1
|
Feineis D, Bringmann G. Asian Ancistrocladus Lianas as Creative Producers of Naphthylisoquinoline Alkaloids. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 119:1-335. [PMID: 36587292 DOI: 10.1007/978-3-031-10457-2_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This book describes a unique class of secondary metabolites, the mono- and dimeric naphthylisoquinoline alkaloids. They occur in lianas of the paleotropical Ancistrocladaceae and Dioncophyllaceae families, exclusively. Their unprecedented structures include stereogenic centers and rotationally hindered, and thus likewise stereogenic, axes. Extended recent investigations on six Ancistrocladus species from Asia, as reported in this review, shed light on their fascinating phytochemical productivity, with over 100 such intriguing natural products. This high chemodiversity arises from a likewise unique biosynthesis from acetate-malonate units, following a novel polyketidic pathway to plant-derived isoquinoline alkaloids. Some of the compounds show most promising antiparasitic activities. Likewise presented are strategies for the regio- and stereoselective total synthesis of the alkaloids, including the directed construction of the chiral axis.
Collapse
Affiliation(s)
- Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
2
|
Doubský J, Rádl S, Cinibulk J, Klvaňa R. Synthesis of Fingolimod Employing Regioselective Aziridine Ring-Opening Reaction as a Key Step. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jan Doubský
- API Synthesis Development, Zentiva, k.s., U Kabelovny 130, 102 37, Prague 10, Czech Republic
| | - Stanislav Rádl
- API Synthesis Development, Zentiva, k.s., U Kabelovny 130, 102 37, Prague 10, Czech Republic
| | - Josef Cinibulk
- API Synthesis Development, Zentiva, k.s., U Kabelovny 130, 102 37, Prague 10, Czech Republic
| | - Robert Klvaňa
- API Synthesis Development, Zentiva, k.s., U Kabelovny 130, 102 37, Prague 10, Czech Republic
| |
Collapse
|
3
|
Barbolla I, Hernández-Suárez L, Quevedo-Tumailli V, Nocedo-Mena D, Arrasate S, Dea-Ayuela MA, González-Díaz H, Sotomayor N, Lete E. Palladium-mediated synthesis and biological evaluation of C-10b substituted Dihydropyrrolo[1,2-b]isoquinolines as antileishmanial agents. Eur J Med Chem 2021; 220:113458. [PMID: 33901901 DOI: 10.1016/j.ejmech.2021.113458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 11/26/2022]
Abstract
The development of new molecules for the treatment of leishmaniasis is, a neglected parasitic disease, is urgent as current anti-leishmanial therapeutics are hampered by drug toxicity and resistance. The pyrrolo[1,2-b]isoquinoline core was selected as starting point, and palladium-catalyzed Heck-initiated cascade reactions were developed for the synthesis of a series of C-10 substituted derivatives. Their in vitro leishmanicidal activity against visceral (L. donovani) and cutaneous (L. amazonensis) leishmaniasis was evaluated. The best activity was found, in general, for the 10-arylmethyl substituted pyrroloisoquinolines. In particular, 2ad (IC50 = 3.30 μM, SI > 77.01) and 2bb (IC50 = 3.93 μM, SI > 58.77) were approximately 10-fold more potent and selective than the drug of reference (miltefosine), against L. amazonensis on in vitro promastigote assays, while 2ae was the more active compound in the in vitro amastigote assays (IC50 = 33.59 μM, SI > 8.93). Notably, almost all compounds showed low cytotoxicity, CC50 > 100 μg/mL in J774 cells, highest tested dose. In addition, we have developed the first Perturbation Theory Machine Learning (PTML) algorithm able to predict simultaneously multiple biological activity parameters (IC50, Ki, etc.) vs. any Leishmania species and target protein, with high values of specificity (>98%) and sensitivity (>90%) in both training and validation series. Therefore, this model may be useful to reduce time and assay costs (material and human resources) in the drug discovery process.
Collapse
Affiliation(s)
- Iratxe Barbolla
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Leidi Hernández-Suárez
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Viviana Quevedo-Tumailli
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain; RNASA-IMEDIR, Computer Science Faculty, University of A Coruña, 15071, A Coruña, Spain; Universidad Estatal Amazónica UEA, Puyo, 160150, Pastaza, Ecuador
| | - Deyani Nocedo-Mena
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - Sonia Arrasate
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain
| | - María Auxiliadora Dea-Ayuela
- Departamento de Farmacia, Facultad de Ciencias de La Salud, Universidad CEU Cardenal Herrera, Edificio Seminario S/n, 46113, Moncada, Valencia, Spain
| | - Humberto González-Díaz
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain; Basque Center for Biophysics CSIC-UPV/EHU, University of the Basque Country UPV/EHU, 48940, Bilbao, Spain; IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Nuria Sotomayor
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain.
| | - Esther Lete
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, Universidad Del País Vasco / Euskal Herriko Unibertsitatea UPV/EHU, Apdo. 644, 48080, Bilbao, Spain.
| |
Collapse
|
4
|
Moyo P, Shamburger W, van der Watt ME, Reader J, de Sousa ACC, Egan TJ, Maharaj VJ, Bringmann G, Birkholtz LM. Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2020; 13:51-58. [PMID: 32505117 PMCID: PMC7270141 DOI: 10.1016/j.ijpddr.2020.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022]
Abstract
The discovery and development of multistage antimalarial drugs targeting intra-erythrocytic asexual and sexual Plasmodium falciparum parasites is of utmost importance to achieve the ambitious goal of malaria elimination. Here, we report the validation of naphthylisoquinoline (NIQ) alkaloids and their synthetic analogues as multistage active antimalarial drug candidates. A total of 30 compounds were tested, of which 17 exhibited IC50 values <1 μM against drug-sensitive P. falciparum parasites (NF54 strain); 15 of these retained activity against a panel of drug-resistant strains. These compounds showed low in vitro cytotoxicity against HepG2 cells, with selectivity indices of >10. The tested compounds showed activity in vitro against both early- and late-stage P. falciparum gametocytes while blocking male gamete formation (>70% inhibition of exflagellation at 2 μM). Additionally, five selected compounds were found to have good solubility (≥170 μM in PBS at pH 6.5), while metabolic stability towards human, mouse, and rat microsomes ranged from >90% to >7% after 30 min. Dioncophylline C (2a) emerged as a front runner from the study, displaying activity against both asexual parasites and gametocytes, a lack of cross-resistance to chloroquine, good solubility, and microsomal stability. Overall, this is the first report on the multistage activity of NIQs and their synthetic analogues including gametocytocidal and gametocidal effects induced by this class of compounds. Naphthylisoquinolines (NIQs) validated as antimalarial hit candidates. First report on transmission-blocking properties of NIQs and analogues. 15 compounds active across 9 P. falciparum strains, with acceptable RI <10 and SI >10. 5 compounds show good solubility and microsomal stability. Dioncophylline C is the frontrunner antimalarial candidate with multistage activity.
Collapse
Affiliation(s)
- Phanankosi Moyo
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - William Shamburger
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Mariëtte E van der Watt
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Janette Reader
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Ana Carolina C de Sousa
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa
| | - Timothy J Egan
- Department of Chemistry, Faculty of Science, University of Cape Town, Rondebosch, 7701, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, 7925, South Africa
| | - Vinesh J Maharaj
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany; Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| | - Lyn-Marie Birkholtz
- Malaria Parasite Molecular Laboratory, Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, Faculty of Natural and Agricultural Sciences, University of Pretoria, Private Bag x20, Hatfield, 0028, South Africa.
| |
Collapse
|
5
|
Li J, Seupel R, Feineis D, Mudogo V, Kaiser M, Brun R, Brünnert D, Chatterjee M, Seo EJ, Efferth T, Bringmann G. Dioncophyllines C 2, D 2, and F and Related Naphthylisoquinoline Alkaloids from the Congolese Liana Ancistrocladus ileboensis with Potent Activities against Plasmodium falciparum and against Multiple Myeloma and Leukemia Cell Lines. JOURNAL OF NATURAL PRODUCTS 2017; 80:443-458. [PMID: 28121440 DOI: 10.1021/acs.jnatprod.6b00967] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Dioncophylline F (1), the first 5,8'-coupled dioncophyllaceous alkaloid (i.e., lacking an oxygen function at C-6 and possessing an R-configuration at C-3), was isolated from the recently described Congolese liana Ancistrocladus ileboensis. Two further, likewise Dioncophyllaceae-type, alkaloids, the dioncophyllines C2 (2) and D2 (3), were identified, along with the Ancistrocladaceae-type compound ancistrocladisine B (4), which is oxygenated at C-6 and S-configured at C-3. The structures of the new compounds were determined by spectroscopic, chemical, and chiroptical methods. The stereostructure of 1 was further confirmed by total synthesis. As a consequence of the lack of a methyl group ortho to their biaryl axes, both dioncophylline F (1) and the 7,8'-coupled dioncophylline D2 (3) occur as pairs of configurationally semistable and, thus, slowly interconverting atropo-diastereomers, whereas dioncophylline C2 (2), with its 5,1'-linkage, is configurationally stable at the axis. Eight further known naphthylisoquinolines were isolated from A. ileboensis, among them dioncophylline A (P-10), its 4'-O-demethyl analogue P-11, and 5'-O-methyldioncophylline D (7), which were found to display strong cytotoxic activities against multiple myeloma INA-6 cells (P-10 even stronger than the standard drug melphalan) and against drug-sensitive acute lymphoblastic CCRF-CEM leukemia cells and their multidrug-resistant subline, CEM/ADR5000. Moreover, the dioncophyllines 1, 3, and 7 showed high-and specific-activities against the malaria parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Jun Li
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, and Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Urumqi, 830011, People's Republic of China
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| | - Virima Mudogo
- Faculté des Sciences, Université de Kinshasa , B.P. 202, Kinshasa XI, Democratic Republic of the Congo
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute , Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel , Petersplatz 1, CH-4003 Basel, Switzerland
| | - Reto Brun
- Swiss Tropical and Public Health Institute , Socinstrasse 57, CH-4002 Basel, Switzerland
- University of Basel , Petersplatz 1, CH-4003 Basel, Switzerland
| | | | | | - Ean-Jeong Seo
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz , Staudinger Weg 5, D-55128 Mainz, Germany
| | - Thomas Efferth
- Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, University of Mainz , Staudinger Weg 5, D-55128 Mainz, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg , Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
6
|
In J, Hwang S, Kim C, Seo JH, Kim S. Synthesis of 3,4-Dihydroisoquinolin-1-ones fromN-Boc-(β-Arylethyl)carbamates via Isocyanate Intermediates. European J Org Chem 2012. [DOI: 10.1002/ejoc.201201408] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
|
8
|
Sreshty MAL, Surolia A, Sastry GN, Murty US. Deorphanization of Malonyl CoA:ACP Transacylase Drug Target in Plasmodium falciparum (PfFabD) Using Bacterial Antagonists: A ‘Piggyback’ Approach for Antimalarial Drug Discovery. Mol Inform 2012; 31:281-99. [DOI: 10.1002/minf.201100051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 02/16/2012] [Indexed: 11/09/2022]
|