1
|
Dao PDQ, Lee SW, Lim HJ, Cho CS. Recyclable Magnetic MOF-Catalyzed Synthesis of 1-Aminoisoquinolines and 6-Aminophenanthridines from 5-(2-Bromoaryl)tetrazoles and 1,3-Diketones under Microwave Irradiation. J Org Chem 2024; 89:18556-18564. [PMID: 39629786 DOI: 10.1021/acs.joc.4c02496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
In this study, 5-(2-bromoaryl)tetrazoles were reacted with 1,3-diketones in DMF in the presence of a catalytic amount of magnetic Cu-MOF-74 (Fe3O4@SiO2@Cu-MOF-74) and a base under microwave irradiation to yield the corresponding 1-aminoisoquinolines. The Fe3O4@SiO2@Cu-MOF-74 catalyst could be easily recovered from the reaction mixture and reused four times without any significant loss of catalytic activity. An initial copper-catalyzed C(sp2)-C(sp3) bond formation accompanied by retro-Claisen deacylative cyclocondensation (for acyclic 1,3-diketones) and direct cyclocondensation (for cyclohexane-1,3-diones) is proposed as a key reaction pathway for this process. Cyclohexanone-fused 1-aminoisoquinolines produced from the reaction between 5-(2-bromoaryl)tetrazoles and cyclohexane-1,3-diones could be aromatized into 6-aminophenanthridines via a one-pot sequential process involving reduction, dehydration, and oxidation.
Collapse
Affiliation(s)
- Pham Duy Quang Dao
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam
| | - Seong Weon Lee
- Department of Applied Chemistry, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Ho-Jin Lim
- Department of Environmental Engineering, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| | - Chan Sik Cho
- Department of Applied Chemistry, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea
| |
Collapse
|
2
|
Thakur A, Chandra D, Sharma U. Rh(III)-catalyzed regioselective C(sp 2)-H alkenylation of isoquinolones with methoxyallene: A facile access to aldehyde-bearing isoquinolones. Org Biomol Chem 2024; 22:6612-6616. [PMID: 39101476 DOI: 10.1039/d4ob01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A simple and rapid access to isoquinolone aldehyde scaffolds has been established by a rhodium-catalyzed reaction between isoquinolone and methoxyallene that forges alkenylation in an explicit regioselective manner. Herein, methoxyallene serving as an acrolein equivalent results in execution of this unique functionalization. Furthermore, the compatibility with complex molecules underscores the significance of this developed protocol. The mechanistic proposal for this regioselective transformation was consistent with kinetic studies and several control reactions.
Collapse
Affiliation(s)
- Ankita Thakur
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Sachin, Sharma T, Chandra D, Sumit, Sharma U. Inherent directing group-enabled Co(III)-catalyzed C-H allylation/vinylation of isoquinolones. Chem Commun (Camb) 2024; 60:5626-5629. [PMID: 38715526 DOI: 10.1039/d4cc01146e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Co(III)-catalysed site-selective C8-allylation and vinylation of isoquinolones with allyl acetate and vinyl acetates has been accomplished. The oxo group of isoquinolone has been utilised as an inherent directing group. Based on preliminary mechanistic studies, a plausible mechanism for the developed reaction has also been delineated. Broad substrate scope with good to excellent yields and post-synthetic transformations of allylated and vinylated isoquinolines highlight the importance of the reaction.
Collapse
Affiliation(s)
- Sachin
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Tamanna Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
| | - Sumit
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Vinoth P, Karuppasamy M, Gupta A, Nagarajan S, Maheswari CU, Sridharan V. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
5
|
Su L, Xie S, Dong J, Liu F, Yin SF, Zhou Y. Copper-Catalyzed Nitrogen Atom Transfer to Isoquinolines via C-N Triple Bond Cleavage and Three-Component Cyclization. Org Lett 2022; 24:5994-5999. [PMID: 35926096 DOI: 10.1021/acs.orglett.2c02257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A copper(I)-catalyzed tandem reaction of 2-bromoaryl ketones, terminal alkynes, and CH3CN is developed, which combines N atom transfer and three-component [3 + 2 + 1] cyclization, and efficiently produces densely functionalized isoquinolines in a facile, highly selective, and general manner. In the reaction, the formation of aromatic C-N bonds along with the complete C-N triple bond cleavage is first realized; Cu(III)-acetylide species might serve as the intermediates, which allow highly selective 6-endo-dig cyclization.
Collapse
Affiliation(s)
- Lebin Su
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shimin Xie
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China.,Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Feng Liu
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
6
|
Adusumalli KMS, Konidena LNS, Gandham HB, Kumari K, Valluru KR, Nidasanametla SKR, Battula VR, Namballa HK. Me 3Al-mediated domino nucleophilic addition/intramolecular cyclisation of 2-(2-oxo-2-phenylethyl)benzonitriles with amines; a convenient approach for the synthesis of substituted 1-aminoisoquinolines. Beilstein J Org Chem 2021; 17:2765-2772. [PMID: 34876930 PMCID: PMC8609244 DOI: 10.3762/bjoc.17.186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
A simple and efficient protocol for the construction of 1-aminoisoquinolines was achieved by treating 2-(2-oxo-2-phenylethyl)benzonitriles with amines in the presence of Me3Al. The reaction proceeds via a domino nucleophilic addition with subsequent intramolecular cyclisation. This method provides a wide variety of substituted 1-aminoisoquinolines with good functional group tolerance. Furthermore, the synthetic utility of this protocol was demonstrated in the successful synthesis of the antitumor agent CWJ-a-5 in gram scale.
Collapse
Affiliation(s)
- Krishna M S Adusumalli
- GVK Biosciences Private Limited, Medicinal Chemistry Laboratory, Hyderabad 500076, India.,Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Lakshmi N S Konidena
- GVK Biosciences Private Limited, Medicinal Chemistry Laboratory, Hyderabad 500076, India
| | - Hima B Gandham
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Krishnaiah Kumari
- GVK Biosciences Private Limited, Medicinal Chemistry Laboratory, Hyderabad 500076, India
| | - Krishna R Valluru
- GVK Biosciences Private Limited, Medicinal Chemistry Laboratory, Hyderabad 500076, India
| | | | - Venkateswara R Battula
- Department of Engineering Chemistry, Andhra University College of Engineering (A), Andhra University, Visakhapatnam 530003, India
| | - Hari K Namballa
- GVK Biosciences Private Limited, Medicinal Chemistry Laboratory, Hyderabad 500076, India.,Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, USA
| |
Collapse
|
7
|
Chandra D, Kumar N, Sumit, Parmar D, Gupta P, Sharma U. Co(III)-catalysed regioselective linear C(8)-H olefination of isoquinolone with terminal aromatic and aliphatic alkynes. Chem Commun (Camb) 2021; 57:11613-11616. [PMID: 34636826 DOI: 10.1039/d1cc04541e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A regioselective C8 linear olefination of isoquinoline-1H-2-one with terminal (aromatic and aliphatic) alkynes is reported under Co(III) catalysis. This is an exclusive report on the C8 functionalization of isoquinolone using non-noble transition metal complexes. Experimental and computational mechanistic studies have also been performed to depict the reaction pathway.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Nikunj Kumar
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sumit
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Weiner F, Schille JT, Koczan D, Wu XF, Beller M, Junghanss C, Hewicker-Trautwein M, Murua Escobar H, Nolte I. Novel chemotherapeutic agent FX-9 activates NF-κB signaling and induces G1 phase arrest by activating CDKN1A in a human prostate cancer cell line. BMC Cancer 2021; 21:1088. [PMID: 34625047 PMCID: PMC8501574 DOI: 10.1186/s12885-021-08836-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/24/2021] [Indexed: 11/23/2022] Open
Abstract
Background The aminoisoquinoline FX-9 shows pro-apoptotic and antimitotic effects against lymphoblastic leukemia cells and prostate adenocarcinoma cells. In contrast, decreased cytotoxic effects against non-neoplastic blood cells, chondrocytes, and fibroblasts were observed. However, the actual FX-9 molecular mode of action is currently not fully understood. Methods In this study, microarray gene expression analysis comparing FX-9 exposed and unexposed prostate cancer cells (PC-3 representing castration-resistant prostate cancer), followed by pathway analysis and gene annotation to functional processes were performed. Immunocytochemistry staining was performed with selected targets. Results Expression analysis revealed 0.83% of 21,448 differential expressed genes (DEGs) after 6-h exposure of FX-9 and 0.68% DEGs after 12-h exposure thereof. Functional annotation showed that FX-9 primarily caused an activation of inflammatory response by non-canonical nuclear factor-kappa B (NF-κB) signaling. The 6-h samples showed activation of the cell cycle inhibitor CDKN1A which might be involved in the secondary response in 12-h samples. This secondary response predominantly consisted of cell cycle-related changes, with further activation of CDKN1A and inhibition of the transcription factor E2F1, including downstream target genes, resulting in G1-phase arrest. Matching our previous observations on cellular level senescence signaling pathways were also found enriched. To verify these results immunocytochemical staining of p21 Waf1/Cip1 (CDKN1A), E2F1 (E2F1), PAI-1 (SERPNE1), and NFkB2/NFkB p 100 (NFKB2) was performed. Increased expression of p21 Waf1/Cip1 and NFkB2/NFkB p 100 after 24-h exposure to FX-9 was shown. E2F1 and PAI-1 showed no increased expression. Conclusions FX-9 induced G1-phase arrest of PC-3 cells through activation of the cell cycle inhibitor CDKN1A, which was initiated by an inflammatory response of noncanonical NF-κB signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08836-y.
Collapse
Affiliation(s)
- F Weiner
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.,Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - J T Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.,Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - D Koczan
- Core Facility for Microarray Analysis, Institute for Immunology, University of Rostock, 18057, Rostock, Germany
| | - X-F Wu
- Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - M Beller
- Leibniz Institute for Catalysis, 18059, Rostock, Germany
| | - C Junghanss
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany
| | - M Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559, Hannover, Germany
| | - H Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, 18057, Rostock, Germany.,Comprehensive Cancer Center - Mecklenburg Vorpommern (CCC-MV), Campus Rostock, University of Rostock, 18057, Rostock, Germany
| | - I Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559, Hannover, Germany.
| |
Collapse
|
9
|
Weiner F, Schille JT, Hein JI, Wu XF, Beller M, Junghanß C, Murua Escobar H, Nolte I. Evaluation of combination protocols of the chemotherapeutic agent FX-9 with azacitidine, dichloroacetic acid, doxorubicin or carboplatin on prostate carcinoma cell lines. PLoS One 2021; 16:e0256468. [PMID: 34432846 PMCID: PMC8386839 DOI: 10.1371/journal.pone.0256468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/06/2021] [Indexed: 11/25/2022] Open
Abstract
The isoquinolinamine FX-9 is a novel potential chemotherapeutic agent showing antiproliferative effects against hematologic and prostate cancer cell lines such as B- and T-acute lymphoblastic leukemia and prostate cancer (PC) of different species. Interestingly, FX-9 shows no hemolytic activity and low toxicity in benign adherent cells. The detailed FX-9 molecular mode of action is currently not fully understood. But application on neoplastic cells induces pro-apoptotic and antimitotic effects. Canine prostate cancer (cPC) represents a unique spontaneous occurring animal model for human androgen-independent PC. Human androgen-independent PC as well as cPC are currently not satisfactorily treatable with chemotherapeutic protocols. Accordingly, the evaluation of novel agent combinations bears significant potential for identifying novel treatment strategies. In this study, we combined FX-9 with the currently approved therapeutic agents doxorubicin, carboplatin, the demethylating substance azacitidine as well as further potentially antitumorigenic agents such as dichloroacetic acid (DCA) in order to evaluate the respective synergistic potential. The combinations with 1–5 μM FX-9 were evaluated regarding the effect after 72 hours on cell viability, cell count and apoptotic/necrotic cells in two human prostate cancer cell lines (LNCaP, PC-3) and a canine prostate cancer cell line (Adcarc1258) representing androgen-dependent and -independent PC/cPC forms. FX-9 in combination with azacitidine decreases cell viability and increases cell death with positive Bliss values. Furthermore, this decreases the cell count with neutral Bliss values on PC-3. Carboplatin in combination with FX-9 reduces cell viability with a neutral Bliss value and increases cell death on LNCaP with calculated positive Bliss values. DCA or doxorubicin in combination with FX-9 do not show synergistic or additive effects on the cell viability. Based on these results, azacitidine or carboplatin in combination with FX-9 offers synergistic/additive efficacy against prostate adenocarcinoma cell lines in vitro. The beneficial effects of both combinations are worth further investigation.
Collapse
Affiliation(s)
- Franziska Weiner
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Jan Torben Schille
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Jens Ingo Hein
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Xiao-Feng Wu
- Leibniz Institute for Catalysis, Rostock, Germany
| | | | - Christian Junghanß
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III, Hematology, Oncology, Palliative Medicine, University of Rostock, Rostock, Germany
- * E-mail:
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
10
|
Matouš P, Májek M, Kysilka O, Kuneš J, Maříková J, Růžička A, Pour M, Kočovský P. Reaction Outcome Critically Dependent on the Method of Workup: An Example from the Synthesis of 1-Isoquinolones. J Org Chem 2021; 86:8078-8088. [PMID: 34032448 DOI: 10.1021/acs.joc.1c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A striking dependence on the method of workup has been found for annulation of benzonitriles ArC≡N to N-methyl 2-toluamide (1), facilitated by n-BuLi (2 equiv): quenching the reaction by a slow addition of water produced the expected 1-isoquinolones 2; by contrast, slow pouring of the reaction mixture into water afforded the cyclic aminals 5 (retaining the NMe group of the original toluamide). The mechanism of the two processes is discussed in terms of the actual H+ concentration in the workup. Both 2 and 5 were then converted into the corresponding 1-chloroisoquinolines 3, coupling of which, mediated by (Ph3P)2NiCl2/Zn, afforded bis-isoquinolines 4.
Collapse
Affiliation(s)
- Petr Matouš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michal Májek
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Ondřej Kysilka
- Trelleborg Bohemia, Akademika Bedrny 531/8a, Věkoše, 500 03 Hradec Králové Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice 2, Czech Republic
| | - Milan Pour
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Kočovský
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
11
|
Yang W, Du Y, Yi F, Cai M. Heterogeneous gold(III)-catalyzed tandem cyclization of 2-alkynylbenzamides with ammonium acetate toward 1-aminoisoquinolines. JOURNAL OF CHEMICAL RESEARCH 2020. [DOI: 10.1177/1747519820924736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Heterogeneous tandem cyclization of 2-alkynylbenzamides with ammonium acetate is achieved in acetonitrile at 85 °C using a magnetic nanoparticles-immobilized bipy-gold(III) complex and AgSbF6 as catalysts to afford a variety of 1-aminoisoquinoline derivatives in moderate to high yields. This heterogeneous gold catalyst can be easily recovered from the reaction mixture by simply applying an external magnetic field and can be recycled at least seven times without any apparent loss of catalytic activity.
Collapse
Affiliation(s)
- Weisen Yang
- College of Ecology and Resources Engineering, Wuyi University, Wuyishan, P.R. China
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
| | - Yingying Du
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
| | - Feiyan Yi
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
| | - Mingzhong Cai
- College of Chemistry & Chemical Engineering, Jiangxi Normal University, Nanchang, P.R. China
| |
Collapse
|
12
|
Schille JT, Nolte I, Packeiser EM, Wiesner L, Hein JI, Weiner F, Wu XF, Beller M, Junghanss C, Murua Escobar H. Isoquinolinamine FX-9 Exhibits Anti-Mitotic Activity in Human and Canine Prostate Carcinoma Cell Lines. Int J Mol Sci 2019; 20:ijms20225567. [PMID: 31703454 PMCID: PMC6888667 DOI: 10.3390/ijms20225567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/24/2022] Open
Abstract
Current therapies are insufficient for metastatic prostate cancer (PCa) in men and dogs. As human castrate-resistant PCa shares several characteristics with the canine disease, comparative evaluation of novel therapeutic agents is of considerable value for both species. Novel isoquinolinamine FX-9 exhibits antiproliferative activity in acute lymphoblastic leukemia cell lines but has not been tested yet on any solid neoplasia type. In this study, FX-9′s mediated effects were characterized on two human (PC-3, LNCaP) and two canine (CT1258, 0846) PCa cell lines, as well as benign solid tissue cells. FX-9 significantly inhibited cell viability and induced apoptosis with concentrations in the low micromolar range. Mediated effects were highly comparable between the PCa cell lines of both species, but less pronounced on non-malignant chondrocytes and fibroblasts. Interestingly, FX-9 exposure also leads to the formation and survival of enlarged multinucleated cells through mitotic slippage. Based on the results, FX-9 acts as an anti-mitotic agent with reduced cytotoxic activity in benign cells. The characterization of FX-9-induced effects on PCa cells provides a basis for in vivo studies with the potential of valuable transferable findings to the benefit of men and dogs.
Collapse
Affiliation(s)
- Jan Torben Schille
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Ingo Nolte
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
- Correspondence: (I.N.); (H.M.E.)
| | - Eva-Maria Packeiser
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Laura Wiesner
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Jens Ingo Hein
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Franziska Weiner
- Small Animal Clinic, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Xiao-Feng Wu
- Leibniz-Institute for Catalysis, University of Rostock, 18059 Rostock, Germany; (X.-F.W.); (M.B.)
| | - Matthias Beller
- Leibniz-Institute for Catalysis, University of Rostock, 18059 Rostock, Germany; (X.-F.W.); (M.B.)
| | - Christian Junghanss
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
| | - Hugo Murua Escobar
- Department of Medicine, Clinic III-Hematology, Oncology, Palliative Medicine, University of Rostock, 18057 Rostock, Germany; (J.T.S.); (E.-M.P.); (L.W.); (J.I.H.); (C.J.)
- Correspondence: (I.N.); (H.M.E.)
| |
Collapse
|
13
|
Yang X, Yu H, Xu Y, Shao L. Regioselective Access to 3-Aryl-1-aminoisoquinolines via Nickel(I)-Catalyzed C–C and C–N Cascade Coupling Reactions from the Substituted 2-(Cyanomethyl)benzonitriles. J Org Chem 2018; 83:9682-9695. [DOI: 10.1021/acs.joc.8b01159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xicheng Yang
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Haihua Yu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Yulong Xu
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| | - Liming Shao
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
- Shanghai Center for Drug Discovery & Development, 826 Zhangheng Road, Zhangjiang Hi-tech Park, Pudong, Shanghai 201203, China
| |
Collapse
|
14
|
Kumar R, Asthana M, Singh RM. Pd-Catalyzed One-Pot Stepwise Synthesis of Benzo[b][1,6]naphthyridines from 2-Chloroquinoline-3-carbonitriles Using Sulfur and Amines As Nucleophiles. J Org Chem 2017; 82:11531-11542. [PMID: 28980473 DOI: 10.1021/acs.joc.7b02147] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A palladium-catalyzed one-pot stepwise coupling-annulation reaction of 2-chloroqunoline-3-carbonitriles enabled the direct synthesis of sulfur-substituted benzo[b][1,6]naphthyridines via multiple bond formation. The reaction provided an unusual mode for cyclization as sodium sulfide, a soft nucleophile, preferred to attack on the carbon of the nitrile group rather than on the C-C triple bond. The developed chemistry was extended with the secondary amines as nucleophiles to afford nitrogen-substituted benzo[b][1,6]naphythyridines while primary amines afforded hydroamination products . The hydromination products were transformed to benzo[b][1,6]naphthyridones via a base-mediated cyclization reaction. The developed protocol features inexpensive and easily synthesizable starting materials, easy operations, and a high efficiency and tolerance to a broad range of substrates.
Collapse
Affiliation(s)
- Ritush Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati , Assam-781039, India.,Department of Chemistry, Institute of Science, Centre of Advanced Study, Banaras Hindu University , Varanasi-221005, India
| | - Mrityunjaya Asthana
- Department of Chemistry, Indian Institute of Technology Guwahati , Assam-781039, India
| | - Radhey M Singh
- Department of Chemistry, Institute of Science, Centre of Advanced Study, Banaras Hindu University , Varanasi-221005, India
| |
Collapse
|
15
|
Yang Y, Yu JX, Ouyang XH, Li JH. Complex Annulations through Silver Carbenoid Intermediate: An Alternative Entry to Transformations of 1,2,3-Triazoles. Org Lett 2017; 19:3982-3985. [DOI: 10.1021/acs.orglett.7b01682] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan Yang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jiang-Xi Yu
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuan-Hui Ouyang
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- State
Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key
Laboratory of Jiangxi Province for Persistent Pollutants Control and
Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
16
|
Reddy V, Jadhav AS, Anand RV. Catalyst-Controlled Regioselective Approach to 1-Aminoisoquinolines and/or 1-Aminoisoindolines through Aminative Domino Cyclization of 2-Alkynylbenzonitriles. European J Org Chem 2015. [DOI: 10.1002/ejoc.201501390] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Li DY, Shi KJ, Mao XF, Chen GR, Liu PN. Transition Metal-Free Cascade Reactions of Alkynols to Afford Isoquinolin-1(2H)-one and Dihydroisobenzofuran Derivatives. J Org Chem 2014; 79:4602-14. [DOI: 10.1021/jo5006312] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Deng Yuan Li
- Shanghai Key Laboratory of
Functional Materials Chemistry, Key Lab for Advanced Materials and
Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China
| | - Ke Ji Shi
- Shanghai Key Laboratory of
Functional Materials Chemistry, Key Lab for Advanced Materials and
Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China
| | - Xiao Feng Mao
- Shanghai Key Laboratory of
Functional Materials Chemistry, Key Lab for Advanced Materials and
Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China
| | - Guo Rong Chen
- Shanghai Key Laboratory of
Functional Materials Chemistry, Key Lab for Advanced Materials and
Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China
| | - Pei Nian Liu
- Shanghai Key Laboratory of
Functional Materials Chemistry, Key Lab for Advanced Materials and
Institute of Fine Chemicals, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237 China
| |
Collapse
|
18
|
Chung KS, Choi HE, Shin JS, Cho YW, Choi JH, Cho WJ, Lee KT. 6,7-Dimethoxy-3-(3-methoxyphenyl)isoquinolin-1-amine induces mitotic arrest and apoptotic cell death through the activation of spindle assembly checkpoint in human cervical cancer cells. Carcinogenesis 2013; 34:1852-60. [DOI: 10.1093/carcin/bgt133] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
19
|
Hu C, Dou X, Wu Y, Zhang L, Hu Y. Design, synthesis and CoMFA studies of N1-amino acid substituted 2,4,5-triphenyl imidazoline derivatives as p53-MDM2 binding inhibitors. Bioorg Med Chem 2012; 20:1417-24. [PMID: 22273545 DOI: 10.1016/j.bmc.2012.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 12/31/2011] [Accepted: 01/02/2012] [Indexed: 01/08/2023]
Abstract
A series of novel N1-amino-acid substituted 2,4,5-triphenyl imidazoline derivatives was designed and synthesized based on our previous studies. All synthesized target compounds were screened for their p53-MDM2 binding inhibitory activities and anti-proliferative activities against five cancer cell lines. Among them, twelve compounds displayed improved binding inhibitory activities and most compounds showed higher cell growth inhibition activities with IC(50) values in the low micromolar range. Compound 6c exhibited marked p53-MDM2 binding inhibitory activity (IC(50)=0.59 μM) which was eightfold more potent than that of Nutlin-1 (IC(50)=4.78 μM). CoMFA analysis was performed based on obtained biological data and resulted in a statistically significant CoMFA model with high predict abilities (q(2)=0.645, r(2)=0.979).
Collapse
Affiliation(s)
- Chunqi Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
20
|
Dieudonné-Vatran A, Azoulay M, Florent JC. A new access to 3-substituted-1(2H)-isoquinolone by tandem palladium-catalyzed intramolecular aminocarbonylation annulation. Org Biomol Chem 2012; 10:2683-91. [DOI: 10.1039/c2ob06852d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|