1
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A, Bakr RB. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim) 2024; 357:e2400057. [PMID: 38775630 DOI: 10.1002/ardp.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/06/2024]
Abstract
Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
2
|
Sundar S, Veerappan T, Pennamuthiriyan A, Rengan R. Arene Ruthenium(II)-Catalyzed Sustainable Synthesis of 2,4-Disubstituted Quinazolines via Acceptorless Dual Dehydrogenative Coupling of Alcohols. J Org Chem 2023. [PMID: 38029325 DOI: 10.1021/acs.joc.3c01808] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We demonstrate an efficient and sustainable strategy for the direct synthesis of 2,4-disubstituted quinazolines by arene Ru(II)benzhydrazone complex via the eco-friendly sequential acceptorless dehydrogenative coupling of 2-aminobenzhydrol derivatives and benzyl alcohols for the first time. The new ruthenium(II) complex of the general formula [(η6-p-cymene)Ru(L1)Cl] (L1-acenaphthenequinone hydrazone) has been synthesized and characterized by analytical, spectroscopic, and single-crystal X-ray diffraction techniques. A broad spectrum of 2,4-disubstituted quinazolines have been successfully derived (25 examples) from 2-aminobenzhydrol derivatives with various benzyl alcohols using 1 mol % of catalyst loading in the presence of NH4OAc. The present protocol is highly selective and produces a maximum yield of 95% under mild reaction conditions. The different reaction intermediates detected through control experiments such as aldehyde, 2-aminobenzophenone, benzylidene(amino)phenylmethanone, and 1,2-dihydroquinazoline are isolated and authenticated by the NMR study. Gratifyingly, the coupling reaction is a simple and atom economic with the release of water and hydrogen gas as the only byproducts. A gram-scale synthesis of 2-(4-methoxyphenyl)-4-phenylquinazoline illustrates the synthetic utility of the present protocol.
Collapse
Affiliation(s)
- Saranya Sundar
- PG and Research Department of Chemistry, Seethalakshmi Ramaswami College, Affiliated to Bharathidasan University, Tiruchirappalli 620002, Tamilnadu, India
| | - Tamilthendral Veerappan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Anandaraj Pennamuthiriyan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| |
Collapse
|
3
|
Moradi M, Mousavi A, Emamgholipour Z, Giovannini J, Moghimi S, Peytam F, Honarmand A, Bach S, Foroumadi A. Quinazoline-based VEGFR-2 inhibitors as potential anti-angiogenic agents: A contemporary perspective of SAR and molecular docking studies. Eur J Med Chem 2023; 259:115626. [PMID: 37453330 DOI: 10.1016/j.ejmech.2023.115626] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/14/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Angiogenesis, the formation of new blood vessels from the existing vasculature, is pivotal in the migration, growth, and differentiation of endothelial cells in normal physiological conditions. In various types of tumour microenvironments, dysregulated angiogenesis plays a crucial role in supplying oxygen and nutrients to cancerous cells, leading to tumour size growth. VEGFR-2 tyrosine kinase has been extensively studied as a critical regulator of angiogenesis; thus, inhibition of VEGFR-2 has been widely used for cancer treatments in recent years. Quinazoline nucleus is a privileged and versatile scaffold with a broad range of pharmacological activity, especially in the field of tyrosine kinase inhibitors with more than twenty small molecule inhibitors approved by the US Food and Drug Administration in the last two decades. As of now, the U.S. FDA has approved eleven small chemical inhibitors of VEGFR-2 for various types of malignancies, with a prime example being vandetanib, a quinazoline derivative, which is a multi targeted kinase inhibitor used for the treatment of late-stage medullary thyroid cancer. Despite of prosperous discovery and development of VEGFR-2 down regulator drugs, there still exists limitations in clinical efficacy, adverse effects, a high rate of clinical discontinuation and drug resistance. Therefore, there is an urgent need for the design and synthesis of more selective and effective inhibitors to tackle these challenges. Through the gathering of this review, we have strived to broaden the extent of our view over the entire scope of quinazoline-based VEGFR-2 inhibitors. Herein, we give an overview of the importance and advancement status of reported structures, highlighting the SAR, biological evaluations and their binding modes.
Collapse
Affiliation(s)
- Mahfam Moradi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mousavi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Emamgholipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Johanna Giovannini
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Fariba Peytam
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Honarmand
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, 29680, Roscoff, France; Sorbonne Université, CNRS, FR2424, Plateforme de criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, 29680, Roscoff, France; Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Xie J, Yang MR, Hu X, Hong ZS, Bai YY, Sheng J, Tian Y, Shi CY. Moringa oleifera Lam. Isothiocyanate Quinazolinone Derivatives Inhibit U251 Glioma Cell Proliferation through Cell Cycle Regulation and Apoptosis Induction. Int J Mol Sci 2023; 24:11376. [PMID: 37511135 PMCID: PMC10379366 DOI: 10.3390/ijms241411376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
A major active constituent of Moringa oleifera Lam. is 4-[(α-L-rhamnose oxy) benzyl] isothiocyanate (MITC). To broaden MITC's application and improve its biological activity, we synthesized a series of MITC quinazolinone derivatives and evaluated their anticancer activity. The anticancer effects and mechanisms of the compound with the most potent anticancer activity were investigated further. Among 16 MITC quinazolinone derivatives which were analyzed, MITC-12 significantly inhibited the growth of U251, A375, A431, HCT-116, HeLa, and MDA-MB-231 cells. MITC-12 significantly inhibited U251 cell proliferation in a time- and dose-dependent manner and decreased the number of EdU-positive cells, but was not toxic to normal human gastric mucosal cells (GES-1). Further, MITC-12 induced apoptosis of U251 cells, and increased caspase-3 expression levels and the Bax:Bcl-2 ratio. In addition, MITC-12 significantly decreased the proportion of U251 cells in the G1 phase and increased it in S and G2 phases. Transcriptome sequencing showed that MITC-12 had a significant regulatory effect on pathways regulating the cell cycle. Further, MITC-12 significantly decreased the expression levels of the cell cycle-related proteins CDK2, cyclinD1, and cyclinE, and increased those of cyclinA2, as well as the p-JNK:JNK ratio. These results indicate that MITC-12 inhibits U251 cell proliferation by inducing apoptosis and cell cycle arrest, activating JNK, and regulating cell cycle-associated proteins. MITC-12 has potential for use in the prevention and treatment of glioma.
Collapse
Affiliation(s)
- Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Ming-Rong Yang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Rural Science and Technology Service Center, Kunming 650021, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Zi-Shan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yu-Ying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chong-Ying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
5
|
Raza AR, Rubab SL, Ashfaq M, Altaf Y, Tahir MN, Rehman MFU, Aziz T, Alharbi M, Alasmari AF. Evaluation of Antimicrobial, Anticholinesterase Potential of Indole Derivatives and Unexpectedly Synthesized Novel Benzodiazine: Characterization, DFT and Hirshfeld Charge Analysis. Molecules 2023; 28:5024. [PMID: 37446687 DOI: 10.3390/molecules28135024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/07/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
The pharmacological effectiveness of indoles, benzoxazepines and benzodiazepines initiated our synthesis of indole fused benoxazepine/benzodiazepine heterocycles, along with enhanced biological usefulness of the fused rings. Activated indoles 5, 6 and 7 were synthesized using modified Bischler indole synthesis rearrangement. Indole 5 was substituted with the trichloroacetyl group at the C7 position, yielding 8, exclusively due to the increased nucleophilic character of C7. When trichloroacylated indole 8 was treated with basified ethanol or excess amminia, indole acid 9 and amide 10 were yielded, respectively. Indole amide 10 was expected to give indole fused benoxazepine/benzodiazepine 11a/11b on treatment with alpha halo ester followed by a coupling agent, but when the reaction was tried, an unexpectedly rearranged novel product, 1,3-bezodiazine 12, was obtained. The synthetic compounds were screened for anticholinesterase and antibacterial potential; results showed all products to be very important candidates for both activities, and their potential can be explored further. In addition, 1,3-bezodiazine 12 was explored by DFT studies, Hirshfeld surface charge analysis and structural insight to obrain a good picture of the structure and reactivity of the products for the design of derivatised drugs from the novel compound.
Collapse
Affiliation(s)
- Abdul Rauf Raza
- Institute of Chemistry, Ibn e Sina Block, University of Sargodha, Sargodha 40100, Pakistan
| | - Syeda Laila Rubab
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Muhammad Ashfaq
- Department of Physics, University of Sargodha, Sargodha 40100, Pakistan
| | - Yasir Altaf
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140, New Zealand
| | | | | | - Tariq Aziz
- Department of Agriculture, University of Ioannina, 471 32 Arta, Greece
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Li PJ, Yan Y, Wu N, Yang YH, An L, Tian GM, Bao XP. Design, synthesis, crystal structure, and antimicrobial activities of new quinazoline derivatives containing both the sulfonate ester and piperidinylamide moieties. PEST MANAGEMENT SCIENCE 2023. [PMID: 36924250 DOI: 10.1002/ps.7459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/06/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To discover more efficient antimicrobial agents in agriculture, a series of new quinazoline derivatives bearing both sulfonate ester and piperidine-4-carboxamide moieties were synthesized and assessed for their antimicrobial effects. RESULTS All of the target compounds were fully characterized by proton (1 H) nuclear magnetic resonance (NMR), carbon-13 (13 C) NMR, and high-resolution mass spectroscopy (HRMS), and compound III-6 containing a 3-bromophenyl substituent was clearly confirmed via single-crystal X-ray diffraction analysis. The bioassay results indicated that some compounds displayed noticeable inhibitory effects in vitro against Xanthomonas oryzae pv. oryzicola (Xoc). Further measurements of median effective concentration (EC50 ) values showed that compound III-17 bearing a 4-methoxyphenyl group had the best anti-Xoc efficacy (EC50 = 12.4 μg mL-1 ), far better than the commercialized bismerthiazol (77.5 μg mL-1 ). Moreover, this compound also demonstrated good protection and curative activities in vivo against rice bacterial leaf streak caused by Xoc. CONCLUSION Compound III-17 had a good potential for further development as a new bactericide for controlling Xoc. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pei-Jia Li
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, People's Republic of China
| | - Ya Yan
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Nan Wu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Ye-Hui Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Lian An
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Guang-Min Tian
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| | - Xiao-Ping Bao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, People's Republic of China
| |
Collapse
|
7
|
Yang J, Wang M, Xu Y, Liao J, Li X, Zhou Y, Dai J, Li X, Chen P, Chen G, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Wang Y, Liang G, Tang Q. Discovery of 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives as novel anti-inflammatory agents for the treatment of acute lung injury and sepsis. Eur J Med Chem 2023; 249:115144. [PMID: 36708679 DOI: 10.1016/j.ejmech.2023.115144] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yulan Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
8
|
Mahesha CK, Borade SA, Tank D, Bajaj K, Bhambri H, Mandal SK, Sakhuja R. Tandem Transformation of Indazolones to Quinazolinones through Pd-Catalyzed Carbene Insertion into an N-N Bond. J Org Chem 2023; 88:1457-1468. [PMID: 36631396 DOI: 10.1021/acs.joc.2c02437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Serendipitous and expedite transformation of 1-aryl- and 2-aryl-1,2-dihydro-3H-indazol-3-ones to 1,2-di(hetero)aryl- and 2,3-di(hetero)aryl-2,3-dihydroquinazolin-4(1H)-ones, respectively, was achieved in high efficiency by reacting them with aldehydic N-tosylhydrazones. The protocol proceeded through a cascade process involving base-mediated Pd-carbenoid generation by the decomposition of N-tosylhydrazones, nucleophilic attack of indazolone on the Pd-carbenoid complex, and intramolecular ring expansion via N-N bond cleavage. The utility of the strategy is demonstrated toward the synthesis of bioactive NPS 53574, a calcium receptor antagonist.
Collapse
Affiliation(s)
- Chikkagundagal K Mahesha
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Somnath Arjun Borade
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Disha Tank
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| | - Kiran Bajaj
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida 201301, Uttar Pradesh, India
| | - Himanshi Bhambri
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali 140306, Punjab, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Sector 81, SAS Nagar, Manuali P.O., Mohali 140306, Punjab, India
| | - Rajeev Sakhuja
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani 333031, Rajasthan, India
| |
Collapse
|
9
|
Głowacka IE, Gawron K, Piotrowska DG, Graus M, Andrei G, Schols D, Snoeck R, Camps A, Vanhulle E, Vermeire K. Design and synthesis of a new series of hybrids of functionalised N 1-[(1H-1,2,3-triazol-4-yl)methyl]quinazoline-2,4-dione with antiviral activity against Respiratory Syncytial Virus. Antiviral Res 2023; 209:105518. [PMID: 36587900 DOI: 10.1016/j.antiviral.2022.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022]
Abstract
In this study, a series of 48 hybrids of the functionalised 1-[(1H-1,2,3-triazole-4-yl)methyl]quinazoline-2,4-dione 17-22 were synthesised and evaluated for potential antiviral activity. The new hybrids were designed to contain a diethoxyphosphoryl group connected to the triazole moiety via ethylene or propylene linker, and in which the benzyl or benzoyl function is substituted at N3 in the quinazoline-2,4-dione moiety. The Cu(I)-catalyzed Hüisgen dipolar cycloaddition of azidophosphonates 23 and 24 with the respective N1-propargylquinazoline-2,4-diones 26aa-26ag, 26ba-26bg, 27aa-27ad and 27ba-27bd was applied for the syntheses of the designed compounds. All final hybrids 17-22 and N3-functionalised N1-propargylquinazoline-2,4-diones 26 and 27 were subsequently evaluated for their antiviral activity toward a broad range of DNA and RNA viruses. Importantly, hybrids 19be-19bg and 20be-20bg showed profound antiviral activities against Respiratory Syncytial Virus (RSV) with EC50 values in the lower micromolar range, with activity against viral strains of both subtypes (RSV A and B). In addition, several compounds also exerted some weak antiviral activity against varicella zoster virus. Finally, 19 ag was the only compound that showed antiviral potency against human cytomegalovirus, although with rather weak inhibitory activity. Notably, none of the tested compounds was cytotoxic toward uninfected cell lines used for the antiviral assays at a concentration up to 100 μM, returning interesting therapeutic indices for respiratory syncytial virus.
Collapse
Affiliation(s)
- Iwona E Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151, Lodz, Muszyńskiego 1, Poland.
| | - Katarzyna Gawron
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151, Lodz, Muszyńskiego 1, Poland
| | - Dorota G Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, 90-151, Lodz, Muszyńskiego 1, Poland
| | - Mirthe Graus
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Graciela Andrei
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Dominique Schols
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Robert Snoeck
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Anita Camps
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Emiel Vanhulle
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| | - Kurt Vermeire
- KU Leuven Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Virology and Chemotherapy, Herestraat 49, Box 1030, B-3000, Leuven, Belgium
| |
Collapse
|
10
|
Elgogary SR, El‑Telbani EM, Khidre RE. Synthesis, Molecular Docking, and Antitumor Evaluation of Some New Pyrazole, Pyridine, and Thiazole Derivatives Incorporating Sulfonamide Residue. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2140170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sameh R. Elgogary
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Damietta University, New Damietta, Egypt
| | - Emad M. El‑Telbani
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Rizk E. Khidre
- Chemical Industries Division, National Research Centre, Dokki, Egypt
| |
Collapse
|
11
|
Spasov A, Ozerov A, Kosolapov V, Gurova N, Kucheryavenko A, Naumenko L, Babkov D, Sirotenko V, Taran A, Borisov A, Sokolova E, Klochkov V, Merezhkina D, Miroshnikov M, Ovsyankina N, Smirnov A, Velikorodnaya Y. Guanidine Derivatives of Quinazoline-2,4(1H,3H)-Dione as NHE-1 Inhibitors and Anti-Inflammatory Agents. Life (Basel) 2022; 12:life12101647. [PMID: 36295082 PMCID: PMC9605072 DOI: 10.3390/life12101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/20/2022] Open
Abstract
Quinazolines are a rich source of bioactive compounds. Previously, we showed NHE-1 inhibitory, anti-inflammatory, antiplatelet, intraocular pressure lowering, and antiglycating activity for a series of quinazoline-2,4(1H,3H)-diones and quinazoline-4(3H)-one guanidine derivatives. In the present work, novel N1,N3-bis-substituted quinazoline-2,4(1H,3H)-dione derivatives bearing two guanidine moieties were synthesized and pharmacologically profiled. The most potent NHE-1 inhibitor 3a also possesses antiplatelet and intraocular-pressure-reducing activity. Compound 4a inhibits NO synthesis and IL-6 secretion in murine macrophages without immunotoxicity and alleviates neutrophil infiltration, edema, and tissue lesions in a model of LPS-induced acute lung injury. Hence, we considered quinazoline derivative 4a as a potential agent for suppression of cytokine-mediated inflammatory response and acute lung injury.
Collapse
Affiliation(s)
- Alexander Spasov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Alexander Ozerov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Vadim Kosolapov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Natalia Gurova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Aida Kucheryavenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Ludmila Naumenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Denis Babkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
- Correspondence: ; Tel.: +7-9889608025
| | - Viktor Sirotenko
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alena Taran
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alexander Borisov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Elena Sokolova
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Vladlen Klochkov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
- Scientific Center for Innovative Drugs, Volgograd State Medical University, 400087 Volgograd, Russia
| | - Darya Merezhkina
- Department of Pharmaceutical & Toxicological Chemistry, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Mikhail Miroshnikov
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Nadezhda Ovsyankina
- Department of Pharmacology & Bioinformatics, Volgograd State Medical University, 400001 Volgograd, Russia
| | - Alexey Smirnov
- Department of Pathological Anatomy, Volgograd State Medical University, 400131 Volgograd, Russia
| | - Yulia Velikorodnaya
- Department of Pathological Anatomy, Volgograd State Medical University, 400131 Volgograd, Russia
| |
Collapse
|
12
|
Kumar R, Kumar V, Kamal R, Kumar A, Kaur S, Bansal A, Chetti P. 2,4‐Bis(2‐(
E
)‐arylidenehydrazinyl)quinazolines: Expeditious Synthesis, Characterization, Antiproliferative Effects against Breast Cancer Cell Line and Molecular Docking Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ravinder Kumar
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
- Current Address: Department of Chemistry M. M. Engineering College Maharishi Markandeshwar (Deemed to be University) Mullana Ambala 133207 Haryana INDIA
| | - Vipan Kumar
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
- Current Address: Department of Chemistry & MAP Section Department of Genetics and Plant Breeding CCS Haryana Agriculture University Hisar 125004 Haryana INDIA
| | - Raj Kamal
- Department of Chemistry Kurukshetra University Kurukshetra, Kurukshetra 136119 Haryana INDIA
| | - Ajay Kumar
- Department of Botanical & Environmental Sciences Guru Nanak Dev University Amritsar 143005 Punjab INDIA
| | - Satwinderjeet Kaur
- Department of Botanical & Environmental Sciences Guru Nanak Dev University Amritsar 143005 Punjab INDIA
| | - Arubhi Bansal
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra 136119 Haryana INDIA
| | - Prabhakar Chetti
- Department of Chemistry National Institute of Technology (NIT) Kurukshetra 136119 Haryana INDIA
| |
Collapse
|
13
|
Characterization, biological evaluation and molecular docking of a synthesised quinazolinone-based derivative. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Ding M, Wu N, Lin Q, Yan Y, Yang Y, Tian G, An L, Bao X. Discovery of Novel Quinazoline-2-Aminothiazole Hybrids Containing a 4-Piperidinylamide Linker as Potential Fungicides against the Phytopathogenic Fungus Rhizoctonia solani. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10100-10110. [PMID: 35960511 DOI: 10.1021/acs.jafc.1c07706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A total of 29 novel quinazoline-2-aminothiazole hybrids containing a 4-piperidinylamide linker were designed, synthesized, and evaluated for their anti-microbial properties against phytopathogenic fungi and bacteria of agricultural importance. The anti-fungal assays indicated that some of the target compounds exhibited excellent inhibitory effects in vitro against Rhizoctonia solani. For example, 11 compounds within this series (including 4a, 4g, 4h, 4j, 4o, 4s, 4t, 4u, 4v, 4y, and 4b') were found to possess EC50 values (effective concentration for 50% activity) ranging from 0.42 to 2.05 μg/mL against this pathogen. In particular, compound 4y with a 2-chloro-6-fluorophenyl substituent displayed a potent anti-R. solani efficacy with EC50 = 0.42 μg/mL, nearly threefold more effective than the commercialized fungicide Chlorothalonil (EC50 = 1.20 μg/mL) and also slightly superior to the other fungicide Carbendazim (EC50 = 0.53 μg/mL). Moreover, compound 4y could efficiently inhibit the growth of R. solani in vivo on the potted rice plants, displaying an impressive protection efficacy of 82.3% at 200 μg/mL, better than those of the fungicides Carbendazim (69.8%) and Chlorothalonil (48.9%). Finally, the mechanistic studies showed that compound 4y exerted its anti-fungal effects by altering the mycelial morphology, increasing the cell membrane permeability, and destroying the cell membrane integrity. On the other hand, some compounds demonstrated good anti-bacterial effects in vitro against Xanthomonas oryzae pv. oryzae (Xoo). Overall, the presented results implied that 4-piperidinylamide-bridged quinazoline-2-aminothiazole hybrids held the promise of acting as lead compounds for developing more efficient fungicides to control R. solani.
Collapse
Affiliation(s)
- Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Qiao Lin
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Centre for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
15
|
Wang J, Yan PP, Wang HY, Zuo SJ, Zhang SQ, Cao YX, Cao L. Novel compound ZCJ14, a gefitinib analog, exhibited prominent anti-cancer effect among several cancer cell lines. Life Sci 2022; 307:120875. [PMID: 35963298 DOI: 10.1016/j.lfs.2022.120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 10/15/2022]
Abstract
AIM ZCJ14, a gefitinib analog, exhibited prominent anti-cancer effect both in vitro and in vivo. The present study aims to investigate the inhibitory effects of ZCJ14 on human cancer cells, and explored its possible mechanism of action. MAIN METHODS The inhibitory effect of ZCJ14 on human-derived tumor cells in vitro was mainly measured by MTT and colony formation assays. The nude mouse xenograft models were established to figure out the inhibitory effect of ZCJ14 on solid tumors in vivo. Western blotting assays were used to detect the phosphorylation level of EGFR down-streaming proteins and the proteomic technique was used to study the proteome alterations of cancer cells triggered by ZCJ14. KEY FINDINGS ZCJ14 inhibited the proliferation of A549 (lung cancer), HCT116 (colorectal cancer) and MCF-7 (breast cancer) cells in vitro with 48 h IC50 values of 0.83, 0.85 and 0.92 μM, respectively. It suppressed the growth of A549, NCI-H1975, NCI-H1299 and MCF-7, HCT116 tumors in mouse xenograft models, and had almost no toxicity. At the same dose, the inhibitory effect of ZCJ14 on solid tumors was better than the corresponding positive drugs. ZCJ14 does not exert anti-tumor effects through inhibition of EGFR pathway, but by enhancing steroid biosynthesis and inhibiting ubiquitin-mediated proteolysis. SIGNIFICANCE Based on the excellent anti-tumor effect of ZCJ14 on human tumor cell lines, it can be used as an effective anti-tumor drug candidate. In addition, the results of proteomic study in this paper can provide clues for further study of the anti-tumor mechanism of ZCJ14.
Collapse
Affiliation(s)
- Jin Wang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310014, China; Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China.
| | - Ping-Ping Yan
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hong-Ying Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Sai-Jie Zuo
- Department of Pharmaceutical Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China; School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - San-Qi Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Yong-Xiao Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Lei Cao
- Precision Medical Institute, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
16
|
Sadeghi Meresht A, Ezzatzadeh E, Dehbandi B, Salimifard M, Rostamian R. Fe 3O 4/CuO Nanocomposite Promoted Green Synthesis of Functionalized Quinazolines Using Water Extract of Lettuce Leaves as Green Media: Study of Antioxidant Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1913426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Abdollah Sadeghi Meresht
- Active Pharmaceutical Ingeredients Research Center (APIRC), Tehran Medicinal Science Branch, Islamic Azad University, Tehran, Iran
| | - Elham Ezzatzadeh
- Department of Chemistry, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| | - Behnam Dehbandi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Masoomeh Salimifard
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Rezvaneh Rostamian
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| |
Collapse
|
17
|
Dasaradhan C, Nawaz Khan FR. Synthesis of 2, 4-Disubstituted Quinazolines via One-Pot Three-Component Assembly. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1876112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Changalaraya Dasaradhan
- Organic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore, India
| | - Fazlur-Rahman Nawaz Khan
- Organic and Medicinal Chemistry Research Laboratory, Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore, India
| |
Collapse
|
18
|
Sheikholeslami-Farahani F, Sadeghi Marasht A, Mirabi A, Ghazvini M, Hosseinnasab Rostam M. Ionic Liquid as Green and Recyclable Solvent for the Synthesis of Pyrazinoquinazolines: Study of Antioxidant Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2020.1871039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Abdollah Sadeghi Marasht
- Active Pharmaceutical Ingeredients Research Center (APIRC), Tehran Medicinal Science Branch, Islamic Azad University, Tehran, Iran
| | - Ali Mirabi
- Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Maryam Ghazvini
- Department of Chemistry, Payame Noor University, Tehran, Iran
| | | |
Collapse
|
19
|
Wan S, Wu N, Yan Y, Yang Y, Tian G, An L, Bao X. Design, synthesis, crystal structure, and in vitro antibacterial activities of sulfonamide derivatives bearing the 4-aminoquinazoline moiety. Mol Divers 2022:10.1007/s11030-022-10484-8. [PMID: 35779170 DOI: 10.1007/s11030-022-10484-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
A total of 66 sulfonamide derivatives bearing the 4-aminoquinazoline moiety were designed and synthesized, and their structures were fully characterized by 1H NMR, 13C NMR, and HRMS techniques. Among them, the structures of compounds 5A10 and 5B11 were further confirmed through X-ray single-crystal diffraction analyses. The bioassay results indicated that some of the target compounds displayed higher inhibition activities in vitro against the tested phytopathogenic bacteria. For example, compound 5A26 exhibited a strong anti-Xanthomonas oryzae pv. oryzicola (Xoc) efficacy with an EC50 (half-maximal effective concentration) value of 30.6 μg/mL, over twofold more active than control agent bismerthiazol (BMT). Additionally, compound 5B14 had a good antibacterial effect against the phytopathogen Xanthomonas axonopodis pv. citric (Xac) with EC50 = 34.5 μg/mL, significantly better than control agent BMT (71.5 μg/mL). The anti-Xoc mechanistic studies showed that compound 5A26 exerted its antibacterial efficacy by increasing the permeability of bacterial membrane, decreasing the content of extracellular polysaccharides, and triggering morphological changes of bacterial cells.
Collapse
Affiliation(s)
- Suran Wan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People's Republic of China.,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Nan Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Ya Yan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yehui Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Guangmin Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Lian An
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
20
|
Sarkar R, Gajurel S, Gupta A, Kumar Pal A. Synergistic Catalysis by Copper Oxide/Graphene Oxide Nanocomposites: A Facile Approach to Prepare Quinazolines and Quinazoline Containing Triazole/Tetrazole Moieties under Mild Reaction Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
21
|
Hajimiri M, Khosravikia M, Khoshneviszadeh M, Pedrood K, Hosseini SZ, Asgari MS, Pirhadi S, Attarroshan M, Mobaraki K, Hosseini S, Behnammanesh H, Biglar M, Karimian S, Rastegar H, Hamedifar H, Larijani B, Mahdavi M, Iraji A. Rational Design, Synthesis, in Vitro, and in Silico Studies of Chlorophenylquinazolin-4(3H)-One Containing Different Aryl Acetohydrazides as Tyrosinase Inhibitors. Chem Biodivers 2022; 19:e202100964. [PMID: 35675562 DOI: 10.1002/cbdv.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/07/2022]
Abstract
Tyrosinase plays a pivotal role in the hyperpigmentation and enzymatic browning of fruit and vegetable. Therefore, tyrosinase inhibitors can be of interest in industries as depigmentation compounds as well as anti-browning agents. In the present study, a series of chlorophenylquinazolin-4(3H)-one derivative were rationally designed and synthesized. The formation of target compounds was confirmed by spectral characterization techniques such as IR, 1 H-NMR, 13 C-NMR, and elemental analysis. Among the synthesized derivatives, compound 8l was proved to be the most potent inhibitor with an IC50 value of 25.48±1.19 μM. Furthermore, the results of the molecular docking study showed that this compound fitted well in the active site of tyrosinase with the binding score of -10.72.
Collapse
Affiliation(s)
- Mirhamed Hajimiri
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Khosravikia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehdi Khoshneviszadeh
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zahra Hosseini
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Somayeh Pirhadi
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahshid Attarroshan
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Koroush Mobaraki
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Behnammanesh
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Karimian
- Department of Medicinal Chemistry, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Ratnani S, Bargujar S, Khulbe M, Kathuria A. Applications of Choline Chlorine based Deep Eutectic Solvents as Sustainable Media and catalyst in the synthesis of Heterocyclic Scaffolds. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220602105646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Deep eutectic solvents (DESs), also referred to as low transition temperature mixtures (LTTMs), have emerged as sustainable and cheap alternatives to conventional organic solvents in organic synthesis. This is attributed to their exceptional characteristics viz. easy preparation with readily available cheap materials, water compatibility, non-flammability, non-toxicity, biocompatibility, biodegradability, etc. All these properties label them as versatile and cost-effective green solvents. The first reported DES, choline chloride urea mixture has appeared as an innocuous solvent and catalyst in many organic transformations. This prospective DES combination has been applied extensively to the synthesis of a wide range of heterocyclic compounds including quinolones, spirooxindoles, etc. The conditions employed are relatively mild and do not require additional acid catalysts or organic solvents. This eco-friendly blend for the synthesis of heterocycles reports excellent yields of products with shorter reaction times and a simple workup procedure. Evaluating these merits, this review focuses on the recent literature published on the use of choline chlorine-based DESs in the synthesis of a few important heterocyclic compounds.
Collapse
Affiliation(s)
- Sonia Ratnani
- Department of Chemistry, Ramjas College, University of Delhi, Delhi - 110007, India
| | - Savita Bargujar
- Department of Chemistry, Ramjas College, University of Delhi, Delhi - 110007, India
| | - Mihir Khulbe
- Department of Chemistry, Ramjas College, University of Delhi, Delhi - 110007, India
| | - Abha Kathuria
- Department of Chemistry, Ramjas College, University of Delhi, Delhi - 110007, India
| |
Collapse
|
23
|
Moustafa AH, Hussein BRM. A methodological approach for the synthesis of 4-aryl-8-arylidene-2-cyanoimino-1,2,3,4,5,6,7,8-octahydroquinazolines. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2072747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Amr H. Moustafa
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | | |
Collapse
|
24
|
Soliman M, El-Sakka SS, El-Shalakany E, Kamel RM. Development of novel Schiff base fluorophores for selective detection of Cu2+ ions in seawater using test strips. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132437] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
S. M, Narasaiah BP, B. H, G. L. B, Pradeepkiran JA, Padhy H. Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities. Antioxidants (Basel) 2022; 11:antiox11040688. [PMID: 35453373 PMCID: PMC9025409 DOI: 10.3390/antiox11040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4a–o) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity.
Collapse
Affiliation(s)
- Mahesh S.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
| | | | - Himabindu B.
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
| | - Balaji G. L.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Correspondence: (G.L.B.); (J.A.P.)
| | - Jangampalli Adi Pradeepkiran
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
- Department of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX 79415, USA
- Correspondence: (G.L.B.); (J.A.P.)
| | - Harihara Padhy
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Visakapatnam 530045, India
| |
Collapse
|
26
|
Norouzi FH, Foroughifar N, Khajeh-Amiri A, Pasdar H. A novel powerful Choline Chloride – Thiourea /Sulfuric Acid, efficient and recyclable catalyst via microwave‐assisted for the synthesis of Quinazolin- 4(3H)–one derivatives as Antibacterial Agents in green media. CURRENT MICROWAVE CHEMISTRY 2022. [DOI: 10.2174/2213335609666220324145341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Choline Chloride - Thiourea / Sulfuric Acid is a powerful and efficient green catalyst used for one-pot synthesis of quinazoline-4 (3H) -one derivatives via a reaction between various amines, acetic anhydride, and anthranilic acid under microwave irradiation and solvent-free conditions (4a-q). Microwave irradiation, which is a faster, more cost-effective, less energy-intensive, and more efficient method than conventional heating, has been used to synthesize some quinazolinone derivatives.
Introduction:
For the past ten years, one of the major subjects in synthetic organic chemistry has been green synthesis, which has used efficient and environmentally friendly methods to synthesize biological compounds. The use of catalysts has significant advantages, including ease of preparation and separation, chemical and thermal stability, and environmental friendliness due to features such as reusability, low cost, and efficient, easy workup techniques. Therefore, the mechanism is performed by a non-toxic organic catalyst that uses the least energy and chemical reactants in accordance with the principles of green chemistry and least waste.
Methods:
One-pot and sequential addition methods have been used to synthesize quinazolinone derivatives. In the sequential addition method, the reaction was started by adding acetic anhydride and anthranilic acid to the reaction vessel under microwave irradiation and continued by adding choline chloride thiourea / sulfuric acid as efficient recyclable green catalysts and the desired amine. In vitro, the well diffusion method against different pathogenic strains was used to evaluate the antimicrobial activity of quinazoline-4 (3H) -one derivatives. Pathogenic strains used were Candida albicans ATCC 10231 (yeast), Aspergillus niger ATCC 16404 (fungus), Escherichia coli ATCC 8739, Pseudomonas aeruginosa ATCC 9027 (bacteria) and ATCC 6538, and Staphylococcus aureus S. epidermidis ATCC 12228. Pyrimidine-containing compounds in which the 3-hydroxyl, 2,5-Dimethoxy, 4-bromo, 4 ‐ Methoxy, and 4 ‐ chloro groups are attached to the phenyl ring of pyrimidine exhibit antimicrobial properties.
Results:
In a short reaction time, a variety of biologically active quinazolinone derivatives were synthesized with a high efficiency. According to the results, it was found that with aliphatic amines, the reaction time was shorter and the reaction efficiency was higher. Products synthesized from aromatic amines had more antibacterial properties.
Conclusion:
In this work, a variety of 2-methyl-quinazoline-4 (3H) -one derivatives (4a–q) were synthesized as potent antibacterial agents under microwave irradiation and solvent-free conditions in the presence of ChCl-thiourea / H2SO4 as an efficient, eco-friendly, and recyclable catalyst.
Collapse
Affiliation(s)
- Fateme Haji Norouzi
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Naser Foroughifar
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Hoda Pasdar
- Department of Chemistry, Tehran North Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
27
|
Szewc M, Radzikowska-Bűchner E, Wdowiak P, Kozak J, Kuszta P, Niezabitowska E, Matysiak J, Kubiński K, Masłyk M. MSCs as Tumor-Specific Vectors for the Delivery of Anticancer Agents-A Potential Therapeutic Strategy in Cancer Diseases: Perspectives for Quinazoline Derivatives. Int J Mol Sci 2022; 23:2745. [PMID: 35269887 PMCID: PMC8911180 DOI: 10.3390/ijms23052745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be a powerful tool in the treatment of various diseases. Scientists are particularly interested in the possibility of using MSCs in cancer therapy. The research carried out so far has shown that MSCs possess both potential pro-oncogenic and anti-oncogenic properties. It has been confirmed that MSCs can regulate tumor cell growth through a paracrine mechanism, and molecules secreted by MSCs can promote or block a variety of signaling pathways. These findings may be crucial in the development of new MSC-based cell therapeutic strategies. The abilities of MSCs such as tumor tropism, deep migration and immune evasion have evoked considerable interest in their use as tumor-specific vectors for small-molecule anticancer agents. Studies have shown that MSCs can be successfully loaded with chemotherapeutic drugs such as gemcitabine and paclitaxel, and can release them at the site of primary and metastatic neoplasms. The inhibitory effect of MSCs loaded with anti-cancer agents on the proliferation of cancer cells has also been observed. However, not all known chemotherapeutic agents can be used in this approach, mainly due to their cytotoxicity towards MSCs and insufficient loading and release capacity. Quinazoline derivatives appear to be an attractive choice for this therapeutic solution due to their biological and pharmacological properties. There are several quinazolines that have been approved for clinical use as anticancer drugs by the US Food and Drug Administration (FDA). It gives hope that the synthesis of new quinazoline derivatives and the development of methods of their application may contribute to the establishment of highly effective therapies for oncological patients. However, a deeper understanding of interactions between MSCs and tumor cells, and the exploration of the possibilities of using quinazoline derivatives in MSC-based therapy is necessary to achieve this goal. The aim of this review is to discuss the prospects for using MSC-based cell therapy in cancer treatment and the potential use of quinazolines in this procedure.
Collapse
Affiliation(s)
- Monika Szewc
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Elżbieta Radzikowska-Bűchner
- Department of Plastic, Reconstructive and Maxillary Surgery, Central Clinical Hospital MSWiA, 02-507 Warsaw, Poland;
| | - Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Piotr Kuszta
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, 20-400 Lublin, Poland;
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
28
|
Evaluation of in vitro anticancer, antimicrobial and antioxidant activities of new Cu(II) complexes derived from 4(3H)-quinazolinone: Synthesis, crystal structure and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Kumar P, Tomar V, Joshi RK, Nemiwal M. Nanocatalyzed synthetic approach for quinazoline and quinazolinone derivatives: A review (2015–present). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2041667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Parveen Kumar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Vijesh Tomar
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Raj Kumar Joshi
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| | - Meena Nemiwal
- Department of Chemistry, Malaviya National Institute of Technology, Jaipur, India
| |
Collapse
|
30
|
Sohrabi M, Nazari Montazer M, Farid SM, Tanideh N, Dianatpour M, Moazzam A, Zomorodian K, Yazdanpanah S, Asadi M, Hosseini S, Biglar M, Larijani B, Amanlou M, Barazandeh Tehrani M, Iraji A, Mahdavi M. Design and synthesis of novel nitrothiazolacetamide conjugated to different thioquinazolinone derivatives as anti-urease agents. Sci Rep 2022; 12:2003. [PMID: 35132095 PMCID: PMC8821706 DOI: 10.1038/s41598-022-05736-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/11/2022] [Indexed: 01/07/2023] Open
Abstract
The present article describes the design, synthesis, in vitro urease inhibition, and in silico molecular docking studies of a novel series of nitrothiazolacetamide conjugated to different thioquinazolinones. Fourteen nitrothiazolacetamide bearing thioquinazolinones derivatives (8a-n) were synthesized through the reaction of isatoic anhydride with different amine, followed by reaction with carbon disulfide and KOH in ethanol. The intermediates were then converted into final products by treating them with 2-chloro-N-(5-nitrothiazol-2-yl)acetamide in DMF. All derivatives were then characterized through different spectroscopic techniques (1H, 13C-NMR, MS, and FTIR). In vitro screening of these molecules against urease demonstrated the potent urease inhibitory potential of derivatives with IC50 values ranging between 2.22 ± 0.09 and 8.43 ± 0.61 μM when compared with the standard thiourea (IC50 = 22.50 ± 0.44 μM). Compound 8h as the most potent derivative exhibited an uncompetitive inhibition pattern against urease in the kinetic study. The high anti-ureolytic activity of 8h was confirmed against two urease-positive microorganisms. According to molecular docking study, 8h exhibited several hydrophobic interactions with Lys10, Leu11, Met44, Ala47, Ala85, Phe87, and Pro88 residues plus two hydrogen bound interactions with Thr86. According to the in silico assessment, the ADME-Toxicity and drug-likeness profile of synthesized compounds were in the acceptable range.
Collapse
Affiliation(s)
- Marzieh Sohrabi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Moghadam Farid
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Moazzam
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamiar Zomorodian
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Somayeh Yazdanpanah
- Department of Medical Mycology and Parasitology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Asadi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Biglar
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Amanlou
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Barazandeh Tehrani
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran.
- Liosa Pharmed Parseh Company, Shiraz, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Megahed SH, Rasheed S, Herrmann J, El-Hossary EM, El-Shabrawy YI, Abadi AH, Engel M, Müller R, Abdel-Halim M, Hamed MM. Novel 2,4-disubstituted quinazoline analogs as antibacterial agents with improved cytotoxicity profile: Modification of the benzenoid part. Bioorg Med Chem Lett 2022; 59:128531. [PMID: 35007723 DOI: 10.1016/j.bmcl.2022.128531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 11/19/2022]
Abstract
Bacterial resistance to currently used antibiotics demands the development of novel antibacterial agents with good safety margins and sufficient efficacy against multi-drug resistant isolates. We have previously described the synthesis of N-butyl-2-(butylthio)quinazolin-4-amine (I) as an optimized hit with broad-spectrum antibacterial activity and low cytotoxicity. In addition, we have identified a potential growing vector for this series of compounds. Herein, we describe further hit optimization which includes systematic diversifications of both the benzenoid part and the substituents at position 6 and 7 of compound I. Growing of the molecule beside the core modifications yielded several compounds with remarkable anti(myco)bacterial activity against a panel of pathogenic bacteria, including drug-resistant strains. Compound 12 showed a 2-4 fold improvement in activity than I against S. aureus Newman, S. pneumoniae DSM-20566 and E. faecalis DSM-20478. The compounds also showed a good safety profile towards human HepG2 cells.
Collapse
Affiliation(s)
- Sarah H Megahed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Sari Rasheed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany
| | - Ebaa M El-Hossary
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Ahmed El-Zomor St. 3, El-Zohoor Dist., Nasr City, 11765 Cairo, Egypt
| | - Yahia I El-Shabrawy
- Department of Microbiology and Immunology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835 Cairo, Egypt.
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123 Saarbrücken, Germany.
| |
Collapse
|
32
|
Bao X, Li P, Yang Y, Wu N, Yan Y, An L, Tian G. Design, Synthesis, and Biological Activity Analysis of Novel Quinazolinyl Ether Derivatives Containing Piperidinamide Structure. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Dadkhah S, Malekzadeh M, Hassanzadeh F, Khodarahmi G, Asadi P, Rostami M. The art of design in azlactone–benzoxazinone chemistry, docking studies and in vitro cytotoxicity evaluation. Aust J Chem 2022. [DOI: 10.1071/ch21275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Selivanova G, Skolyapova A, Wang J, Karpova E, Shundrina I, Bagryanskaya I, Amosov E. Azo dyes containing 1,3,4-thiadiazole fragment: synthesis and properties. NEW J CHEM 2022. [DOI: 10.1039/d1nj05084b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
New 1,3,4-thiadiazole derivatives containing a diazenyl group, as well as simultaneously a diazenyl and an imino group were synthesized.
Collapse
Affiliation(s)
- Galina Selivanova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of RAS, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | | | - Jiaying Wang
- Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russian Federation
| | - Elena Karpova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of RAS, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Inna Shundrina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of RAS, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Irina Bagryanskaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of RAS, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| | - Evgeny Amosov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of Siberian Branch of RAS, 9 Ac. Lavrentiev Avenue, Novosibirsk 630090, Russian Federation
| |
Collapse
|
35
|
Bhattacharyya D, Adhikari P, Deori K, Das A. Ruthenium pincer complex catalyzed efficient synthesis of quinoline, 2-styrylquinoline and quinazoline derivatives via acceptorless dehydrogenative coupling reactions. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of N-heterocycles has been considered an emerging area of chemical research due to their extensive utilization in pharmaceuticals, materials science, and natural product synthesis.
Collapse
Affiliation(s)
- Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kritartha Deori
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
- Centre for Sustainable Polymers, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
36
|
Sun B, Tang X, Shi R, Yan Z, Li B, Tang C, Jin C, Wu CL, Shen RP. Self‐photocatalyzed Homolytic Dehalogenative Alkylation/Cyclization of Unactivated Alkenes Based on the Quinazolinone Skeleton via Energy Transfer. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Bin Sun
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Xiaoli Tang
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Rongcheng Shi
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Zhiyang Yan
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Bingqian Li
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Chen Tang
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Can Jin
- Collaborative Innovation Centre of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology Hangzhou 310032 P. R. China
- College of Pharmaceutical Sciences Zhejiang University of Technology Hangzhou 310032 P. R. China
| | - Chunlei L. Wu
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 P. R. China
| | - Runpu P. Shen
- Zhejiang Engineering Research Center of Fat-soluble Vitamin Shaoxing University Shaoxing 312000 P. R. China
| |
Collapse
|
37
|
Vodnala S, Bhavani AKD, Pagilla S, Allam M, Rayala N, Mudiraj A, Babu PP. Synthesis and Cytotoxic Studies of Quinazoline-Triazole Hybrid Aza Heterocycles. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Abdelshaheed MM, Fawzy IM, El-Subbagh HI, Youssef KM. Piperidine nucleus in the field of drug discovery. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Background
Piperidine is an essential heterocyclic system and a pivotal cornerstone in the production of drugs. Piperidine byproducts showed several important pharmacophoric features and are being utilized in different therapeutic applications.
Main text
Piperidine derivatives are being utilized in different ways as anticancer, antiviral, antimalarial, antimicrobial, antifungal, antihypertension, analgesic, anti-inflammatory, anti-Alzheimer, antipsychotic and/or anticoagulant agents.
Conclusions
This review article sheds a light on the most recent studies proving the importance of piperidine nucleus in the field of drug discovery.
Collapse
|
39
|
Patel AB, Rohit JV. Development of 1,3,4-Thiadiazole and Piperazine Fused Hybrid Quinazoline Derivatives as Dynamic Antimycobacterial Agents. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1970586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Amit B. Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Jignesh V. Rohit
- Department of Chemistry, National Institute of Technology, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
40
|
Efficient access to quinolines and quinazolines by ruthenium complexes catalyzed acceptorless dehydrogenative coupling of 2-aminoarylmethanols with ketones and nitriles. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Motoyama M, Doan TH, Hibner-Kulicka P, Otake R, Lukarska M, Lohier JF, Ozawa K, Nanbu S, Alayrac C, Suzuki Y, Witulski B. Synthesis and Structure-Photophysics Evaluation of 2-N-Amino-quinazolines: Small Molecule Fluorophores for Solution and Solid State. Chem Asian J 2021; 16:2087-2099. [PMID: 34107175 DOI: 10.1002/asia.202100534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Indexed: 11/12/2022]
Abstract
2-N-aminoquinazolines were prepared by consecutive SN Ar functionalization. X-ray structures display the nitrogen lone pair of the 2-N-morpholino group in conjugation with the electron deficient quinazoline core and thus representing electronic push-pull systems. 2-N-aminoquinazolines show a positive solvatochromism and are fluorescent in solution and in solid state with quantum yields up to 0.73. Increase in electron donor strength of the 2-amino substituent causes a red-shift of the intramolecular charge transfer (ICT) band (300-400 nm); whereas the photoluminescence emission maxima (350-450 nm) is also red-shifted significantly along with an enhancement in photoluminescence efficiency. HOMO-LUMO energies were estimated by a combination of electrochemical and photophysical methods and correlate well to those obtained by computational methods. ICT properties are theoretically attributed to an excitation to Rydberg-MO in SAC-CI method, which can be interpreted as n-π* excitation. 7-Amino-2-N-morpholino-4-methoxyquinazoline responds to acidic conditions with significant increases in photoluminescence intensity revealing a new turn-on/off fluorescence probe.
Collapse
Affiliation(s)
- Miho Motoyama
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Thu-Hong Doan
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Paulina Hibner-Kulicka
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Ryo Otake
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Malgorzata Lukarska
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Jean-Francois Lohier
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Kota Ozawa
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Shinkoh Nanbu
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| | - Yumiko Suzuki
- Department of Life and Material Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioicho, Chiyodaku, 102-8554, Tokyo, Japan
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie Univ., 6 Bvd Maréchal Juin, 14050, Caen, France
| |
Collapse
|
42
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
43
|
Kakoulidou C, Kosmas VR, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Structure and biological profile of transition metal complexes with (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline. J Inorg Biochem 2021; 219:111448. [PMID: 33853005 DOI: 10.1016/j.jinorgbio.2021.111448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
The interaction of the recently reported quinazoline derivative (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline (L) with a series of metal(II) (= copper(II), nickel(II), cobalt(II) and cadmium(II)) chlorides or nitrates resulted in the formation of mononuclear complexes which were characterized by spectroscopic techniques and single-crystal X-ray crystallography, i.e. [Cu(L)2]Cl2·4H2O (1·4H2O), [Ni(L)2]Cl2·4H2O (2·4H2O), [Ni(L)2](NO3)2·MeOH (3·MeOH), [Co(L)2]Cl2·4H2O (4·4H2O), [Co(L)2](NO3)2·H2O (5·H2O), [Co(L)2](NO3)3·2.5H2O (6·2.5H2O), [Cd(L)(Cl)2]·H2O (7·H2O) and [Cd(L)(CH3OH)(H2O)(NO3)](NO3) (8). The biological profile of the complexes was further assessed in regard to their binding affinity with calf-thymus DNA, their cleavage ability towards pBluescript II KS plasmid DNA in the absence or presence of irradiation of various wavelengths, their interaction with bovine serum albumin and finally, their ability to scavenge 1,1-diphenyl-picrylhydrazyl and 2,2΄-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) radicals and to reduce H2O2.
Collapse
Affiliation(s)
- Chrisoula Kakoulidou
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Vassilis-Raphael Kosmas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Antonios G Hatzidimitriou
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Konstantina C Fylaktakidou
- Laboratory of Organic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George Psomas
- Laboratory of Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Wang R, Zhu Y, Chen J, Wang Y, Song X, Wu Y, Jin F, Wang Y. The quinazoline derivative, 04NB-03, induces cell cycle arrest and apoptosis in hepatocellular carcinoma cells in a reactive oxygen species-dependent manner. Chem Biol Interact 2021; 338:109371. [PMID: 33582112 DOI: 10.1016/j.cbi.2021.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly malignancies worldwide. However, current therapeutic drugs for HCC are far from satisfactory. Thus, the development of new drugs is urgently needed. In this study, we identified a novel quinazoline derivative, 04NB-03, with potent anti-HCC activities both in vitro and in vivo. 04NB-03 effectively suppressed the viability and proliferation of HCC cells. It induced both cell cycle arrest at the G2/M phase and apoptosis in concentration- and time-dependent manners. Moreover, 04NB-03 treatment significantly reduced xenograft tumor growth without notable toxic effects. Mechanistically, 04NB-03 induced endogenous reactive oxygen species (ROS) accumulation in concentration- and time-dependent manners. Scavenging the ROS reversed 04NB-03-induced cell cycle arrest and apoptosis. Taken together, these results indicate that the quinazoline derivative, 04NB-03, inhibits the growth of HCC cells through the induction of cell cycle arrest and apoptosis in an ROS-dependent manner. 04NB-03 is, therefore, a potential small molecule candidate for the development of antitumor drugs targeting HCC.
Collapse
Affiliation(s)
- Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, 510632, China.
| | - Yifei Wang
- Guangzhou Jinan Biomedicine Research and Development Center, Key Laboratory of Bioengineering Medicine of Guangdong Province, Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
45
|
Maryam M, Tan SL, Crouse KA, Mohamed Tahir MI, Chee HY. Synthesis, characterization and evaluation of antidengue activity of enantiomeric Schiff bases derived from S-substituted dithiocarbazate. Turk J Chem 2021; 44:1395-1409. [PMID: 33488239 PMCID: PMC7751940 DOI: 10.3906/kim-2006-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/05/2020] [Indexed: 11/03/2022] Open
Abstract
A series of Schiff bases have been successfully synthesized through the acid-catalyzed condensation of S-substituted dithiocarbazates and three enantiomerically pure monoterpenes, (1 R )-(+)-camphor, (1 S )-(-)-camphor, (1 R )-(-)-camphorquinone, (1 S )-(+)-camphorquinone, ( R )-(-)-carvone and ( S )-(+)-carvone. Spectroscopic results revealed that the Schiff bases containing camphor or carvone likely adopted an E -configuration along the characteristic imine bond while those containing camphorquinone assumed a Z -configuration. The antidengue potential of these compounds was evaluated based on DENV 2 caused cytopathic effect (CPE) reduction-based in vitro evaluation. The compounds were validated through secondary foci forming unit reduction assay (FFURA). Compounds were also tested for their cytotoxicity against Vero cells. The compounds showed variable degrees of antiviral activity with the camphor compounds displaying the highest antidengue potential. The enantiomers of the compounds behaved almost similarly during the antiviral evaluation.
Collapse
Affiliation(s)
- Maqsood Maryam
- Faculty of Natural Sciences, Sardar Bahadur Khan Women University, Balochistan, Quetta Pakistan.,Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, SerdangSelangor Malaysia
| | - Sang Loon Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Malaysia
| | - Karen Ann Crouse
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor Malaysia
| | | | - Hui-Yee Chee
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, SerdangSelangor Malaysia
| |
Collapse
|
46
|
Kumar GRY, Begum NS. Mn( iii)-mediated cascade cyclization of 1-(azidomethyl)-2-isocyanoarenes with organoboronic acids: construction of quinazoline derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj01115d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel and efficient Mn(iii)-mediated oxidative radical cascade reaction of 1-(azidomethyl)-2-isocyanoarenes with organoboronic acids is reported.
Collapse
Affiliation(s)
| | - Noor Shahina Begum
- Department of Studies in Chemistry
- Bangalore University
- Bangalore 5600 56
- India
| |
Collapse
|
47
|
Bansal R, Malhotra A. Therapeutic progression of quinazolines as targeted chemotherapeutic agents. Eur J Med Chem 2020; 211:113016. [PMID: 33243532 DOI: 10.1016/j.ejmech.2020.113016] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/16/2020] [Accepted: 11/08/2020] [Indexed: 02/08/2023]
Abstract
Presently cancer is a grave health issue with predominance beyond restrictions. It can affect any organ of the body. Most of the available chemotherapeutic drugs are highly toxic, not much selective and eventually lead to the development of resistance. Therefore, a target specific palliative approach for the treatment of cancer is required. Remarkable advancements in science have illuminated various molecular pathways responsible for cancer. This has resulted in abundant opportunities to develop targeted anticancer agents. Quinazoline nucleus is a privileged scaffold with significant diversified pharmacological activities. Numerous established anticancer quinazoline derivatives constitute a new class of chemotherapeutic agents which are found to act by inhibiting various protein kinases as well as other molecular targets. A recent update on various quinazoline derivatives acting on different types of molecular targets for the treatment of cancer has been compiled in this review. Brief SAR studies of quinazoline derivatives acting through different mechanisms of action have been highlighted. The comprehensive medicinal chemistry aspects of these agents in this review provide a panoramic view to the biologists as well as medicinal chemists working in this area and would assist them in their efforts to design and synthesize novel quinazoline based anticancer compounds.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India.
| | - Anjleena Malhotra
- University Institute of Pharmaceutical Sciences, Sector-14, Panjab University, Chandigarh, 160014, India
| |
Collapse
|
48
|
Malasala S, Ahmad MN, Akunuri R, Shukla M, Kaul G, Dasgupta A, Madhavi YV, Chopra S, Nanduri S. Synthesis and evaluation of new quinazoline-benzimidazole hybrids as potent anti-microbial agents against multidrug resistant Staphylococcus aureus and Mycobacterium tuberculosis. Eur J Med Chem 2020; 212:112996. [PMID: 33190958 DOI: 10.1016/j.ejmech.2020.112996] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/12/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2022]
Abstract
Owing to the rapid rise in antibiotic resistance, infectious diseases have become serious threat to public health. There is an urgent need to develop new antimicrobial agents with diverse chemical structures and novel mechanisms of action to overcome the resistance. In recent years, Quinazoline-benzimidazole hybrids have emerged as a new class of antimicrobial agents active against S. aureus and M. tuberculosis. In the current study, we designed and synthesized fifteen new Quinazoline-benzimidazole hybrids and evaluated them for their antimicrobial activity against S. aureus ATCC 29213 and M. tuberculosis H37Rv. These studies led to the identification of nine potent antibacterial agents 8a, 8b, 8c, 8d, 8f, 8g, 8h, 8i and 10c with MICs in the range of 4-64 μg/mL. Further, these selected compounds were found to possess potent antibacterial potential against a panel of drug-resistant clinical isolates which include methicillin and vancomycin-resistant S. aureus. The selected compounds were found to be less toxic to Vero cells (CC50 = 40-≥200 μg/mL) and demonstrated a favourable selectivity index. Based on the encouraging results obtained these new benzimidazol-2-yl quinazoline derivatives have emerged as promising antimicrobial agents for the treatment of MDR- S. aureus and Mycobacterial infections.
Collapse
Affiliation(s)
- Satyaveni Malasala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Md Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Ravikumar Akunuri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Y V Madhavi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR, Ghaziabad, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India.
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, Telangana, India.
| |
Collapse
|
49
|
Malasala S, Ahmad MN, Gour J, Shukla M, Kaul G, Akhir A, Gatadi S, Madhavi Y, Chopra S, Nanduri S. Synthesis, biological evaluation and molecular modelling insights of 2-arylquinazoline benzamide derivatives as anti-tubercular agents. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Kakoulidou C, Gritzapis PS, Hatzidimitriou AG, Fylaktakidou KC, Psomas G. Zn(II) complexes of (E)-4-(2-(pyridin-2-ylmethylene)hydrazinyl)quinazoline in combination with non-steroidal anti-inflammatory drug sodium diclofenac: Structure, DNA binding and photo-cleavage studies, antioxidant activity and interaction with albumin. J Inorg Biochem 2020; 211:111194. [DOI: 10.1016/j.jinorgbio.2020.111194] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
|