds to abridge drug development process.
Method:
We performed a quantitative structure-toxicity relationship (QSTR) study on a set of coumarin
derivatives using a large set of molecular descriptors. A linear model predicting growth inhibition
on leukemia CCRF cell lines was developed and consequently validated internally and externally.
Accordingly, the model was applied on a set of 143 cyclooxygenase-2 inhibitor coumarin derivatives to
explore their antitumor activity.
Results:
The results indicated that the developed QSAR model would be useful for estimating inhibitory
activity of coumarin derivatives on leukemia cell lines. Electronegativity was found to be a prominent
property of the molecules in describing antitumor activity. The applicability domain of the developed
model highlighted the potential antitumor compounds.
Conclusion:
The promising results revealed that applied integrated in silico approach for repurposing
by combining both the biological activity similarity and the molecular similarity via the computational
method could be efficiently used to screen potential antitumor compounds among cyclooxygenase-2
inhibitors.
Collapse
Affiliation(s)
- Gulcin Tugcu
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul-34755, Turkey
| | - Hande Sipahi
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul-34755, Turkey
| | - Ahmet Aydin
- Department of Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul-34755, Turkey
| |
Collapse
|
10
|
Althagafi I, El‐Metwaly NM, Farghaly T. Characterization of new Pt(IV)–thiazole complexes: Analytical, spectral, molecular modeling and molecular docking studies and applications in two opposing pathways. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ismail Althagafi
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
| | - Nashwa M. El‐Metwaly
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| | - Thoraya Farghaly
- Department of Chemistry, Faculty of Applied ScienceUmm Al‐Qura University Makkah Saudi Arabia
- Department of Chemistry, Faculty of ScienceCairo University Cairo Egypt
| |
Collapse
|
11
|
Sidorov P, Naulaerts S, Ariey-Bonnet J, Pasquier E, Ballester PJ. Predicting Synergism of Cancer Drug Combinations Using NCI-ALMANAC Data. Front Chem 2019; 7:509. [PMID: 31380352 PMCID: PMC6646421 DOI: 10.3389/fchem.2019.00509] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/02/2019] [Indexed: 12/15/2022] Open
Abstract
Drug combinations are of great interest for cancer treatment. Unfortunately, the discovery of synergistic combinations by purely experimental means is only feasible on small sets of drugs. In silico modeling methods can substantially widen this search by providing tools able to predict which of all possible combinations in a large compound library are synergistic. Here we investigate to which extent drug combination synergy can be predicted by exploiting the largest available dataset to date (NCI-ALMANAC, with over 290,000 synergy determinations). Each cell line is modeled using primarily two machine learning techniques, Random Forest (RF) and Extreme Gradient Boosting (XGBoost), on the datasets provided by NCI-ALMANAC. This large-scale predictive modeling study comprises more than 5,000 pair-wise drug combinations, 60 cell lines, 4 types of models, and 5 types of chemical features. The application of a powerful, yet uncommonly used, RF-specific technique for reliability prediction is also investigated. The evaluation of these models shows that it is possible to predict the synergy of unseen drug combinations with high accuracy (Pearson correlations between 0.43 and 0.86 depending on the considered cell line, with XGBoost providing slightly better predictions than RF). We have also found that restricting to the most reliable synergy predictions results in at least 2-fold error decrease with respect to employing the best learning algorithm without any reliability estimation. Alkylating agents, tyrosine kinase inhibitors and topoisomerase inhibitors are the drugs whose synergy with other partner drugs are better predicted by the models. Despite its leading size, NCI-ALMANAC comprises an extremely small part of all conceivable combinations. Given their accuracy and reliability estimation, the developed models should drastically reduce the number of required in vitro tests by predicting in silico which of the considered combinations are likely to be synergistic.
Collapse
Affiliation(s)
- Pavel Sidorov
- CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France
| | - Stefan Naulaerts
- CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France
- Department of Tumor Immunology, Institut de Duve, Bruxelles, Belgium
| | - Jérémy Ariey-Bonnet
- CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France
| | - Eddy Pasquier
- CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France
| | - Pedro J. Ballester
- CRCM, INSERM, Cancer Research Center of Marseille, Institut Paoli-Calmettes, Aix-Marseille Univ, CNRS, Marseille, France
| |
Collapse
|
12
|
Gupta AK, Tulsyan S, Bharadwaj M, Mehrotra R. Systematic Review on Cytotoxic and Anticancer Potential of N-Substituted Isatins as Novel Class of Compounds Useful in Multidrug-Resistant Cancer Therapy: In Silico and In Vitro Analysis. Top Curr Chem (Cham) 2019; 377:15. [PMID: 31073777 DOI: 10.1007/s41061-019-0240-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/25/2019] [Indexed: 12/23/2022]
Abstract
As the emergence of resistance to clinical cancer treatments poses a significant problem in cancer management, there is a constant need to explore novel anticancer agents which have the ability to overcome multidrug resistance (MDR) mechanisms. The search for the development of novel isatin-based antitumor agents accelerated after the approval by the Food and Drug Administration (FDA) of sunitinib malate, a C-3 isatin derivative, as a multitargeted receptor tyrosine kinase inhibitor. However, it is interesting to note that, over the last decade, various N-substituted analogs of isatin with intact carbonyl functionalities have been found to show more promising anticancer potential than its C-3 derivatives. Microtubule-targeting agents are a class of anticancer drugs which affect mitosis by targeting microtubules and suppressing their dynamic behavior. This review presents a systematic compilation of the in vitro cytotoxic and anticancer properties of various N-substituted isatins and illustrates their mechanism of action to overcome MDR by acting as microtubule-destabilizing agents. Predictions of the biological activities and cytotoxic effects of potential N-substituted isatins against various cancer cell lines have also been performed using the PASS computer-aided drug discovery program. Findings from such in vitro and in silico studies will act as a guide for the development of structure-activity relationship and will facilitate the design and exploration of more potent analogs of isatin with high potency and lower side effects for treatment of drug-resistant cancer. Mechanism of action of N-substituted isatin as microtubule-destabilizing agent on tumor cells. N-Substituted isatins bind to colchicine binding site on β-tubulin, which inhibits microtubule polymerization and thereby destabilizes microtubule dynamics, resulting in mitotic arrest leading to tumor cell growth suppression.
Collapse
Affiliation(s)
- Alpana K Gupta
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research and WHO-FCTC Smokeless Tobacco Global Knowledge Hub, Department of Health Research (Govt. of India), I-7, Sector-39, District Gautam Buddha Nagar, Noida, Uttar Pradesh, 201301, India
| | - Sonam Tulsyan
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research and WHO-FCTC Smokeless Tobacco Global Knowledge Hub, Department of Health Research (Govt. of India), I-7, Sector-39, District Gautam Buddha Nagar, Noida, Uttar Pradesh, 201301, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, ICMR-National Institute of Cancer Prevention and Research and WHO-FCTC Smokeless Tobacco Global Knowledge Hub, Department of Health Research (Govt. of India), I-7, Sector-39, District Gautam Buddha Nagar, Noida, India
| | - Ravi Mehrotra
- Division of Preventive Oncology, ICMR-National Institute of Cancer Prevention and Research and WHO-FCTC Smokeless Tobacco Global Knowledge Hub, Department of Health Research (Govt. of India), I-7, Sector-39, District Gautam Buddha Nagar, Noida, Uttar Pradesh, 201301, India.
| |
Collapse
|
13
|
Synthesis, Characterization for New Nanometric VO(II)–Thioacetanilide Complexes by, Spectral, Thermal, Molecular Computations and DNA Interaction Study Beside Promising Antitumor Activity. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01124-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Tashiro S, Caaveiro JMM, Nakakido M, Tanabe A, Nagatoishi S, Tamura Y, Matsuda N, Liu D, Hoang QQ, Tsumoto K. Discovery and Optimization of Inhibitors of the Parkinson's Disease Associated Protein DJ-1. ACS Chem Biol 2018; 13:2783-2793. [PMID: 30063823 DOI: 10.1021/acschembio.8b00701] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
DJ-1 is a Parkinson's disease associated protein endowed with enzymatic, redox sensing, regulatory, chaperoning, and neuroprotective activities. Although DJ-1 has been vigorously studied for the past decade and a half, its exact role in the progression of the disease remains uncertain. In addition, little is known about the spatiotemporal regulation of DJ-1, or the biochemical basis explaining its numerous biological functions. Progress has been hampered by the lack of inhibitors with precisely known mechanisms of action. Herein, we have employed biophysical methodologies and X-ray crystallography to identify and to optimize a family of compounds inactivating the critical Cys106 residue of human DJ-1. We demonstrate these compounds are potent inhibitors of various activities of DJ-1 in vitro and in cell-based assays. This study reports a new family of DJ-1 inhibitors with a defined mechanism of action, and contributes toward the understanding of the biological function of DJ-1.
Collapse
Affiliation(s)
- Shinya Tashiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jose M. M. Caaveiro
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Global Healthcare, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Makoto Nakakido
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Aki Tanabe
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| | | | - Kouhei Tsumoto
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 108-8639, Japan
| |
Collapse
|
15
|
Mellado M, Madrid A, Reyna M, Weinstein-Oppenheimer C, Mella J, Salas CO, Sánchez E, Cuellar M. Synthesis of chalcones with antiproliferative activity on the SH-SY5Y neuroblastoma cell line: Quantitative Structure–Activity Relationship Models. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2245-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Arthur DE, Uzairu A, Mamza P, Abechi SE, Shallangwa G. In silico modelling of quantitative structure–activity relationship of multi-target anticancer compounds on k-562 cell line. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13721-018-0168-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Azevedo LD, Bastos MM, Vasconcelos FC, Hoelz LVB, Junior FPS, Dantas RF, de Almeida ACM, de Oliveira AP, Gomes LC, Maia RC, Boechat N. Imatinib derivatives as inhibitors of K562 cells in chronic myeloid leukemia. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1993-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Karalı N, Akdemir A, Göktaş F, Eraslan Elma P, Angeli A, Kızılırmak M, Supuran CT. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg Med Chem 2017; 25:3714-3718. [DOI: 10.1016/j.bmc.2017.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
|
19
|
|
20
|
Teng YO, Zhao HY, Wang J, Liu H, Gao ML, Zhou Y, Han KL, Fan ZC, Zhang YM, Sun H, Yu P. Synthesis and anti-cancer activity evaluation of 5-(2-carboxyethenyl)-isatin derivatives. Eur J Med Chem 2016; 112:145-156. [DOI: 10.1016/j.ejmech.2015.12.050] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 01/04/2023]
|
21
|
Shakir M, Hanif S, Sherwani MA, Mohammad O, Azam M, Al-Resayes SI. Pharmacophore hybrid approach of new modulated bis-diimine Cu(II)/Zn(II) complexes based on 5-chloro Isatin Schiff base derivatives: Synthesis, spectral studies and comparative biological assessment. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 157:39-56. [PMID: 26882291 DOI: 10.1016/j.jphotobiol.2016.01.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Novel bioactive 5-chloro isatin based Schiff base ligands, (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrobenzo [d]thiazol-2-amine), L(1) and (N,N'E,N,N'Z)-N,N'-(5-chloroindoline-2,3-diylidene)bis(5-nitrothiazol-2-amine), L(2) derived from 2-amino 5-nitrobenzothiazole and 2-amino 5-nitrothiazole and their metal complexes, [Cu(L(1))2]Cl2;1, [Zn(L(1))2(H2O)2]Cl2;2, [Cu(L(2))2]Cl2;3 and [Zn(L(2))2(H2O)2]Cl2;4 have been synthesized. The composition, stoichiometry and geometry of the proposed ligands and their complexes have been envisaged by the results of elemental analyses and spectroscopic data (FT-IR, (1)H NMR and (13)C NMR, Mass and EPR). The molar conductivity values of the metal complexes revealed their ionic nature. The thermal stability of metal complexes was demonstrated by TGA/DTA studies while the crystalline nature of the complexes has been ascertained by XRD. Furthermore, a comparative account of in vitro antibacterial study against different bacterial strains with respect to standard antibiotic and scavenging activity against standard control at different concenterations unfolded pronounced antibacterial and radical scavenging potencies of the metal complexes as compared to free ligands. In addition, in vitro cytotoxicity of ligands and its metal complexes was also screened on MCF7 (Human breast adenocarcinoma), HeLa (Human cervical carcinoma) and HepG2 (Human Hepatocellular carcinoma), cell lines and normal cells (PBMC). The antiproliferative outcomes revealed that metal complexes exhibit superior activity in general as compared to free ligands (L(1) and L(2)) where metal complexes (1 and 2) of 5-chloro isatin linked benzothiazole motif (L(1)) are found to have better prospect of acting as chemotherapeutic agents which can be explained in terms of greater biopotency, planarity and conjugation against all the tested cancer cell lines with IC50<2.80 μM.
Collapse
Affiliation(s)
- Mohammad Shakir
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Summaiya Hanif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Asif Sherwani
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Owais Mohammad
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Azam
- Department of Chemistry, Science College, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud I Al-Resayes
- Department of Chemistry, Science College, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Debnath B, Ganguly S. Synthesis, biological evaluation, in silico docking, and virtual ADME studies of 2-[2-Oxo-3-(arylimino)indolin-1-yl]-N-arylacetamides as potent anti-breast cancer agents. MONATSHEFTE FUR CHEMIE 2015. [DOI: 10.1007/s00706-015-1566-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Abbasi M, Ramezani F, Elyasi M, Sadeghi-Aliabadi H, Amanlou M. A study on quantitative structure-activity relationship and molecular docking of metalloproteinase inhibitors based on L-tyrosine scaffold. ACTA ACUST UNITED AC 2015; 23:29. [PMID: 25925871 PMCID: PMC4423142 DOI: 10.1186/s40199-015-0111-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 04/12/2015] [Indexed: 12/14/2022]
Abstract
Background MMP-2 enzyme is a kind of matrix metalloproteinases that digests the denatured collagens and gelatins. It is highly involved in the process of tumor invasion and has been considered as a promising target for cancer therapy. The structural requirements of an MMP-2 inhibitor are: (1) a functional group that binds the zinc ion, and (2) a functional group which interacts with the enzyme backbone and the side chains which undergo effective interactions with the enzyme subsites. Methods In the present study, a QSAR model was generated to screen new inhibitors of MMP-2 based on L–hydroxy tyrosine scaffold. Descriptors generation were done by Hyperchem 8, DRAGON and Gaussian98W programs. SPSS and MATLAB programs have been used for multiple linear regression (MLR) and genetic algorithm partial least squares (GA-PLS) analyses and for theoretical validation. Applicability domain of the model was performed to screen new compounds. The binding site potential of all inhibitors was verified by structure-based docking according to their binding energy and then the best inhibitors were selected. Results The best QSAR models in MLR and GA-PLS were reported, with the square correlation coefficient for leave-one-out cross-validation (Q2LOO) larger than 0.921 and 0.900 respectively. The created MLR and GA-PLS models indicated the importance of molecular size, degree of branching, flexibility, shape, three-dimensional coordination of different atoms in a molecule in inhibitory activities against MMP-2. The docking study indicated that lipophilic and hydrogen bonding interactions among the inhibitors and the receptor are involved in a ligand-receptor interaction. The oxygen of carbonyl and sulfonyl groups is important for hydrogen bonds of ligand with Leu82 and Ala83. R2 and R3 substituents play a main role in hydrogen bonding interactions. R1 is sited in the hydrophobic pocket. Methylene group can help a ligand to be fitted in the lipophilic pocket, so two methylene groups are better than one. The Phenyl group can create a π-π interaction with Phe86. Conclusions The QSAR and docking analyses demonstrated to be helpful tools in the prediction of anti-cancer activities and a guide to the synthesis of new metalloproteinase inhibitors based on L-tyrosine scaffold.
Collapse
Affiliation(s)
- Maryam Abbasi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Science Research Center, Tehran University of Medical Science, Tehran, Iran. .,Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Fatemeh Ramezani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Science Research Center, Tehran University of Medical Science, Tehran, Iran.
| | - Maryam Elyasi
- Medicinal & Natural Product Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hojjat Sadeghi-Aliabadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy, Pharmaceutical Science Research Center, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
24
|
Abbasi M, Ramezani F, Elyasi M, Sadeghi-Aliabadi H, Amanlou M. A study on quantitative structure–activity relationship and molecular docking of metalloproteinase inhibitors based on L-tyrosine scaffold. Daru 2015. [DOI: 10.1186/s40199-015-0111-z pmid: 25925871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
MMP-2 enzyme is a kind of matrix metalloproteinases that digests the denatured collagens and gelatins. It is highly involved in the process of tumor invasion and has been considered as a promising target for cancer therapy. The structural requirements of an MMP-2 inhibitor are: (1) a functional group that binds the zinc ion, and (2) a functional group which interacts with the enzyme backbone and the side chains which undergo effective interactions with the enzyme subsites.
Methods
In the present study, a QSAR model was generated to screen new inhibitors of MMP-2 based on L–hydroxy tyrosine scaffold. Descriptors generation were done by Hyperchem 8, DRAGON and Gaussian98W programs. SPSS and MATLAB programs have been used for multiple linear regression (MLR) and genetic algorithm partial least squares (GA-PLS) analyses and for theoretical validation. Applicability domain of the model was performed to screen new compounds. The binding site potential of all inhibitors was verified by structure-based docking according to their binding energy and then the best inhibitors were selected.
Results
The best QSAR models in MLR and GA-PLS were reported, with the square correlation coefficient for leave-one-out cross-validation (Q2
LOO) larger than 0.921 and 0.900 respectively. The created MLR and GA-PLS models indicated the importance of molecular size, degree of branching, flexibility, shape, three-dimensional coordination of different atoms in a molecule in inhibitory activities against MMP-2.
The docking study indicated that lipophilic and hydrogen bonding interactions among the inhibitors and the receptor are involved in a ligand-receptor interaction. The oxygen of carbonyl and sulfonyl groups is important for hydrogen bonds of ligand with Leu82 and Ala83. R2 and R3 substituents play a main role in hydrogen bonding interactions. R1 is sited in the hydrophobic pocket. Methylene group can help a ligand to be fitted in the lipophilic pocket, so two methylene groups are better than one. The Phenyl group can create a π-π interaction with Phe86.
Conclusions
The QSAR and docking analyses demonstrated to be helpful tools in the prediction of anti-cancer activities and a guide to the synthesis of new metalloproteinase inhibitors based on L-tyrosine scaffold.
Collapse
|
25
|
Huang H, He G, Zhu X, Jin X, Qiu S, Zhu H. Iodine-Mediated Oxidation of Ynamides: A Facile Access toN-Monosubstituted α-Ketoamides and α-Ketoimides. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402538] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Kumar M, Ramasamy K, Mani V, Mishra RK, Majeed ABA, Clercq ED, Narasimhan B. Synthesis, antimicrobial, anticancer, antiviral evaluation and QSAR studies of 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)- N-substituted benzene sulfonamides. ARAB J CHEM 2014; 7:396-408. [PMID: 38620260 PMCID: PMC7185680 DOI: 10.1016/j.arabjc.2012.12.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 12/04/2012] [Indexed: 11/30/2022] Open
Abstract
A series of 4-(1-aryl-2-oxo-1,2-dihydro-indol-3-ylideneamino)-N-substituted benzenesulfonamide derivatives (1-32) was synthesized and evaluated for its in vitro antimicrobial, antiviral and cytotoxic activities. Antimicrobial results indicated that compounds (11) and (18) were found to be the most effective ones. In general, the synthesized compounds were bacteriostatic and fungistatic in their action. The cytotoxic screening results indicated that the compounds were less active than the standard drug 5-fluorouracil (5-FU). None of the compounds inhibited viral replication at subtoxic concentrations. In general, the presence of a pyrimidine ring with electron releasing groups and an ortho- and para-substituted benzoyl moiety favored antimicrobial activities. The results of QSAR studies demonstrated the importance of topological parameters, valence zero order molecular connectivity index (0χv) and valence first order molecular connectivity index (1χv) in describing the antimicrobial activity of synthesized compounds.
Collapse
Affiliation(s)
- Mahesh Kumar
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Kalavathy Ramasamy
- Collaborative Drug Discovery Research Group, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Vasudevan Mani
- Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Rakesh Kumar Mishra
- Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Abu Bakar Abdul Majeed
- Brain Research Laboratory, Faculty of Pharmacy, Campus Puncak Alam, Universiti Teknologi MARA (UiTM), 42300 Bandar Puncak Alam, Selangor, Malaysia
| | - Erik De Clercq
- Laboratory of Virology & Chemotherapy, Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | |
Collapse
|
27
|
Zhou Y, Zhao HY, Han KL, Yang Y, Song BB, Guo QN, Fan ZC, Zhang YM, Teng YO, Yu P. 5-(2-carboxyethenyl) isatin derivative induces G₂/M cell cycle arrest and apoptosis in human leukemia K562 cells. Biochem Biophys Res Commun 2014; 450:1650-5. [PMID: 25044115 DOI: 10.1016/j.bbrc.2014.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 12/20/2022]
Abstract
Our previous study successfully identified that the novel isatin derivative (E)-methyl 3-(1-(4-methoxybenzyl)-2,3-dioxoindolin-5-yl) acrylate (HKL 2H) acts as an anticancer agent at an inhibitory concentration (IC50) level of 3nM. In this study, the molecular mechanism how HKL 2H induces cytotoxic activity in the human chronic myelogenous leukemia K562 cells was investigated. Flow cytometric analysis showed that the cells were arrested in the G2/M phase and accumulated subsequently in the sub-G1 phase in the presence of HKL 2H. HKL 2H treatment down-regulated the expressions of CDK1 and cyclin B but up-regulated the level of phosphorylated CDK1. Annexin-V staining and the classic DNA ladder studies showed that HKL 2H induced the apoptosis of K562 cells. Our study further showed that HKL 2H treatment caused the dissipation of mitochondrial membrane potential, activated caspase-3 and lowered the Bcl-2/Bax ratio in K562 cells, suggesting that the HKL 2H-causing programmed cell death of K562 cells was caused via the mitochondrial apoptotic pathway. Taken together, our data demonstrated that HKL 2H, a 5-(2-carboxyethenyl) isatin derivative, notably induces G2/M cell cycle arrest and mitochondrial-mediated apoptosis in K562 cells, indicating that this compound could be a promising anticancer candidate for further investigation.
Collapse
Affiliation(s)
- Yao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Hong-Ye Zhao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Kai-Lin Han
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yao Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Bin-Bin Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qian-Nan Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Zhen-Chuan Fan
- Key Laboratory of Food Nutrition and Safety (Tianjin University of Science and Technology), Ministry of Education, Tianjin 300457, PR China; Obesita & Algaegen LLC, College Station, TX 77845, United States
| | - Yong-Min Zhang
- Université Pierre et Marie Curie-Paris 6, Institut Parisien de Chimie Moléculaire UMR CNRS 8232, 4 Place Jussieu, 75005 Paris, France
| | - Yu-Ou Teng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
28
|
Maigali SS, El-Hussieny M, Soliman FM. Chemistry of Phosphorus Ylides. Part 37. The Reaction of Phosphonium Ylides with Indoles and Naphthofurans. Synthesis of Phosphanylidenes, Pyrans, Cyclobutenes, and Pyridazine as Antitumor Agents. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1911] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Soher S. Maigali
- Department of Organometallic and Organometalloid Chemistry; National Research Centre; El-Behoos St Dokki Cairo Egypt
| | - Marwa El-Hussieny
- Department of Organometallic and Organometalloid Chemistry; National Research Centre; El-Behoos St Dokki Cairo Egypt
| | - Fouad M. Soliman
- Department of Organometallic and Organometalloid Chemistry; National Research Centre; El-Behoos St Dokki Cairo Egypt
| |
Collapse
|
29
|
Rational approaches, design strategies, structure activity relationship and mechanistic insights for anticancer hybrids. Eur J Med Chem 2014; 77:422-87. [PMID: 24685980 DOI: 10.1016/j.ejmech.2014.03.018] [Citation(s) in RCA: 317] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 03/02/2014] [Accepted: 03/06/2014] [Indexed: 12/16/2022]
Abstract
A Hybrid drug which comprises the incorporation of two drug pharmacophores in one single molecule are basically designed to interact with multiple targets or to amplify its effect through action on another bio target as one single molecule or to counterbalance the known side effects associated with the other hybrid part(.) The present review article offers a detailed account of the design strategies employed for the synthesis of anticancer agents via molecular hybridization techniques. Over the years, the researchers have employed this technique to discover some promising chemical architectures displaying significant anticancer profiles. Molecular hybridization as a tool has been particularly utilized for targeting tubulin protein as exemplified through the number of research papers. The microtubule inhibitors such as taxol, colchicine, chalcones, combretasatin, phenstatins and vinca alkaloids have been utilized as one of the functionality of the hybrids and promising results have been obtained in most of the cases with some of the tubulin based hybrids exhibiting anticancer activity at nanomolar level. Linkage with steroids as biological carrier vector for anticancer drugs and the inclusion of pyrrolo [2,1-c] [1,4]benzodiazepines (PBDs), a family of DNA interactive antitumor antibiotics derived from Streptomyces species in hybrid structure based drug design has also emerged as a potential strategy. Various heteroaryl based hybrids in particular isatin and coumarins have also been designed and reported to posses' remarkable inhibitory potential. Apart from presenting the design strategies, the article also highlights the structure activity relationship along with mechanistic insights revealed during the biological evaluation of the hybrids.
Collapse
|
30
|
Han K, Zhou Y, Liu F, Guo Q, Wang P, Yang Y, Song B, Liu W, Yao Q, Teng Y, Yu P. Design, synthesis and in vitro cytotoxicity evaluation of 5-(2-carboxyethenyl)isatin derivatives as anticancer agents. Bioorg Med Chem Lett 2013; 24:591-4. [PMID: 24360564 DOI: 10.1016/j.bmcl.2013.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/14/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Forty four di- or trisubstituted novel isatin derivatives were designed and synthesized in 5-6 steps in 25-45% overall yields. Their structures were confirmed by (1)H NMR and (13)C NMR as well as LC-MS. The anticancer activity of these new isatin derivatives against three human tumor cell lines, K562, HepG2 and HT-29, were evaluated by MTT assay in vitro. SAR studies suggested that the combination of 1-benzyl and 5-[trans-2-(methoxycarbonyl)ethen-1-yl] substitution greatly enhance their cytotoxic activity, whereas an intact carbonyl functionality on C-3 as present in the parent ring is required to such a potency. This study leads to the identification of two highly active molecules, compounds 2h (IC50=3 nM) and 2k (IC50=6 nM), against human leukemia K562 cells.
Collapse
Affiliation(s)
- Kailin Han
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Fengxi Liu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qiannan Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Pengfei Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Yao Yang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Binbin Song
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Wei Liu
- College of Sciences, Tianjin University of Science and Technology, Tianjin 300457, PR China
| | - Qingwei Yao
- Chemo Dynamics, Inc., 3 Crossman Road South, Sayreville, NJ 08872, USA
| | - Yuou Teng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Peng Yu
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| |
Collapse
|
31
|
Quantitative structure activity relationship of tetraaza macrocyclic vehicle DO3A with lanthanide relaxivity and hydrophobicity. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0570-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
|
33
|
Cândido-Bacani PDM, Mori MP, Calvo TR, Vilegas W, Varanda EA, Cólus IMDS. In vitro assessment of the cytotoxic, apoptotic, and mutagenic potentials of isatin. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:354-362. [PMID: 23557234 DOI: 10.1080/15287394.2012.755941] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Isatin (1H-indole-2,3-dione) is a chemical found in various medicinal plant species and responsible for a broad spectrum of pharmacological and biological properties that may be beneficial to human health, as an anticonvulsant, antibacterial, antifungal, antiviral, and anticancer agent. The aim of the present study was to determine in vitro the cytotoxic, mutagenic, and apoptotic effects of isatin on CHO-K1 and HeLa cells using the MTT viability assay (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide), micronucleus (MN) test, apoptosis index, and nuclear division index (NDI). The 5 isatin concentrations evaluated in the mutagenicity and apoptosis tests were 0.5, 1, 5, 10, and 50 μM, selected through a preliminary MTT assay. Positive (doxorubicin, DXR) and negative (phosphate buffered saline, PBS) control groups were also included in the analysis. Isatin did not exert a mutagenic effect on CHO-K1 after 3 and 24 h of treatment or on HeLa cells after 24 h. However, 10 and 50 μM concentrations inhibited cell proliferation and promoted apoptosis in both CHO-K1 and HeLa cells. Data indicate that the cytotoxic, apoptotic, and antiproliferative effects of isatin were concentration independent and cell line independent.
Collapse
|
34
|
Singh P, Sharma P, Anand A, Bedi PMS, Kaur T, Saxena AK, Kumar V. Azide-alkyne cycloaddition en route to novel 1H-1,2,3-triazole tethered isatin conjugates with in vitro cytotoxic evaluation. Eur J Med Chem 2012; 55:455-61. [PMID: 22818042 DOI: 10.1016/j.ejmech.2012.06.057] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/08/2012] [Accepted: 06/28/2012] [Indexed: 10/28/2022]
Abstract
1H-1,2,3-triazole tethered isatin conjugates have been synthesized and evaluated for cytotoxicity on four human cancer cell lines. The results revealed 5a, 5c, 5e and 5n proved to be twice as potent as 5-fluorouracil on THP-1 cell line with 5a and 5c being most active exhibiting IC(50) values of <1 against all cell lines except Caco-2. Activity profiles showed dependence on the substituents on isatin rings with a preference for hydrogen while a strong electron withdrawing fluoro as well as nitro substituents on either ring decreased the anticancer activity.
Collapse
Affiliation(s)
- Pardeep Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | | | | | | | | | | | | |
Collapse
|
35
|
Singh R, Meena A, Negi A, Shanker K. Quantitative relationships between molecular descriptors, chromatographic retention behavior, andin vitroantituberculosis activity of phytol derivatives. JPC-J PLANAR CHROMAT 2012. [DOI: 10.1556/jpc.25.2012.1.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
A straightforward synthesis of N-monosubstituted α-keto amides via aerobic benzylic oxidation of amides. Tetrahedron 2012. [DOI: 10.1016/j.tet.2011.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Design, synthesis, antimicrobial, anticancer evaluation, and QSAR studies of 4-(substituted benzylidene-amino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-ones. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9906-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Isonicotinic acid hydrazide derivatives: synthesis, antimicrobial activity, and QSAR studies. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9662-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Zhao ML, Yin JJ, Li ML, Xue Y, Guo Y. QSAR study for cytotoxicity of diterpenoid tanshinones. Interdiscip Sci 2011; 3:121-7. [DOI: 10.1007/s12539-011-0077-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 02/22/2011] [Accepted: 03/01/2011] [Indexed: 11/25/2022]
|