1
|
Yavuz SC. Synthesis of new two 1,2-disubstituted benzimidazole compounds: their in vitro anticancer and in silico molecular docking studies. BMC Chem 2024; 18:146. [PMID: 39113157 PMCID: PMC11308586 DOI: 10.1186/s13065-024-01241-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
In this study, two new molecules were synthesized from the reaction of 2-methyl-1H-benzo[d]imidazole with aryl halides in the presence of a strong base. The structures newly of synthesized 1,2-disubstituted benzimidazole compounds were characterized using spectroscopic techniques (FT-IR, 1HNMR, 13CNMR) and chromatographic technique (LC/MS). For discovering an effective anticancer drug, the developed heterocyclic compounds were screened against three different human cancer cell lines (A549, DLD-1, and L929). The results demonstrated that of IC50 values of compound 2a were higher as compared to cisplatin for the A549 and DLD-1 cell lines. The frontier molecular orbital (FMO), and molecular electrostatic potential map (MEP) analyses were studied by using DFT (density functional theory) calculations at B3LYP/6-31G** level of theory. The molecular docking studies of the synthesized compound with lung cancer protein, PDB ID: 1M17, and colon cancer antigen proteins, PDB ID: 2HQ6 were performed to compare with experimental and theoretical data. Compound 2a had shown the best binding affinity with -6.6 kcal/mol. It was observed that the theoretical and experimental studies carried out supported each other.
Collapse
Affiliation(s)
- Sevtap Caglar Yavuz
- Department of Medical Services and Technicians, Ilic Dursun Yildirim Vocational School, Erzincan Binali Yildirim University, Erzincan, Türkiye.
| |
Collapse
|
2
|
Gupta A, Gururaja GN. Regioselective Addition of Sulfur and Amine Nucleophiles To Assemble S═C-S, S-N, and Umpolung C-N Bonds: Exploration of the -CBr 3 Group as a Synthetic Equivalent of S═C-S. Org Lett 2024; 26:1874-1879. [PMID: 38411402 DOI: 10.1021/acs.orglett.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The regioselective addition of sulfur and amine nucleophiles to a -CBr3 unit and nitromethyl moiety in a molecule with the installation of a five-diverse bond structure to novel isothiazole-5(2H)-thione is demonstrated. Umpolung of the nitromethyl group leads to a novel scaffold with selective C-N bond formation. Consequently, differentiating reactive centers by sulfur and amine nucleophiles has been proposed to create unique S-N bonds in conjunction with the dithioate (S═C-S-) moiety. This protocol allows for exploration of the -CBr3 moiety as a synthetic equivalent of the dithioate (S═C-S-) unit during the reaction.
Collapse
Affiliation(s)
- Ankush Gupta
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| | - Guddeangadi N Gururaja
- School of Chemical Sciences, Central University of Gujarat, Gandhinagar, Gujarat 382030, India
| |
Collapse
|
3
|
Bonku EM, Qin H, Odilov A, Abduahadi S, Guma SD, Yang F, Zhu F, Aisa HA, Shen J. Improved and ligand-free copper-catalyzed cyclization for an efficient synthesis of benzimidazoles from o-bromoarylamine and nitriles. RSC Adv 2024; 14:6906-6916. [PMID: 38410369 PMCID: PMC10895414 DOI: 10.1039/d4ra00245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024] Open
Abstract
We present an improved copper-catalyzed cyclization for an efficient synthesis of benzimidazoles from o-bromoarylamine and nitriles, under mild and ligand-free conditions. The optimal conditions yielded exceptional products of up to 98%, demonstrating the broad applicability of this synthetic strategy in generating a wide range of valuable imidazole derivatives. This methodology enables the efficient synthesis of various substituted benzimidazole derivatives and offers an environmentally friendly alternative to conventional methods. By eliminating the use of harsh reagents and high temperatures associated with traditional synthesis approaches, this method proves to be more efficient and robust. Notably, we successfully applied this synthetic approach to the synthesis of bendazol and thiabendazole, yielding 82% and 78%, respectively, on a 100 gram scale.
Collapse
Affiliation(s)
- Emmanuel Mintah Bonku
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Hongjian Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi Xinjiang 830011 P. R. China
| | - Abdullajon Odilov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Safomuddin Abduahadi
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Samuel Desta Guma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| | - Feipu Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
| | - Fuqiang Zhu
- Topharman Shanghai Co., Ltd. No. 388 Jialilue Road, Zhangjiang Hitech Park Shanghai 201203 P.R. China
| | - Haji A Aisa
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Urumqi Xinjiang 830011 P. R. China
| | - Jingshan Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 P. R. China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 P. R. China
| |
Collapse
|
4
|
Eslami Moghadam M, Rezaeisadat M, Shahryari E, Mansouri-Torshizi H, Heydari M. Biological interaction of Pt complex with imidazole derivative as an anticancer compound with DNA: Experimental and theoretical studies. Int J Biol Macromol 2023; 249:126097. [PMID: 37543270 DOI: 10.1016/j.ijbiomac.2023.126097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
This investigation is applied to find out interesting information on DNA binding mode with Pt(II) derivative of two N, N bidentate ligands in treating cancer. Thus, one new water-soluble platinum complex with FIP and phen with a new formula of [Pt(phen)(FIP)](NO3)2 was prepared and specified. DFT data can be used to evaluate geometry parameters. Based on the ADMET prediction, this complex can be considered a drug-like agent. Cytotoxicity property was evaluated against some human cancerous MCF7, A549, and HCT116 cell lines. Accumulation of Pt complex, cisplatin, and oxaliplatin in each cancerous cell was determined, which is probably related to their lipophilicity and solubility properties. The binding mode of the complex to ct-DNA was investigated by fluorescence spectroscopy, circular dichroism, and molecular docking simulation. The viscosity of DNA by different concentrations of EB and Pt complex titration shows Pt complex interacts with DNA via groove binding like the spectroscopic binding result. In the MD study, DNA helix, RMSD, and RMSF analysis showed that DNA stability decreased and that the majority of residues left the initial state. DNA increased residual deviations and flexibility are linked to an increase in its gyratory radius, which is consistent with the findings of the experiments.
Collapse
Affiliation(s)
| | | | - Elaheh Shahryari
- Department of Physical Sciences, Emporia State University, Campus Box, 4030, KS, USA
| | | | - Maryam Heydari
- Chemistry & Chemical Engineering Research Center of Iran, Tehran, Iran
| |
Collapse
|
5
|
Khushal A, Farooq U, Khan S, Rasul A, Wani TA, Zargar S, Shahzad SA, Bukhari SM, Khan NA. Bioactivity-Guided Synthesis: In Silico and In Vitro Studies of β-Glucosidase Inhibitors to Cope with Hepatic Cytotoxicity. Molecules 2023; 28:6548. [PMID: 37764324 PMCID: PMC10538174 DOI: 10.3390/molecules28186548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis for designing new phthalimide and phthalamic acid analogs to test their ability as potent inhibitors of β-glucosidase. The study also covers in silico (molecular docking and MD simulations) and in vitro (β-glucosidase and HepG2 cancer cell line assays) analyses. The phthalimide and phthalamic acid derivatives were synthesized, followed by spectroscopic characterization. The mechanistic complexities associated with β-glucosidase inhibition were identified via the docking of the synthesized compounds inside the active site of the protein, and the results were analyzed in terms of the best binding energy and appropriate docking pose. The top-ranked compounds were subjected to extensive MD simulation studies to understand the mode of interaction of the synthesized compounds and binding energies, as well as the contribution of individual residues towards binding affinities. Lower RMSD/RMSF values were observed for 2c and 3c, respectively, in the active site, confirming more stabilized, ligand-bound complexes when compared to the free state. An anisotropic network model was used to unravel the role of loop fluctuation in the context of ligand binding and the dynamics that are distinct to the bound and free states, supported by a 3D surface plot. An in vitro study revealed that 1c (IC50 = 1.26 µM) is far better than standard acarbose (2.15 µM), confirming the potential of this compound against the target protein. Given the appreciable potential of the candidate compounds against β-glucosidase, the synthesized compounds were further tested for their cytotoxic activity against hepatic carcinoma on HepG2 cancer cell lines. The cytotoxicity profile of the synthesized compounds was performed against HepG2 cancer cell lines. The resultant IC50 value (0.048 µM) for 3c is better than the standard (thalidomide: IC50 0.053 µM). The results promise the hypothesis that the synthesized compounds might become potential drug candidates, given the fact that the β-glucosidase inhibition of 1c is 40% better than the standard, whereas compound 3c holds more anti-tumor activity (greater than 9%) against the HepG2 cell line than the known drug.
Collapse
Affiliation(s)
- Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Azhar Rasul
- Department of Zoology, GC University Faisalabad, Faisalabad 38000, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| |
Collapse
|
6
|
Thaher BA, Al-Masri I, Wahedy K, Morjan R, Aliwaini S, Al Atter IM, Elmabhouh AA, Ibwaini AKA, Alkhaldi SL, Qeshta B, Jacob C, Deigner HP. Synthesis and bioassay of 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones as anti-cancer agents. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1797-1810. [PMID: 36856800 DOI: 10.1007/s00210-023-02433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023]
Abstract
Four novel 3-Aryl -1-(pyridin-4-yl)benzo[4,5]imidazo[1,2-d][1,2,4]- triazin-4(3H)-ones derivatives (C1 to C4) have been designed, synthesized, and evaluated for their anticancer activity. The structure of compounds was characterized by IR,1H NMR, 13C NMR and high-resolution mass (HRMS). The crystal structures of C1, C2 and C4 were previously determined by single-crystal X-ray analysis.The results from docking experiments with EGFR suggested the binding of the compounds at the active site of EGFR. The new compounds exhibited different levels of cytotoxicity against HCC1937 and MCF7 breast cancer cells. Results of the MTT assay identified C3 as the most cytotoxic of the series against both MCF7 and HCC1937 breast cancer cell lines with IC50 values of 36.4 and 48.2 µM, respectively. In addition to its ability to inhibit cell growth and colony formation ability, C3 also inhibited breast cancer cell migration. Western blotting results showed that C3 treatment inhibited EGFR signaling and induced cell cycle arrest and apoptosis as indicated by the low level of p-EGFR and p-AKT and the increasing levels of p53, p21 and cleaved PARP. Our work represents a promising starting point for the development of a new series of compounds targeting cancer cells.
Collapse
Affiliation(s)
- Bassam Abu Thaher
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Ihab Al-Masri
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Kanan Wahedy
- Faculty of Pharmacy, Al-Azhar University, Gaza, Palestine
| | - Rami Morjan
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Saeb Aliwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine.
| | - Iman Mahmoud Al Atter
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Aayat Ahmed Elmabhouh
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Areej Khaled Al Ibwaini
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Saba Luay Alkhaldi
- Department of Biology and Biotechnology, Islamic University of Gaza, PO Box 108, Gaza, Palestine
| | - Basem Qeshta
- Faculty of Science, Chemistry Department, Islamic University of Gaza, P.O. Box 108, Gaza, Palestine
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123, Saarbruecken, Germany
| | - Hans-Peter Deigner
- Faculty of Medical and Life Sciences, Hochschule Furtwangen (HFU), Jakob-Kienzle-Strasse 17, 78054, Villingen-Schwenningen, Germany.
- Fraunhofer IZI, Perlickstrasse 1, 04103, Leipzig, Germany.
| |
Collapse
|
7
|
Chen Y, Li W, Yang Y, Zhong R, Hu H, Huang C, Chen J, Liang L, Liu Y. Significant increase of anticancer efficacy in vitro and in vivo of liposome entrapped ruthenium(II) polypyridyl complexes. Eur J Med Chem 2023; 257:115541. [PMID: 37295162 DOI: 10.1016/j.ejmech.2023.115541] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Two polypyridyl ruthenium(II) complexes [Ru(DIP)2(BIP)](PF6)2 (DIP = 4,7-diphenyl-1,10-phenanthrolie, BIP = 2-(1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru1) and [Ru(DIP)2(CBIP)](PF6)2 (CBIP = 2-(4'-chloro-1,1'-biphenyl-4-yl)-1H-imidazo[4,5-f][1,10]phenanthroline, Ru2) were synthesized. The cytotoxic activities in vitro of Ru1, Ru2 toward B16, A549, HepG2, SGC-7901, HeLa, BEL-7402, non-cancer LO2 were investigated using MTT method (3-(4,5-dimethylthiazole)-2,5-diphenltetraazolium bromide). Unexpectedly, Ru1, Ru2 can't prevent these cancer cells proliferation. To improve the anti-cancer effect, we used liposomes to entrap the complexes Ru1, Ru2 to form Ru1lipo, Ru2lipo. As expectation, Ru1lipo and Ru2lipo exhibit high anti-cancer efficacy, especially, Ru1lipo (IC50 3.4 ± 0.1 μM), Ru2lipo (IC50 3.5 ± 0.1 μM) display strong ability to block the cell proliferation in SGC-7901. The cell colony, wound healing, and cell cycle distribution show that the complexes can validly inhibit the cell growth at G2/M phase. Apoptotic studied with Annex V/PI doubling method showed that Ru1lipo and Ru2lipo can effectively induce apoptosis. Reactive oxygen species (ROS), malondialdehyde, glutathione and GPX4 demonstrate that Ru1lipo and Ru2lipo improve ROS and malondialdehyde levels, inhibit generation of glutathione, and finally result in a ferroptosis. Ru1lipo and Ru2lipo interact on the lysosomes and mitochondria and damage mitochondrial dysfunction. Additionally, Ru1lipo and Ru2lipo increase intracellular Ca2+ concentration and induce autophagy. The RNA-sequence and molecular docking were performed, the expression of Bcl-2 family was investigated by Western blot analysis. Antitumor in vivo experiments confirm that 1.23 mg/kg, 2.46 mg/kg of Ru1lipo possesses a high inhibitory rate of 53.53% and 72.90% to prevent tumor growth, hematoxylin-eosin (H&E) results show that Ru1lipo doesn't cause chronic organ damage and strongly promotes the necrosis of solid tumor. Taken together, we conclude that Ru1lipo and Ru2lipo cause cell death through the following pathways: autophagy, ferroptosis, ROS-regulated mitochondrial dysfunction, and blocking the PI3K/AKT/mTOR.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yan Yang
- Department of Pharmacy, Guangdong Second Provincial General Hospital, 510317, PR China.
| | - Ruitong Zhong
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Kumar L, Verma N, Tomar R, Sehrawat H, Kumar R, Chandra R. Development of bioactive 2-substituted benzimidazole derivatives using an MnO x/HT nanocomposite catalyst. Dalton Trans 2023; 52:3006-3015. [PMID: 36779313 DOI: 10.1039/d2dt02923e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Benzimidazole is a vital moiety found in a wide range of naturally and pharmacologically active molecules. We prepared a proficient and facile manganese oxide-supported magnesium and aluminium-based nanocomposite catalytic framework using the deposition-precipitation method and characterised it with XRD, XPS, SEM, TEM, and TGA techniques. Following that, the catalyst was used in the green synthesis of highly functional 2-substituted benzimidazole derivatives in an ethanol-water solvent system at room temperature using various assorted benzaldehydes and o-phenylenediamine as substituents. The synthesised catalyst operates efficiently and is applicable to a wide range of electron-withdrawing and electron-donating substrates, resulting in good to excellent yields. The advantages of this process include the use of a greener solvent, high yield, high conversions, no use of additives or bases, a good TOF, and a shorter reaction time.
Collapse
Affiliation(s)
- Loveneesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Nishant Verma
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Ravi Tomar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Department of Chemistry, Faculty of Science, SGT University, Gurugram, Haryana-122505, India
| | - Hitesh Sehrawat
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India.
| | - Rupesh Kumar
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Department of Chemistry, Kirori Mal College, University of Delhi, Delhi 110007, India.
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi 110007, India. .,Dr B. R. Ambedkar Centre for Biomedical Research (ACBR), University of Delhi, Delhi 110007, India.,Institute of Nanomedical Sciences (INMS), University of Delhi, Delhi 110007, India
| |
Collapse
|
9
|
Köse A, Bal M. SYNTHESIS, STRUCTURE AND PHOTOLUMINESCENCE PROPERTIES OF A Cd2+ COMPLEX OF A PYRIDINE-BIS-BENZIMIDAZOLE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622120095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Popatkar BB, Sasane NA, Meshram GA. [BMPTFB]-ionic liquid as an efficient catalyst for the rapid, and eco-friendly synthesis of benzimidazole, 2-substituted benzimidazole, and benzothiazole derivatives at room temperature. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2142915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nitin A. Sasane
- Department of Chemistry, University of Mumbai, Mumbai, India
| | | |
Collapse
|
11
|
Liang L, Wu X, Shi C, Wen H, Wu S, Chen J, Huang C, Wang Y, Liu Y. Synthesis and characterization of polypyridine ruthenium(II) complexes and anticancer efficacy studies in vivo and in vitro. J Inorg Biochem 2022; 236:111963. [PMID: 35988387 DOI: 10.1016/j.jinorgbio.2022.111963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022]
Abstract
In this article, ligand IPP (IPP = 4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline) and its three Ru(II) complexes: [Ru(bpy)2(IPP)](ClO4)2 (1) (bpy = 2,2'-bipyridine), [Ru(dmbpy)2(IPP)](ClO4)2 (2) (dmbpy = 4,4'-dimethyl-2,2'-bipyridine), and [Ru(phen)2(IPP)](ClO4)2 (3) (phen = 1,10-phenanthroline) were synthesized and characterized. The anticancer activity in vitro of the complexes was investigated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. The scratching and colony-forming experiments confirmed the complexes 1, 2, 3 interfered with the proliferation and migration ability of cells. The accumulation of the complexes in cells was researched and we found that these complexes directly accumulated in mitochondria, then the complexes cause a decline of the mitochondrial membrane potential and induce an increase of intracellular reactive oxygen species (ROS) levels. The growth of B16 cells were inhibited by 1, 2 and 3 at G0/G1 phase. Apoptosis was induced through mitochondrial pathway and the expression of apoptosis-related factors was regulated. In addition, the complexes promoted the transition of poly(ADP-ribose)polymerase (PARP) into the cleaved form (Cleaved PARP), downregulated the anti-apoptotic proteins, and upregulated the pro-apoptotic proteins. Consequently, complexes 1, 2 and 3 exerted their anticancer activity by regulating B-cell lymphoma-2 (Bcl-2) family proteins. Complex 2 showed excellent antitumor effects with a high inhibitory rate of 65.95% in vivo. Taken together, the complexes cause apoptosis in B16 cells through a ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haoyu Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shouhai Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yi Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
12
|
Geesi MH, Riadi Y, Kaiba A, Ibnouf EO, Anouar EH, Dehbi O, Lazar S, Guionneau P. Synthesis, antimicrobial evaluation, crystal structure, Hirschfeld surface analysis and docking studies of 4-[2-(1-methyl-1H-imidazol-2-ylsulfanyl)-acetylamino]-benzenesulfonic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Kavitha N, Alivelu M, Konakanchi R. Computational Quantum Chemical Study, Insilco ADMET, and Molecular Docking Study of 2-Mercapto Benzimidazole. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1939071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Natte Kavitha
- Department of Chemistry, Pingle Govt. College for Women, Warangal, Telangana, India
| | - Munagala Alivelu
- Department of Chemistry, Pingle Govt. College for Women, Warangal, Telangana, India
| | - Ramaiah Konakanchi
- Chemistry Division, H&S Department, Malla Reddy Engineering College for Women (Autonomous Institution), Hyderabad, Telangana, India
| |
Collapse
|
14
|
Çelik C, Üstün E, Şahin N, Tutar U. Antimicrobial and Antibiofilm Activity, and Bovine Serum Albumin Binding Properties of Benzimidazolium Type NHC Salts and Their Ag(I)‐NHC Complexes. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Cem Çelik
- Faculty of Medicine, Department of Medical Microbiology Cumhuriyet University Sivas Turkey
| | - Elvan Üstün
- Faculty of Art and Science, Department of Chemistry Ordu University Ordu Turkey
| | - Neslihan Şahin
- Faculty of Education, Department of Science Education Cumhuriyet University Sivas Turkey
| | - Uğur Tutar
- Faculty of Pharmacy, Department of Botanica Cumhuriyet University Sivas Turkey
| |
Collapse
|
15
|
Zalaru C, Dumitrascu F, Draghici C, Tarcomnicu I, Marinescu M, Nitulescu GM, Tatia R, Moldovan L, Popa M, Chifiriuc MC. New Pyrazolo-Benzimidazole Mannich Bases with Antimicrobial and Antibiofilm Activities. Antibiotics (Basel) 2022; 11:antibiotics11081094. [PMID: 36009963 PMCID: PMC9405415 DOI: 10.3390/antibiotics11081094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/04/2022] Open
Abstract
A new series of pyrazolo-benzimidazole hybrid Mannich bases were synthesized, characterized by 1H-NMR, 13C-NMR, IR, UV-Vis, MS, and elemental analysis. In vitro cytotoxicity of the new compounds studied on fibroblast cells showed that the newly synthesized pyrazolo-benzimidazole hybrid derivatives were noncytotoxic until the concentration of 1 μM and two compounds presented a high degree of biocompatibility. The antibacterial and antibiofilm activity of the newly synthesized compounds was assayed on Gram-positive Staphylococcus aureus ATCC25923, Enterococcus faecalis ATCC29212, and Gram-negative Pseudomonas aeruginosa ATCC27853, Escherichia coli ATCC25922 strains. All synthesized compounds 5a–g are more active against all three tested bacterial strains Staphylococcus aureus ATCC25923, Enterococcus faecalis ATCC29212, and Escherichia coli ATCC25922 than reference drugs (Metronidazole, Nitrofurantoin), with the exception of compounds 5d and 5g, which are less active compared to Nitrofurantoin, and all synthesized compounds 5a–g are more active against Pseudomonas aeruginosa ATCC27853 compared to reference drugs (Metronidazole, Nitrofurantoin). Compound 5f showed the best activity against Staphylococcus aureus ATCC 25923, with a MIC of 150 μg/mL and has also inhibited the biofilm formed by all the bacterial strains, having an MBIC of 310 µg/mL compared to the reference drugs (Metronidazole, Nitrofurantoin).
Collapse
Affiliation(s)
- Christina Zalaru
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, 030018 Bucharest, Romania
- Correspondence: (C.Z.); (M.M.)
| | - Florea Dumitrascu
- “C.D. Nenitescu” Institute of Organic and Supramolecular Chemistry Romanian Academy, 202 B Spl. Independentei, 060023 Bucharest, Romania
| | - Constantin Draghici
- “C.D. Nenitescu” Institute of Organic and Supramolecular Chemistry Romanian Academy, 202 B Spl. Independentei, 060023 Bucharest, Romania
| | - Isabela Tarcomnicu
- National Institute for Infectious Diseases “Prof. Dr. Matei Balș”, No. 1 Dr. Calistrat Grozovici Street, 021105 Bucharest, Romania
- Cytogenomic Medical Laboratory, 35 Calea Floreasca, 014462 Bucharest, Romania
| | - Maria Marinescu
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Road, 030018 Bucharest, Romania
- Correspondence: (C.Z.); (M.M.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Rodica Tatia
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031 Bucharest, Romania
| | - Lucia Moldovan
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, 296 Splaiul Independenţei, 060031 Bucharest, Romania
| | - Marcela Popa
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor St., 60101 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, University of Bucharest, 1-3 Aleea Portocalelor St., 60101 Bucharest, Romania
- Academy of Romanian Scientist, Ilfov No. 3, 050044 Bucharest, Romania
| |
Collapse
|
16
|
Pham EC, Thi Le TV, Truong TN. Design, synthesis, bio-evaluation, and in silico studies of some N-substituted 6-(chloro/nitro)-1 H-benzimidazole derivatives as antimicrobial and anticancer agents. RSC Adv 2022; 12:21621-21646. [PMID: 35975065 PMCID: PMC9347358 DOI: 10.1039/d2ra03491c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/20/2022] [Indexed: 01/13/2023] Open
Abstract
A new series of 6-substituted 1H-benzimidazole derivatives were synthesized by reacting various substituted aromatic aldehydes with 4-nitro-o-phenylenediamine and 4-chloro-o-phenylenediamine through condensation using sodium metabisulfite as the oxidative reagent. The N-substituted 6-(chloro/nitro)-1H-benzimidazole derivatives were prepared from the 6-substituted 1H-benzimidazole derivatives and substituted halides using potassium carbonate by conventional methods as well as by exposure to microwave irradiation. Seventy-six 1H-benzimidazole derivatives have been synthesized in moderate to excellent yields with the microwave-assisted method (40 to 99%). Compounds 1d, 2d, 3s, 4b, and 4k showed potent antibacterial activity against Escherichia coli, Streptococcus faecalis, MSSA (methicillin-susceptible strains of Staphylococcus aureus), and MRSA (methicillin-resistant strains of Staphylococcus aureus) with MIC (the minimum inhibitory concentration) ranging between 2 and 16 μg mL-1 as compared to ciprofloxacin (MIC = 8-16 μg mL-1), in particular compound 4k exhibits potent fungal activity against Candida albicans and Aspergillus niger with MIC ranging between 8 and 16 μg mL-1 compared with the standard drug fluconazole (MIC = 4-128 μg mL-1). In addition, compounds 1d, 2d, 3s, 4b, and 4k also showed the strongest anticancer activity among the synthesized compounds against five tested cell lines with IC50 (half-maximal inhibitory concentration) ranging between 1.84 and 10.28 μg mL-1, comparable to paclitaxel (IC50 = 1.38-6.13 μM). Furthermore, the five most active compounds showed a good ADMET (absorption, distribution, metabolism, excretion, and toxicity) profile in comparison to ciprofloxacin, fluconazole, and paclitaxel as reference drugs. Molecular docking predicted that dihydrofolate reductase protein from Staphylococcus aureus is the most suitable target for both antimicrobial and anticancer activities, and vascular endothelial growth factor receptor 2 and histone deacetylase 6 are the most suitable targets for anticancer activity of these potent compounds.
Collapse
Affiliation(s)
- Em Canh Pham
- Department of Medicinal Chemistry, Faculty of Pharmacy, Hong Bang International University 700000 Ho Chi Minh City Vietnam
| | - Tuong Vi Thi Le
- Department of Pharmacology - Clinical Pharmacy, Faculty of Pharmacy, City Children's Hospital 700000 Ho Chi Minh City Vietnam
| | - Tuyen Ngoc Truong
- Department of Organic Chemistry, Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City 700000 Ho Chi Minh City Vietnam
| |
Collapse
|
17
|
Antony Muthu Prabhu A. Spectral and Theoretical Studies of Benzimidazole and 2-Phenyl Substituted Benzimidazoles. BENZIMIDAZOLE 2022. [DOI: 10.5772/intechopen.101966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter discusses about the spectral and theoretical aspects of selected benzimidazole and 2-phenyl substituted benzimidazole molecules. The synthesis of these benzimidazoles was reported in many methods by the reaction between o-phenylenediamine with formic acid, aromatic aldehydes and N-benzylbezene-1,2-diamine in presence of oxidant tert-butyl hydroperoxide (TBHP). The spectral analysis of these molecules mainly such as UV-visible, fluorescence in solvents will be included in this chapter and discussed about the absorption, fluorescence maximum, conjugation, transition. Further the optimized structure of these molecules will be given using Gaussian 09 W (DFT 6-31G method). And also will be discussed about structural parameters, highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) energy energy values, natural bond orbital (NBO), molecular electrostatic potential map (ESP). Many benzimidazole molecules having tautomers in the structure will be explained with the help of theoretical parameters to describe the structural properties.
Collapse
|
18
|
Chedupaka R, Pawar R, Venkatesham P, Vedula RR. Synthesis, characterization and Density Functional Theory of novel one-pot thioalkylated benzimidazole-linked 4-substituted mercaptoimidazole molecular hybrids via multi-component approach. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2072745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Raju Chedupaka
- Department of chemistry, National Institute of Technology Warangal, Warangal, India
| | - Ravinder Pawar
- Department of chemistry, National Institute of Technology Warangal, Warangal, India
| | | | - Rajeswar Rao Vedula
- Department of chemistry, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
19
|
Xu P, Wang XY, Wang Z, Zhao J, Cao XD, Xiong XC, Yuan YC, Zhu S, Guo D, Zhu X. Defluorinative Alkylation of Trifluoromethylbenzimidazoles Enabled by Spin-Center Shift: A Synergistic Photocatalysis/Thiol Catalysis Process with CO 2•. Org Lett 2022; 24:4075-4080. [PMID: 35648621 DOI: 10.1021/acs.orglett.2c01533] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We describe a catalytic strategy for direct single C(sp3)-F bond alkylation of trifluoromethylbenzimidazoles under a photoinduced thiol catalysis process. The CO2 radical anion (CO2•-) proved to be the most efficient single-electron reductant to realize such a transformation. The spin-center shift of the generated radical anion intermediate is the key step in realizing C-F bond activation under mild conditions with high efficiency.
Collapse
Affiliation(s)
- Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xing-Yu Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Zhijuan Wang
- School of Chemistry and Molecular Engineering (SCME), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinjin Zhao
- School of Chemistry and Molecular Engineering (SCME), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xu-Dong Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xiao-Chun Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Yu-Chao Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Songlei Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Dong Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou 221004, China
| |
Collapse
|
20
|
Hebade MJ, Dhumal ST, Kamble SS, Deshmukh TR, Khedkar VM, Hese SV, Gacche RN, Dawane BS. DTP/SiO 2 Assisted Synthesis of New Benzimidazole-Thiazole Conjugates Targeting Antitubercular and Antioxidant Activities. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2056210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Madhav J. Hebade
- Department of Chemistry, Badrinarayan Barwale Mahavidyalaya, Jalna, Maharashtra, India
| | - Sambhaji T. Dhumal
- Department of Chemistry, Ramkrishna Paramhansa Mahavidyalaya, Osmanabad, Maharashtra, India
| | - Sonali S. Kamble
- Department of Biochemistry, Gramin Science (Vocational) College, Nanded, Maharashtra, India
| | - Tejshri R. Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune, Maharashtra, India
| | - Shrikant V. Hese
- Department of Chemistry, D. D. Bhoyar College of Arts and Science Mouda, Nagpur, India
| | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Bhaskar S. Dawane
- School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded, India
| |
Collapse
|
21
|
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, Ouyang L, Wang Y. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities. Eur J Med Chem 2022; 230:114094. [PMID: 34998039 DOI: 10.1016/j.ejmech.2021.114094] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/27/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023]
Abstract
PARP1 plays a crucial role in DNA damage repair, making it an essential target for cancer therapy. PARP1 inhibitors are widely used to treat BRCA-deficient malignancies, and six PARP inhibitors have been approved for clinical use. However, excluding the great clinical success of PARP inhibitors, the concomitant toxicity, drug resistance, and limited scope of application restrict their clinical efficacy. To find solutions to these problems, dual-target inhibitors have shown great potential. In recent years, several studies have linked PAPR1 to other primary cancer targets. Many dual-target inhibitors have been developed using structural fusion, linkage, or library construction methods, overcoming the defects of many single-target inhibitors of PARP1 and achieving great success in clinical cancer therapy. This review summarizes the advance of dual-target PARP1 inhibitors in recent years, focusing on their structural optimization process, structure-activity relationships (SARs), and in vitro or in vivo analysis results.
Collapse
Affiliation(s)
- Xinyue Hu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ya Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Fulun Jiao
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Liang Ouyang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
22
|
Synthesis, characterization and in vitro, in vivo, in silico biological evaluations of substituted benzimidazole derivatives. Saudi J Biol Sci 2022; 29:239-250. [PMID: 35002414 PMCID: PMC8717171 DOI: 10.1016/j.sjbs.2021.08.082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 11/22/2022] Open
Abstract
A series of substituted benzimidazole derivatives were synthesized by reacting O-phenylenediamine with various aromatic aldehydes or glycolic acid using various inexpensive reagents in aqueous media. Synthesized compounds were characterized and elucidated by IR, 1H NMR, ESI-MS spectra. Resultant compounds were screened for in vitro antimicrobial, cytotoxic, antioxidant, lipid peroxidation and cholinesterase inhibitory activities, in vivo analgesic and anti-inflammatory, and in silico anti-acetylcholinesterase and anti-butyrylcholinesterase activities. Among the synthesized compounds, compound 3b showed most promising central analgesic effect (46.15%) compared to morphine (48.08%), whereas compounds 6, 3c and 3a showed significant peripheral analgesic activity at two different dose levels (25 mg/kg and 50 mg/kg). Compounds 3b and 3a at the dose of 100 mg/kg showed significant anti-inflammatory effects from the first hour and onward, whereas compounds 6 and 3b showed moderate cytotoxic activities. In addition, compound 3a showed significant antioxidant activity having IC50 value of 16.73 µg/ml compared to 14.44 µg/ml for the standard BHT. Compound 6, 3a and 3b exhibited mild to moderate cholinesterase inhibitory activity. In silico studies revealed that compound 3a and 3b might be suitable for cholinesterase inhibitory activity. A comprehensive computational and experimental data suggested compounds 3b and 3a as the best possible candidates for pharmacological activity. All the experimental data were statistically significant (p < 0.01 level).
Collapse
|
23
|
El Faydy M, Dahaieh N, Ounine K, Lakhrissi B, Warad I, Tüzün B, Zarrouk A. Synthesis, Identification, Antibacterial Activity, ADME/T and 1BNA-Docking Investigations of 8-Quinolinol Analogs Bearing a Benzimidazole Moiety. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05749-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Masaryk L, Orvoš J, Słoczyńska K, Herchel R, Moncol J, Milde D, Halaš P, Křikavová R, Koczurkiewicz-Adamczyk P, Pękala E, Fischer R, Šalitroš I, Nemec I, Štarha P. Anticancer half-sandwich Ir( iii) complex and its interaction with various biomolecules and their mixtures – a case study with ascorbic acid. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00535b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An anticancer azo bond-containing half-sandwich Ir(iii) complex oxidizes ascorbate to dehydroascorbate, and ascorbate recovers in the presence of reduced glutathione.
Collapse
Affiliation(s)
- Lukáš Masaryk
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Jakub Orvoš
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Karolina Słoczyńska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Ján Moncol
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - David Milde
- Department of Analytical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Petr Halaš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Radka Křikavová
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Róbert Fischer
- Department of Organic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Šalitroš
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
- Department of Inorganic Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava SK-81237, Slovakia
| | - Ivan Nemec
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Pavel Štarha
- Department of Inorganic Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
25
|
Liu JT, Jaunky DB, Larocque K, Chen F, Mckibbon K, Sirouspour M, Taylor S, Shafeii A, Campbell D, Braga H, Piekny A, Forgione P. Design, structure-activity relationship study and biological evaluation of the thieno[3,2-c]isoquinoline scaffold as a potential anti-cancer agent. Bioorg Med Chem Lett 2021; 52:128327. [PMID: 34416378 DOI: 10.1016/j.bmcl.2021.128327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Several derivatives of a series that share a thienoisoquinoline scaffold have demonstrated potent activity against cancer cell lines A549, HeLa, HCT-116, and MDA-MB-231 in the submicromolar concentration range. Structure-activity relationship (SAR) studies on a range of derivatives aided in identifying key pharmacophores in the lead compound. A series of compounds have been identified as the most promising with submicromolar IC50 values against a lung cancer cell line (A549). Microscopy studies of cancer cells treated with the lead compound revealed that it causes mitotic arrest and disrupts microtubules. Further evaluation via an in vitro microtubule polymerization assay and competition studies indicate that the lead compound binds to tubulin via the colchicine site.
Collapse
Affiliation(s)
- Jiang Tian Liu
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Dilan B Jaunky
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Kevin Larocque
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Fei Chen
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Keegan Mckibbon
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Mehdi Sirouspour
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Sarah Taylor
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Alexandre Shafeii
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Donald Campbell
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Helena Braga
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Alisa Piekny
- Department of Biology, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada
| | - Pat Forgione
- Department of Chemistry & Biochemistry, Concordia University, 7141 rue Sherbrooke O., Montréal, QC H4B 1R6, Canada; Center for Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 rue Sherbrooke O., Montréal, QC H3A 0B8, Canada.
| |
Collapse
|
26
|
Unsal Tan O, Zengin M. Insights into the chemistry and therapeutic potential of acrylonitrile derivatives. Arch Pharm (Weinheim) 2021; 355:e2100383. [PMID: 34763365 DOI: 10.1002/ardp.202100383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022]
Abstract
Acrylonitrile is a fascinating scaffold widely found in many natural products, drugs, and drug candidates with various biological activities. Several drug molecules such as entacapone, rilpivirine, teriflunomide, and so forth, bearing an acrylonitrile moiety have been marketed. In this review, diverse synthetic strategies for constructing desired acrylonitriles are discussed, and the different biological activities and medicinal significance of various acrylonitrile derivatives are critically evaluated. The information gathered is expected to provide rational guidance for the development of clinically useful agents from acrylonitriles.
Collapse
Affiliation(s)
- Oya Unsal Tan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Merve Zengin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
27
|
Hashem HE, El Bakri Y. An overview on novel synthetic approaches and medicinal applications of benzimidazole compounds. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
28
|
Essghaier B, Dridi R, Arouri A, Zid MF. Synthesis, structural characterization and prospects for a new tris (5-methylbenzimidazole) tris (oxalato) ferrate(III) trihydrate complex as a promising antibacterial and antifungal agent. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Siddig LA, Khasawneh MA, Samadi A, Saadeh H, Abutaha N, Wadaan MA. Synthesis of novel thiourea-/urea-benzimidazole derivatives as anticancer agents. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
A new series of urea and thiourea derivatives containing benzimidazole group as potential anticancer agents have been designed and synthesized. The structures of the synthesized compounds were characterized and confirmed by spectroscopic techniques such as 1H NMR, 13C NMR, and mass spectrometry. In vitro anticancer assay against two breast cancer (BC) cell lines, MDA-MB-231ER(−)/PR(−) and MCF-7ER(+)/PR(+), revealed that the cytotoxicity of 1-(2-(1H-benzo[d]imidazol-2-ylamino)ethyl)-3-p-tolylthiourea (7b) and 4-(1H-benzo[d]imidazol-2-yl)-N-(3-chlorophenyl)piperazine-1-carboxamide (5d) were higher in MCF-7 with IC50 values of 25.8 and 48.3 µM, respectively, as compared with MDA-MB-231 cells. Furthermore, 7b and 5d were assessed for their apoptotic potential using 4′,6-diamidino-2-phenylindole, acridine orange/ethidium bromide staining, and Caspase-3/7. After incubation with MCF-7, the compounds 7b and 5d induced apoptosis through caspase-3/7 activation. In conclusion, the compounds 7b and 5d are potential candidates for inducing apoptosis in different genotypic BC cell lines.
Collapse
Affiliation(s)
- Lamia A. Siddig
- Department of Chemistry, College of Science, United Arab Emirates University , P.O. Box 15551 , Al Ain , United Arab Emirates
| | - Mohammad A. Khasawneh
- Department of Chemistry, College of Science, United Arab Emirates University , P.O. Box 15551 , Al Ain , United Arab Emirates
| | - Abdelouahid Samadi
- Department of Chemistry, College of Science, United Arab Emirates University , P.O. Box 15551 , Al Ain , United Arab Emirates
| | - Haythem Saadeh
- Department of Chemistry, College of Science, United Arab Emirates University , P.O. Box 15551 , Al Ain , United Arab Emirates
- Department of Chemistry, School of Science, The University of Jordan , Amman 11942 , Jordan
| | - Nael Abutaha
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University , P.O. Box 2455 , Riyadh 11461 , Saudi Arabia
| | - Mohammad Ahmed Wadaan
- Bioproducts Research Chair, Department of Zoology, College of Science, King Saud University , P.O. Box 2455 , Riyadh 11461 , Saudi Arabia
| |
Collapse
|
30
|
Chedupaka R, Papisetti V, Sangolkar AA, Vedula RR. A Facile One-Pot Synthesis of Benzimidazole-Linked Pyrrole Structural Motifs via Multicomponent Approach: Design, Synthesis, and Molecular Docking Studies. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1995010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Raju Chedupaka
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | - Venkatesham Papisetti
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| |
Collapse
|
31
|
Design, Synthesis and Anticancer Profile of New 4-(1 H-benzo[ d]imidazol-1-yl)pyrimidin-2-amine-Linked Sulfonamide Derivatives with V600EBRAF Inhibitory Effect. Int J Mol Sci 2021; 22:ijms221910491. [PMID: 34638829 PMCID: PMC8508980 DOI: 10.3390/ijms221910491] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A new series of 4-(1H-benzo[d]imidazol-1-yl)pyrimidin-2-amine linked sulfonamide derivatives 12a–n was designed and synthesized according to the structure of well-established V600EBRAF inhibitors. The terminal sulfonamide moiety was linked to the pyrimidine ring via either ethylamine or propylamine bridge. The designed series was tested at fixed concentration (1 µM) against V600EBRAF, finding that 12e, 12i and 12l exhibited the strongest inhibitory activity among all target compounds and 12l had the lowest IC50 of 0.49 µM. They were further screened on NCI 60 cancer cell lines to reveal that 12e showed the most significant growth inhibition against multiple cancer cell lines. Therefore, cell cycle analysis of 12e was conducted to investigate the effect on cell cycle progression. Finally, virtual docking studies was performed to gain insights for the plausible binding modes of vemurafenib, 12i, 12e and 12l.
Collapse
|
32
|
Das A, Ashraf MW, Banik BK. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Katikireddy R, Marri S, Kakkerla R, Murali Krishna MPS, Gandamalla D, Reddy YN. Synthesis, Anticancer Activity and Molecular Docking Studies of Hybrid Benzimidazole-1,3,4-Oxadiazol-2- N-Alkyl/Aryl Amines. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1959352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ramamurthy Katikireddy
- Department of Chemistry, JNTUK, Kakinada, Andhra Pradesh, India
- JN Pharmacity, Enantilabs Pvt. Ltd, Visakhapatnam, Andhra Pradesh, India
| | - Srinivas Marri
- Department of Chemistry, JNTUK, Kakinada, Andhra Pradesh, India
- Department of Chemistry, Siddhartha Degree and P.G. College, Narsampet, Telangana State, India
| | - Ramu Kakkerla
- Department of Chemistry, Satavahana University, Karimnagar, Telangana State, India
| | | | - Durgaiah Gandamalla
- Department of Pharmacology and Toxicology, Kakatiya University, Warangal, Telangana State, India
| | - Y. N. Reddy
- Department of Pharmacology and Toxicology, Kakatiya University, Warangal, Telangana State, India
| |
Collapse
|
34
|
Çiftçi G, Temel HE, Yurttaş L. Apoptotic Effect of Novel Benzimidazole Derivatives Bearing Pyridyl/Pyrimidinyl Piperazine Moiety. Anticancer Agents Med Chem 2021; 22:1780-1792. [PMID: 34238172 DOI: 10.2174/1871520621666210708095110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Benzimidazole derivatives bearing pyridyl/pyrimidinyl piperazine moiety has attracted attention in medicinal chemistry and modern drug discovery since it exhibited a variety of biological activities, including anticancer activity. OBJECTIVE In this study, we have designed and synthesized novel 1-[2-oxo-2-(4-substituted phenyl)ethyl]benzimidazol-2-yl)methyl 4-(2-pyridyl/pyrimidin-2-yl)piperazine-1-carbodithioate derivatives (2a-m). We also investigated their anticancer activities against A549 lung adenocarcinoma and C6 rat glioma cell lines and selectivity against NIH/3T3 mouse embryonic fibroblast cell lines. Cholinesterase inhibition effects of these compounds were also measured to investigate the relationship between anticancer activity and cholinesterases. METHOD The cytotoxic activities of these acquired thirteen final compounds were screened using MTT assay on A549, C6, and NIH/3T3 cell lines. Cell proliferation ELISA, BRDU (colorimetric) assay was used for measuring proliferation in replicative cells in which DNA synthesis occurs. Flow cytometric analysis was used for measuring apoptotic cell percentages, caspase 3 activity, and mitochondrial membrane depolarised cell percentages. RESULTS Compounds 2e, 2f, and 2k have been established as the most active antitumor agents with selective cytotoxicities (76.58±6.43, 55.13±5.75, and 32.94±3.02 µM respectively for A549; 86.48±3.60, 97.12±30.21, and 59.29±3.95 µM respectively for C6), high DNA synthesis inhibition rates and high apoptotic cell percentages on both cell lines. CONCLUSION The results have shown that compounds 2e, 2f, and 2k have potential anticancer agents against A549 and C6 cell lines.
Collapse
Affiliation(s)
- Gulsen Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Halide Edip Temel
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| |
Collapse
|
35
|
Fotsing MCD, Njamen D, Tanee Fomum Z, Ndinteh DT. Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cyclic and polycyclic compounds containing moieties such as imidazole, pyrazole, isoxazole, thiazoline, oxazine, indole, benzothiazole and benzoxazole benzimidazole are prized molecules because of the various pharmaceutical properties that they display. This led Prof. Landor and co-workers to engage in the synthesis of several of them such as alkylimidazolenes, oxazolines, thiazolines, pyrimidopyrimidines, pyridylpyrazoles, benzoxazines, quinolines, pyrimidobenzimidazoles and pyrimidobenzothiazolones. This review covers the synthesis of biologically active heterocyclic compounds by the Michael addition and the double Michael addition of various amines and diamines on allenic nitriles, acetylenic nitriles, hydroxyacetylenic nitriles, acetylenic acids and acetylenic aldehydes. The heterocycles were obtained in one step reaction and in most cases, did not give side products. A brief discussion on the biological activities of some heterocycles is also provided.
Collapse
Affiliation(s)
- Marthe Carine Djuidje Fotsing
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Zacharias Tanee Fomum
- Department of Organic Chemistry , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| |
Collapse
|
36
|
Soni JP, Yeole Y, Shankaraiah N. β-Carboline-based molecular hybrids as anticancer agents: a brief sketch. RSC Med Chem 2021; 12:730-750. [PMID: 34124672 PMCID: PMC8152596 DOI: 10.1039/d0md00422g] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/28/2021] [Indexed: 01/19/2023] Open
Abstract
Cancer is a huge burden on the healthcare system and is foremost cause of mortality across the globe. Among various therapeutic strategies, chemotherapy plays an enormous role in overcoming the challenges of treating cancer, especially in late stage detection. However, limitations such as extreme side/adverse effects and drug resistance associated with available drugs have impelled the development of novel chemotherapeutic agents. In this regard, we have reviewed the development of β-carboline-based chemotherapeutic agents reported in last five years. The review mainly emphasizes on the molecular hybrids of β-carbolines with various pharmacophores, their synthetic strategies, and in vitro anticancer evaluation. In addition, the mechanisms of action, in silico studies, structural influence on the potency and selectivity among diverse cancer cell lines have been critically presented. The review updates readers on the diverse molecular hybrids prepared and the governing structural features of high potential molecules that can help in the future development of novel cytotoxic agents.
Collapse
Affiliation(s)
- Jay Prakash Soni
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Yogesh Yeole
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| | - Nagula Shankaraiah
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad 500037 India
| |
Collapse
|
37
|
Linares-Anaya O, Avila-Sorrosa A, Díaz-Cedillo F, Gil-Ruiz LÁ, Correa-Basurto J, Salazar-Mendoza D, Orjuela AL, Alí-Torres J, Ramírez-Apan MT, Morales-Morales D. Synthesis, Characterization, and Preliminary In Vitro Cytotoxic Evaluation of a Series of 2-Substituted Benzo [ d] [1,3] Azoles. Molecules 2021; 26:molecules26092780. [PMID: 34066820 PMCID: PMC8125891 DOI: 10.3390/molecules26092780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
A series of benzo [d] [1,3] azoles 2-substituted with benzyl- and allyl-sulfanyl groups were synthesized, and their cytotoxic activities were in vitro evaluated against a panel of six human cancer cell lines. The results showed that compounds BTA-1 and BMZ-2 have the best inhibitory effects, compound BMZ-2 being comparable in some cases with the reference drug tamoxifen and exhibiting a low cytotoxic effect against healthy cells. In silico molecular coupling studies at the tamoxifen binding site of ERα and GPER receptors revealed affinity and the possible mode of interaction of both compounds BTA-1 and BMZ-2.
Collapse
Affiliation(s)
- Ozvaldo Linares-Anaya
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
| | - Alcives Avila-Sorrosa
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
- Correspondence: ; Tel.: +52-555-729-6000
| | - Francisco Díaz-Cedillo
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
| | - Luis Ángel Gil-Ruiz
- Instituto Politécnico Nacional, Departamento de Química Orgánica, Carpio y Plan de Ayala S/N, Escuela Nacional de Ciencias Biológicas, Colonia Santo Tomás, Ciudad de México 11340, Mexico; (O.L.-A.); (F.D.-C.); (L.Á.G.-R.)
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Instituto Politécnico Nacional, Escuela Superior de Medicina, Ciudad de México 11340, Mexico;
| | - Domingo Salazar-Mendoza
- Carretera a Acatlima, Huajuapan de León, Universidad Tecnológica de la Mixteca, Oaxaca 69000, Mexico;
| | - Adrian L. Orjuela
- Departamento de Química, Universidad Nacional de Colombia-Sede, Bogotá 111321, Colombia; (A.L.O.); (J.A.-T.)
| | - Jorge Alí-Torres
- Departamento de Química, Universidad Nacional de Colombia-Sede, Bogotá 111321, Colombia; (A.L.O.); (J.A.-T.)
| | - María Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| | - David Morales-Morales
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico; (M.T.R.-A.); (D.M.-M.)
| |
Collapse
|
38
|
Farooq S, Haq IU, Ullah N. Synthesis, characterization and biological evaluation of N-Mannich base derivatives of 2-phenyl-2-imidazoline as potential antioxidants, enzyme inhibitors, antimicrobials, cytotoxic and anti-inflammatory agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Alzhrani ZMM, Alam MM, Nazreen S. Recent advancements on Benzimidazole: A versatile scaffold in medicinal chemistry. Mini Rev Med Chem 2021; 22:365-386. [PMID: 33797365 DOI: 10.2174/1389557521666210331163810] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/30/2020] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Benzimidazole is nitrogen containing fused heterocycle which has been extensively explored in medicinal chemistry. Benzimidizole nucleus has been found to possess various biological activities such as anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular and antidiabetic. A number of benzimidazoles such as bendamustine, pantoprazole have been approved for the treatment of various illnesses whereas galeterone and GSK461364 are in clinical trials. The present review article gives an overview about the different biological activities exhibited by the benzimidazole derivatives as well as different methods used for the synthesis of benzimidazole derivatives for the past ten years.
Collapse
Affiliation(s)
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Albaha University, Albaha. Saudi Arabia
| |
Collapse
|
40
|
Zhang B, Liu D, Sun Y, Zhang Y, Feng J, Yu F. Preparation of Thiazole-2-thiones through TBPB-Promoted Oxidative Cascade Cyclization of Enaminones with Elemental Sulfur. Org Lett 2021; 23:3076-3082. [DOI: 10.1021/acs.orglett.1c00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yajing Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiayi Feng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
41
|
Abhijna Krishna R, Dheepika R, Muralisankar M, Nagarajan S. Microwave-assisted synthesis and DNA-binding studies of half-sandwich ruthenium(II) arene complexes containing phenanthroimidazole-triarylamine hybrids. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1885650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | | | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
42
|
Kotan G, Gökce H, Akyıldırım O, Yüksek H, Beytur M, Manap S, Medetalibeyoğlu H. Synthesis, Spectroscopic and Computational Analysis of 2-[(2-Sulfanyl-1H-benzo[d]imidazol-5-yl)iminomethyl]phenyl Naphthalene-2-sulfonate. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020110135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Akhtar MJ, Yar MS, Sharma VK, Khan AA, Ali Z, Haider MDR, Pathak A. Recent Progress of Benzimidazole Hybrids for Anticancer Potential. Curr Med Chem 2021; 27:5970-6014. [PMID: 31393240 DOI: 10.2174/0929867326666190808122929] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/16/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022]
Abstract
This review presents the detailed account of factors leading to cancer and design strategy for the synthesis of benzimidazole derivatives as anticancer agents. The recent survey for cancer treatment in Cancer facts and figures 2017 American Chemical Society has shown progressive development in fighting cancer. Researchers all over the world in both developed and developing countries are in a continuous effort to tackle this serious concern. Benzimidazole and its derivatives showed a broad range of biological activities due to their resemblance with naturally occurring nitrogenous base i.e. purine. The review discussed benzimidazole derivatives showing anticancer properties through a different mechanism viz. intercalation, alkylating agents, topoisomerases, DHFR enzymes, and tubulin inhibitors. Benzimidazole derivatives act through a different mechanism and the substituents reported from the earlier and recent research articles are prerequisites for the synthesis of targeted based benzimidazole derivatives as anticancer agents. The review focuses on an easy comparison of the substituent essential for potency and selectivity through SAR presented in figures. This will further provide a better outlook or fulfills the challenges faced in the development of novel benzimidazole derivatives as anticancer.
Collapse
Affiliation(s)
- Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India,Department of Pharmaceutical Chemistry, Indo Soviet Friendship College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India
| | - Vinod Kumar Sharma
- School of Pharmacy, Bharat Institute of Technology, NH58, Partapur Bypass Meerut-250103, India
| | - Ahsan Ahmed Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India
| | - Zulphikar Ali
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India
| | - M D Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, Hamdard University,
Hamdard Nagar, New Delhi-110062, India
| |
Collapse
|
44
|
Kaur G, Moudgil R, Shamim M, Gupta VK, Banerjee B. Camphor sulfonic acid catalyzed a simple, facile, and general method for the synthesis of 2-arylbenzothiazoles, 2-arylbenzimidazoles, and 3H-spiro[benzo[d]thiazole-2,3′-indolin]-2′-ones at room temperature. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2020.1870043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Gurpreet Kaur
- Department of Chemistry, Indus International University, Una, India
| | - Radha Moudgil
- Department of Chemistry, Indus International University, Una, India
| | - Mussarat Shamim
- Department of Chemistry, Indus International University, Una, India
| | - Vivek Kumar Gupta
- Post-Graduate Department of Physics, University of Jammu, Tawi, India
| | - Bubun Banerjee
- Department of Chemistry, Indus International University, Una, India
| |
Collapse
|
45
|
Yao Y, Ren C, Chen L, Zhong L, Xu T, Tan C. Synthesis and Insecticidal Activity of 3-Ethyl Sulfone Pyridine Substituted Aryl Triazole Compounds. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
46
|
Noha RM, Abdelhameid MK, Ismail MM, Mohammed MR, Salwa E. Design, synthesis and screening of benzimidazole containing compounds with methoxylated aryl radicals as cytotoxic molecules on (HCT-116) colon cancer cells. Eur J Med Chem 2020; 209:112870. [PMID: 33158579 DOI: 10.1016/j.ejmech.2020.112870] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
A novel series of benzimidazole derivatives with methoxylated aryl groups was designed and synthesized as molecules with potential cytotoxic activity. In vitro cytotoxic activity over HCT-116 cells showed that N-(benzimidazothiazolone)acetamides 11a, 11b and 11c were found to be the most cytotoxic compounds compared camptothecin (CPT). The tested compounds had a dual topoisomerase I-β (Topo I-β) and tubulin inhibiting activities when compared to CPT and Podophyllotoxin (Podo) where, compounds l0a, l0b, 11a and 11b exhibited a potent inhibitory activity on Topo I-β enzyme in nano-molar concentration, on the other hand, compounds 12b and 13b exhibited the best inhibitory activity β-tubulin polymerization. Results of the cell cycle analysis as well as the results of annexin-V on HCT-116 cells showed that benzimidazothiazoles 12b and 13b had a pro-apoptotic activity higher than CPT by 1.33- and 1.30-folds, respectively. Moreover, the concentration of p53, Bax/Bcl-2 ratio and caspase 3/7 increased in compounds l0b, 11b, l2b, 13b, especially, compounds 11b and 13b exhibited an increased level of these mediators than CPT. Finally, compound 11b regulated the radiosensitizing activity of the HCT-116 cells by modulating the chromosomal instability.
Collapse
Affiliation(s)
- Ryad M Noha
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, P.O. Box 77, Egypt
| | - Mohammed K Abdelhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11561, Egypt.
| | - M Mohsen Ismail
- Pharmaceutical Organic Chemistry Department, College of Pharmaceutical Science and Drug Manufacturing, Misr University for Science & Technology, Giza, P.O. Box 77, Egypt; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11561, Egypt
| | - Manal R Mohammed
- Department of Radiation Biology, National Center for Radiation Research and Technology, Cairo, 11787, Egypt
| | - Elmeligie Salwa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11561, Egypt
| |
Collapse
|
47
|
Ozkan SC, Aksakal F, Yilmaz A. Synthesis of novel calix[4]arene p-benzazole derivatives and investigation of their DNA binding and cleavage activities with molecular docking and experimental studies. RSC Adv 2020; 10:38695-38708. [PMID: 35517565 PMCID: PMC9057276 DOI: 10.1039/d0ra07486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 09/14/2020] [Indexed: 12/05/2022] Open
Abstract
In this study, novel p-benzimidazole-derived calix[4]arene compounds with different structures, and a benzothiazole-derived calix[4]arene compound, were synthesized by a microwave-assisted method and their structures were determined by FTIR, 1H NMR, 13C NMR, MALDI-TOF mass spectroscopy, and elemental analysis. The effects of functional calixarenes against bacterial (pBR322 plasmid DNA) and eukaryotic DNA (calf thymus DNA = CT-DNA) were investigated. The studies with plasmid DNA have shown that compounds 6 and 10 containing methyl and benzyl groups, respectively, have DNA cleavage activity at the highest concentrations (10 000 μM). Interactions with plasmid DNA using some restriction enzymes (BamHI and HindIII) were also investigated. The binding ability of p-substituted calix[4]arene compounds towards CT-DNA was examined using UV-vis and fluorescence spectroscopy and it was determined that some compounds showed efficiency. In particular, it was observed that the functional compounds (10 and 5) containing benzyl and chloro-groups had higher activity (K b binding constants were found to be 7.1 × 103 M-1 and 9.3 × 102 M-1 respectively) on DNA than other compounds. Competitive binding experiments using ethidium bromide also gave an idea about the binding properties. Docking studies of the synthesized compounds with DNA were performed to predict the binding modes, affinities and noncovalent interactions stabilizing the DNA-compound complexes at the molecular level. Docking results were in good agreement with the experimental findings on the DNA binding activities of compounds. Based on these results, this preliminary study could shed light on future experimental antibacterial and/or anticancer research.
Collapse
Affiliation(s)
- Seyda Cigdem Ozkan
- Department of Chemical and Chemical Processing Technologies, Acigol Vocational School of Technical Sciences, Nevsehir Haci Bektas Veli University Nevsehir Turkey +90 332 2412499 +90 332 2233866
- Department of Chemistry, Faculty of Science, Selcuk University 42075 Konya Turkey
| | - Fatma Aksakal
- Department of Chemistry, Faculty of Science, Hacettepe University Ankara Turkey
| | - Aydan Yilmaz
- Department of Chemistry, Faculty of Science, Selcuk University 42075 Konya Turkey
| |
Collapse
|
48
|
Importance of Fluorine in Benzazole Compounds. Molecules 2020; 25:molecules25204677. [PMID: 33066333 PMCID: PMC7587361 DOI: 10.3390/molecules25204677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/31/2022] Open
Abstract
Fluorine-containing heterocycles continue to receive considerable attention due to their unique properties. In medicinal chemistry, the incorporation of fluorine in small molecules imparts a significant enhancement their biological activities compared to non-fluorinated molecules. In this short review, we will highlight the importance of incorporating fluorine as a basic appendage in benzothiazole and benzimidazole skeletons. The chemistry and pharmacological activities of heterocycles containing fluorine during the past years are compiled and discussed.
Collapse
|
49
|
Yurttaş L, Çiftçi GA, Aksoy MO, Demirayak Ş. Novel Benzimidazole Derivatives: Cytotoxic and Apoptotic Properties on Lung Cancer Cell Line. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200513091613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background:
Benzimidazole derivatives are privileged molecules known to have a wide
variety of biological activities. In medicinal chemistry, due to the ring’s structural similarity to nucleotides,
its derivatives were investigated as new chemotherapeutic agents. Our research group
have been studying 1,2-disubstituted benzimidazoles, including thiocarbamoyl group and their potential
anticancer activity. Based on previous findings, we synthesized novel 1-[2-(4-substituted
phenyl-2-oxoethyl)]-2-[(2/3/4-substituted phenylpiperidin-1-yl)thiocarbamoyl]benzimidazole derivatives
(3a-o).
Methods:
The obtained fifteen derivatives were studied on A549 adenocarcinomic human alveolar
basal epithelial cell line and mouse L929 fibroblastic cell line to determine their cytotoxic activity.
These compounds were also investigated to identify their apoptotic properties.
Results and Discussion:
The structures of the compounds based on three different groups differ
from each other with the phenyl substituents bonded to the piperazine ring. All of the compounds
showed remarkable antitumor activity, but the first five compounds bearing non-substituted phenyl
moiety exhibited selective cytotoxicity when compared in terms of potencies to the normal cell line.
Conclusion:
Compounds 3j, 3m and 3n were identified as the most apoptotic derivatives; however,
compounds 3e and 3h provoked apoptosis with the percentages of 10.6 and 10.9% and selective cytotoxicity.
Collapse
Affiliation(s)
- Leyla Yurttaş
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Gülşen Akalin Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Mehmet Onur Aksoy
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Şeref Demirayak
- Department of Pharmaceutical Chemistry, School of Pharmacy, Medipol University, Istanbul, Turkey
| |
Collapse
|
50
|
An Q, He C, Fan X, Hou C, Zhao J, Liu Y, Liu H, Ma J, Sun Z, Chu W. Synthesis of Benzazoles through Electrochemical Oxidative Cyclization Reactions. ChemElectroChem 2020. [DOI: 10.1002/celc.202000931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Qi An
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chaoyin He
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Xiaodong Fan
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Chuanfu Hou
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Jian Zhao
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Yue Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Hao Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Junjie Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Zhizhong Sun
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| | - Wenyi Chu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion College of Heilongjiang Province Harbin 150080 P. R. China
| |
Collapse
|