1
|
Khan MA, Mutahir S, Tariq MA, Almehizia AA. Exploration of Specific Fluoroquinolone Interaction with SARS-CoV-2 Main Protease (Mpro) to Battle COVID-19: DFT, Molecular Docking, ADME and Cardiotoxicity Studies. Molecules 2024; 29:4721. [PMID: 39407649 PMCID: PMC11477632 DOI: 10.3390/molecules29194721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Herein, the pharmacokinetic profiles, binding interactions, and molecular properties of fluoroquinolone derivatives as prospective antiviral drugs are examined using a combination of docking, ADME, and DFT simulations. The effectiveness of the ligands is compared with the clinically tested and FDA-authorized medicine remdesivir. The findings demonstrated encouraging binding energies, indicating possible inhibitory effectiveness against SARS-CoV-2 Mpro. The fluoroquinolone derivatives also exhibit promising ADME characteristics, although compounds 5, 6, 9, 12-20 possess poor values, suggesting that oral administration may be possible. The potential of the selected compounds as SARS-CoV-2 Mpro inhibitors is thoroughly understood because of the integrated analysis of DFT, with compound 11 demonstrating the highest energy gap of 0.2604 eV of, docking with viral targets with docking scores of -7.9 to -5.9 kcal/mol, with compound 18 demonstrating the highest docking score, which is at the 13th position in energy difference in the DFT data. Their favorable electrical properties, robust binding interactions with viral targets, and attractive pharmacokinetic profiles boost their potential as prospective study subjects. These substances have the potential to be transformed into cutting-edge antiviral therapies that specifically target SARS-CoV-2 Mpro and related coronaviruses.
Collapse
Affiliation(s)
- Muhammad Asim Khan
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | - Sadaf Mutahir
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, China
| | | | - Abdulrahman A. Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023; 15:pharmaceutics15030804. [PMID: 36986665 PMCID: PMC10056716 DOI: 10.3390/pharmaceutics15030804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antibacterial fluoroquinolones (FQs) are frequently used in treating infections. However, the value of FQs is debatable due to their association with severe adverse effects (AEs). The Food and Drug Administration (FDA) issued safety warnings concerning their side-effects in 2008, followed by the European Medicine Agency (EMA) and regulatory authorities from other countries. Severe AEs associated with some FQs have been reported, leading to their withdrawal from the market. New systemic FQs have been recently approved. The FDA and EMA approved delafloxacin. Additionally, lascufloxacin, levonadifloxacin, nemonoxacin, sitafloxacin, and zabofloxacin were approved in their origin countries. The relevant AEs of FQs and their mechanisms of occurrence have been approached. New systemic FQs present potent antibacterial activity against many resistant bacteria (including resistance to FQs). Generally, in clinical studies, the new FQs were well-tolerated with mild or moderate AEs. All the new FQs approved in the origin countries require more clinical studies to meet FDA or EMA requirements. Post-marketing surveillance will confirm or infirm the known safety profile of these new antibacterial drugs. The main AEs of the FQs class were addressed, highlighting the existing data for the recently approved ones. In addition, the general management of AEs when they occur and the rational use and caution of modern FQs were outlined.
Collapse
|
3
|
Design, synthesis, and biological investigation of quinoline/ciprofloxacin hybrids as antimicrobial and anti-proliferative agents. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-022-02704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractCiprofloxacin-Piperazine C-7 linked quinoline derivatives 6a–c and 8a–c were synthesized and investigated for their antibacterial, antifungal, and anti-proliferative activities. Ciprofloxacin-quinoline-4-yl-1,3,4 oxadiazoles 6a and 6b showed promising anticancer activity against SR- leukemia and UO-31 renal cancer cell lines. The hybrids 8a–c and compound 6b exhibited noticeable antifungal activities against C.Albicans; 8a experienced the most potent antifungal activity compared to Itraconazole with MICs of 21.88 µg/mL and 11.22 µg/mL; respectively. Most of derivatives displayed better antibacterial activity than the parent ciprofloxacin against all the tested strains. Compound 6b was the most potent against the highly resistant Gram-negative K.pneumoniae with MIC 16.96 of µg/mL relative to the parent ciprofloxacin (MIC = 29.51 µg/mL). Docking studies of the tested hydrides in the active site of Topo IV enzyme of K.pneumoniae (5EIX) and S.aureus gyrase (2XCT) indicate that they had stronger binding affinity in both enzymes than ciprofloxacin but have different binding interactions. The hybrid 6b could be considered a promising lead compound for finding new dual antibacterial/anticancer agents. Moreover, Compound 8a could be a lead for discovering new dual antibacterial/antifungal agents.
Graphical abstract
Collapse
|
4
|
Soda AK, Kurva S, Singh K, Veeragoni D, Misra S, Murahari M, Madabhushi S. Synthesis and Pharmacological Evaluation of Hexafluoro Functionalized Quinolone Derivatives as Potential Chemotherapeutic Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anil Kumar Soda
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Srinivas Kurva
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| | - Kamini Singh
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Dileepkumar Veeragoni
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Sunil Misra
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
- Applied Biology CSIR-Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Manikanta Murahari
- Medicinal Chemistry Research Division K L College of pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram Andhra Pradesh India
| | - Sridhar Madabhushi
- Department of Fluoro-Agrochemicals CSIR-Indian Institute of Chemical Technology, Tarnaka Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad India
| |
Collapse
|
5
|
Kulabaş N, Türe A, Bozdeveci A, Krishna VS, Alpay Karaoğlu Ş, Sriram D, Küçükgüzel İ. Novel fluoroquinolones containing 2‐arylamino‐2‐oxoethyl fragment: Design, synthesis, evaluation of antibacterial and antituberculosis activities and molecular modeling studies. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Necla Kulabaş
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Aslı Türe
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| | - Arif Bozdeveci
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Vagolu Siva Krishna
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - Şengül Alpay Karaoğlu
- Department of Biology, Faculty of Art and Sciences Recep Tayyip Erdoğan University Rize Turkey
| | - Dharmarajan Sriram
- Medicinal Chemistry Research Laboratory, Pharmacy Group Birla Institute of Technology and Science Hyderabad India
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, Marmara University İstanbul Turkey
| |
Collapse
|
6
|
Allaka TR, Kummari B, Polkam N, Kuntala N, Chepuri K, Anireddy JS. Novel heterocyclic 1,3,4-oxadiazole derivatives of fluoroquinolones as a potent antibacterial agent: Synthesis and computational molecular modeling. Mol Divers 2021; 26:1581-1596. [PMID: 34341943 DOI: 10.1007/s11030-021-10287-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
Design and synthesis of novel series of 1,3,4-oxadiazoles containing FQs derivatives and screened their antibacterial, antimycobacterial properties. The synthesized compounds were characterized by different spectral techniques like IR, 1H NMR, 13C NMR, mass and elemental analysis. The results of the antimicrobial activity and compounds 6d, 6b, 6e, 6f and 6a demonstrated potent antibacterial activities with zone of inhibition of 42, 36, 37, 34 and 30 mm against S. aureus, E. faecalis, S. pneumoniae, E. coli and K. pneumoniae, respectively. 1,3,4-Oxadiazole derivatives 6a, 6b, 6 g were showed excellent antimycobacterial activity against M. smegmatis H37Rv with MICs 22.35, 16.20, 20.28 µg/mL, respectively. FQs 6d and 6b exhibited highest hydrogen bonding interactions with Asp83 (3.11 A˚), Ser80 (2.15 A˚) Asp27 (σ-σ), Arg87 (Π-Π), Arg87 (Π-Π), Ser80 (σ-σ), Ala84 (σ-σ) and binding energies ΔG = - 6.41, - 6.97 kcal/mol with active site of topoisomerase-IV from S. pneumoniae [4KPE]. We performed a computational investigation of compounds 6a-j for their absorption, distribution, metabolism and excretion (ADME) properties by using the Molinspiration, Molsoft toolkits. The ligands 6f, 6d and 6b reveal the highest pharmacokinetic properties and possess maximum drug-likeness model score 1.59, 1.46 and 1.23, respectively.
Collapse
Affiliation(s)
- Tejeswara Rao Allaka
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India.
| | - Bhaskar Kummari
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Naveen Polkam
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Naveen Kuntala
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Kalyani Chepuri
- Centre for Biotechnology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Jaya Shree Anireddy
- Centre for Chemical Sciences and Technology, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad, Telangana, 500085, India
| |
Collapse
|
7
|
Phytochemistry, Bioactivities, Pharmacokinetics and Toxicity Prediction of Selaginella repanda with Its Anticancer Potential against Human Lung, Breast and Colorectal Carcinoma Cell Lines. Molecules 2021; 26:molecules26030768. [PMID: 33540783 PMCID: PMC7867377 DOI: 10.3390/molecules26030768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, we investigated the bioactive potential (antibacterial and antioxidant), anticancer activity and detailed phytochemical analysis of Selaginellarepanda (S. repanda) ethanolic crude extract for the very first time using different in vitro approaches. Furthermore, computer-aided prediction of pharmacokinetic properties and safety profile of the identified phytoconstituents were also employed in order to provide some useful insights for drug discovery. S. repanda, which is a rich source of potent natural bioactive compounds, showed promising antibacterial activity against the tested pathogenic bacteria (S. aureus, P. aeruginosa, E. coli and S. flexneri). The crude extract displayed favorable antioxidant activity against both 2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC50 = 231.6 μg/mL) and H2O2 (IC50 = 288.3 μg/mL) molecules. S. repanda also showed favorable and effective anticancer activity against all three malignant cancer cells in a dose/time dependent manner. Higher activity was found against lung (A549) (IC50 = 341.1 μg/mL), followed by colon (HCT-116) (IC50 = 378.8 μg/mL) and breast (MCF-7) (IC50 = 428.3 μg/mL) cancer cells. High resolution-liquid chromatography–mass spectrometry (HR-LC–MS) data of S. repanda crude extract revealed the presence of diverse bioactive/chemical components, including fatty acids, alcohol, sugar, flavonoids, alkaloids, terpenoids, coumarins and phenolics, which can be the basis and major cause for its bioactive potential. Therefore, achieved results from this study confirmed the efficacy of S. repanda and a prospective source of naturally active biomolecules with antibacterial, antioxidant and anticancer potential. These phytocompounds alone with their favorable pharmacokinetics profile suggests good lead and efficiency of S. repanda with no toxicity risks. Finally, further in vivo experimental investigations can be promoted as probable candidates for various therapeutic functions, drug discovery and development.
Collapse
|
8
|
Mohammed AA, Suaifan GA, Shehadeh MB, Okechukwu PN. Design, synthesis and antimicrobial evaluation of novel glycosylated-fluoroquinolones derivatives. Eur J Med Chem 2020; 202:112513. [DOI: 10.1016/j.ejmech.2020.112513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 01/26/2023]
|
9
|
Adnan M, Patel M, Deshpande S, Alreshidi M, Siddiqui AJ, Reddy MN, Emira N, De Feo V. Effect of Adiantum philippense Extract on Biofilm Formation, Adhesion With Its Antibacterial Activities Against Foodborne Pathogens, and Characterization of Bioactive Metabolites: An in vitro-in silico Approach. Front Microbiol 2020; 11:823. [PMID: 32477292 PMCID: PMC7237743 DOI: 10.3389/fmicb.2020.00823] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Adiantum philippense (A. philippense), an ethnomedicinally important fern, has become an interesting herb in the search for novel bioactive metabolites, which can also be used as therapeutic agents. Primarily, in this study, A. philippense crude extract was screened for its phytochemical constituents, antagonistic potential, and effect on bacterial adhesion and biofilm formation against common food pathogens. Phytochemical profiling of A. philippense was carried out by using High Resolution-Liquid Chromatography and Mass Spectroscopy (HR-LCMS) followed by antibacterial activity via agar cup/well diffusion, broth microdilution susceptibility methods, and growth curve analysis. Antibiofilm potency and efficacy were assessed on the development, formation, and texture of biofilms through light microscopy, fluorescent microscopy, scanning electron microscopy, and the assessment of exopolysaccharide production. Correspondingly, a checkerboard test was performed to evaluate the combinatorial effect of A. philippense and chloramphenicol. Lastly, molecular docking studies of identified phytochemicals with adhesin proteins of tested food pathogens, which helps the bacteria in surface attachment and leads to biofilm formation, were assessed. A. philippense crude extract was found to be active against all tested food pathogens, displaying the rapid time-dependent kinetics of bacterial killing. A. philippense crude extract also impedes the biofilm matrix by reducing the total content of exopolysaccharide, and, likewise, the microscopic images revealed a great extent of disruption in the architecture of biofilms. A synergy was observed between A. philippense crude extract and chloramphenicol for E. coli, S. aureus, and P. aeruginosa, whereas an additive effect was observed for S. flexneri. Various bioactive phytochemicals were categorized from A. philippense crude extract using HR-LCMS. The molecular docking of these identified phytochemicals was interrelated with the active site residues of adhesin proteins, IcsA, Sortase A, OprD, EspA, and FimH from S. flexneri, S. aureus, P. aeruginosa, and E. coli, respectively. Thus, our findings represent the bioactivity and potency of A. philippense crude extract against food pathogens not only in their planktonic forms but also against/in biofilms for the first time. We have also correlated these findings with the possible mechanism of biofilm inhibition via targeting adhesin proteins, which could be explored further to design new bioactive compounds against biofilm producing foodborne bacterial pathogens.
Collapse
Affiliation(s)
- Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mitesh Patel
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Sumukh Deshpande
- Central Biotechnology Services, College of Biomedical and Life Sciences, Cardiff University, Cardiff, United Kingdom
| | - Mousa Alreshidi
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Mandadi Narsimha Reddy
- Department of Biosciences, Bapalal Vaidya Botanical Research Centre, Veer Narmad South Gujarat University, Surat, India
| | - Noumi Emira
- Department of Biology, College of Science, University of Ha'il, Ha'il, Saudi Arabia
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, Fisciano, Italy
| |
Collapse
|
10
|
Mohammed HH, Abuo-Rahma GEDA, Abbas SH, Abdelhafez ESM. Current Trends and Future Directions of Fluoroquinolones. Curr Med Chem 2019; 26:3132-3149. [DOI: 10.2174/0929867325666180214122944] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 10/16/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022]
Abstract
Fluoroquinolones represent an interesting synthetic class of antimicrobial agents with broad spectrum and potent activity. Since the discovery of nalidixic acid, the prototype of quinolones, several structural modifications to the quinolone nucleus have been carried out for improvement of potency, spectrum of activity, and to understand their structure activity relationship (SAR). The C-7 substituent was reported to have a major impact on the activity. Accordingly, Substitution at C-7 or its N-4-piperazinyl moiety was found to affect potency, bioavailability, and physicochemical properties. Also, it can increase the affinity towards mammalian topoisomerases that may shift quinolones from antibacterial to anticancer candidates. Moreover, the presence of DNA topoisomerases in both eukaryotic and prokaryotic cells makes them excellent targets for chemotherapeutic intervention in antibacterial and anticancer therapies. Based on this concept, several fluoroquionolones derivatives have been synthesized and biologically evaluated as antibacterial, antituberculosis, antiproliferative, antiviral and antifungal agents. This review is an attempt to focus on the therapeutic prospects of fluoroquinolones with an updated account on their atypical applications such as antitubercular and anticancer activities.
Collapse
Affiliation(s)
- Hamada H.H. Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | - Samar H. Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | |
Collapse
|
11
|
Liu Y, Wang W, Yan H, Wang D, Zhang M, Sun S. Anti- Candida activity of existing antibiotics and their derivatives when used alone or in combination with antifungals. Future Microbiol 2019; 14:899-915. [PMID: 31394935 DOI: 10.2217/fmb-2019-0076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Fungal infections are a growing challenge in immunocompromised patients, especially candidiasis. The prolonged use of traditional antifungals to treat Candida infection has caused the emergence of drug resistance, especially fluconazole. Therefore, new therapeutic strategies for Candida infection are warranted. Recently, attention has been paid to the anti-Candida activity of antibiotics and their derivatives. Studies revealed that a series of antibiotics/derivatives displayed potential anti-Candida activity and some of them could significantly increase the susceptibility of antifungals. Interestingly, the derivatives of aminoglycosides were even more active than fluconazole/itraconazole/posaconazole. This article reviews the anti-Candida activities and mechanisms of antibiotics/derivatives used alone or in combination with antifungals. This review will helpfully provide novel insights for overcoming Candida resistance and discovering new antifungals.
Collapse
Affiliation(s)
- Yaxin Liu
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Weixin Wang
- Department of Pharmacy, Taishan hospital of Shandong Province, Taian, Shandong Province, People's Republic of China
| | - Haiying Yan
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| | - Decai Wang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
| | - Min Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, People's Republic of China
- Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, the First Hospital Affiliated with Shandong First Medical University, Jinan 250014, People's Republic of China
| |
Collapse
|
12
|
Mohammed HH, Abdelhafez ESM, Abbas SH, Moustafa GA, Hauk G, Berger JM, Mitarai S, Arai M, Abd El-Baky RM, Abuo-Rahma GEDA. Design, synthesis and molecular docking of new N-4-piperazinyl ciprofloxacin-triazole hybrids with potential antimicrobial activity. Bioorg Chem 2019; 88:102952. [DOI: 10.1016/j.bioorg.2019.102952] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 04/20/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022]
|
13
|
Evaluation of antioxidant and antimicrobial properties of solvent extracts of agro-food by-products (cashew nut shell, coconut shell and groundnut hull). ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.anres.2018.10.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Conventional and microwave prompted synthesis, antioxidant, anticholinesterase activity screening and molecular docking studies of new quinolone-triazole hybrids. Bioorg Chem 2018; 78:236-248. [DOI: 10.1016/j.bioorg.2018.03.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/09/2018] [Accepted: 03/18/2018] [Indexed: 11/22/2022]
|
15
|
Rubini D, Banu SF, Nisha P, Murugan R, Thamotharan S, Percino MJ, Subramani P, Nithyanand P. Essential oils from unexplored aromatic plants quench biofilm formation and virulence of Methicillin resistant Staphylococcus aureus. Microb Pathog 2018; 122:162-173. [PMID: 29920307 DOI: 10.1016/j.micpath.2018.06.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 12/31/2022]
Abstract
In the current study we have evaluated the antibiofilm and antivirulent properties of unexplored essential oils (EOs) obtained from Pogostemon heyneanus and Cinnamomum tamala against Methicillin Resistant Staphylococcus aureus (MRSA) strains. The EOs from both the aromatic plants was screened for their ability to prevent biofilm formation and to disrupt preformed biofilms. The efficacy of both the EOs to disrupt the preformed biofilms of various MRSA strains was determined by Confocal Laser Scanning Microscopy (CLSM) and Scanning Electron Microscopy (SEM).The EOs were further able to reduce the Extracellular polymeric substance (EPS) and slime synthesis the two factors of the biofilm assemblage. The EOs was also found to be effective in reducing virulence factors like staphyloxanthin and hemolysin. In silico docking studies were performed for the major components of essential oils and dehydroxysqualene synthase of MRSA which is responsible for the synthesis of staphyloxanthin. The results suggest that (E)-nerolidol showed better binding affinity towards the enzyme. Other compounds have similar binding strengths with the enzyme. Furthermore, the synergistic effect EOs along with the commercially available DNaseI and Marine Bacterial DNase (MBD) showed that the synergistic effect had enhanced biofilm disruption ability. The results show that EOs from P. heyneanus and C. tamala has potential antivirulent and biofilm inhibitory properties against clinical and drug resistant S. aureus strains. The present study highlights the importance of bioprospecting plant based natural products as an alternative for antibiotics owing to the emergence of multi-drug resistant strains.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Prakash Nisha
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Ramar Murugan
- School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - María Judith Percino
- Laboratorio de Polímeros, Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Complejo de Ciencias, ICUAP, Edif. 103H, 22 Sur y San Claudio, Puebla, Puebla, C.P. 72570, Mexico
| | - Prabha Subramani
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India; Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
16
|
Rubini D, Farisa Banu S, Veda Hari BN, Ramya Devi D, Gowrishankar S, Karutha Pandian S, Nithyanand P. Chitosan extracted from marine biowaste mitigates staphyloxanthin production and biofilms of Methicillin- resistant Staphylococcus aureus. Food Chem Toxicol 2018; 118:733-744. [PMID: 29908268 DOI: 10.1016/j.fct.2018.06.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 01/24/2023]
Abstract
Multidrug-resistant (MDR) Staphylococcus aureus is a major cause of biofilm-associated and indwelling device related infections. The present study explores the anti-virulent and antibiofilm potency of chitosan extracted from the shells of the marine crab Portunus sanguinolentus against Methicillin Resistant Staphylococcus aureus (MRSA). The chemical characterization results revealed that the extracted chitosan (EC) has structural analogy to that of a commercial chitosan (CC). The extracted chitosan was found to be effective in reducing the staphyloxanthin pigment, a characteristic virulence feature of MRSA that promotes resistance to reactive oxygen species. Furthermore, Confocal laser scanning microscope (CLSM) revealed that EC exhibited a phenomenal dose dependent antibiofilm efficacy against mature biofilms of the standard as well as clinical MRSA strains and Scanning Electron Microscopy (SEM) confirmed EC had a higher efficacy in disrupting the thick Exopolysaccharide (EPS) layer than CC. Additionally, EC and CC did not have any cytotoxic effects when tested on lung epithelial cell lines. Thus, the study exemplifies the anti-virulent properties of a marine bioresource which is till date discarded as a biowaste.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Sanaulla Farisa Banu
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Veda Hari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India.
| | - Durai Ramya Devi
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi, 630 004, Tamil Nadu, India
| | | | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
17
|
Farisa Banu S, Rubini D, Shanmugavelan P, Murugan R, Gowrishankar S, Karutha Pandian S, Nithyanand P. Effects of patchouli and cinnamon essential oils on biofilm and hyphae formation by Candida species. J Mycol Med 2018; 28:332-339. [PMID: 29571979 DOI: 10.1016/j.mycmed.2018.02.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/24/2018] [Accepted: 02/24/2018] [Indexed: 12/01/2022]
Abstract
The prevalence and fatality rates with biofilm-associated candidal infections have remained a challenge to the medical fraternity despite major advances in the field of antifungal therapy. Traditionally, essential oils (EOs) from the aromatic plants have been found to be excellent therapeutic agents to treat fungal ailments. The present study explores the antivirulent and antibiofilm effects of under explored leaf EOs of Indian patchouli EO extracted from Pogostemon heyneanus (PH), Indian cassia from Cinnamomum tamala (CT) and camphor EO from C. camphora (CC) against Candida species. The EOs were investigated for its efficacy to disrupt the young and preformed Candida spp. biofilms and to inhibit the yeast to hyphal transition, a hallmark virulent trait of C. albicans. The ability of these EOs to inhibit metabolically active cells was assessed through XTT assay. Of these three EOs, CT EO showed enhanced biofilm inhibition than others and hence it was further selected to study its biomass inhibition potential and exopolysaccharide layer disruption ability. The CT EO reduced the biomass of the preformed biofilms of all three Candida strains, which was supported by confocal microscopy. It also disrupted the exopolysaccharide layer of the Candida strains as shown by scanning electron microscopy. The present findings validate the effectiveness of EOs against the virulence of Candida spp. and emphasize the pharmaceutical potential of several native but yet unexplored wild aromatic plants in the prospect of therapeutic application.
Collapse
Affiliation(s)
- S Farisa Banu
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - D Rubini
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - P Shanmugavelan
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - R Murugan
- School of Chemical and Biotechnology, SASTRA University, 613401 Thanjavur, Tamil Nadu, India
| | - S Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, 630003 Karaikudi, Tamil Nadu, India
| | - S Karutha Pandian
- Department of Biotechnology, Science Campus, Alagappa University, 630003 Karaikudi, Tamil Nadu, India
| | - P Nithyanand
- Biofilm Biology Laboratory, School of Chemical and Biotechnology, Anusandhan Kendra II, SASTRA University, 613401 Thanjavur, Tamil Nadu, India; Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA University, 613401 Thanjavur, Tamil Nadu, India.
| |
Collapse
|
18
|
Perumal M, Sengodu P, Venkatesan S, Perumal S, Antony S, Paramsivam M. Polybenzimidazole-Triphenylphosphene-Catalyzed One-Pot Synthesis and Evaluation of Dihydropyridine Derivative as Antibiotics and Antifungals. ChemistrySelect 2017. [DOI: 10.1002/slct.201700918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Muthuraja Perumal
- Department of Chemistry; Alagappa University; Karaikudi-630006 India
| | - Prakash Sengodu
- Department of Chemistry; Alagappa University; Karaikudi-630006 India
| | | | | | - Susaimanickam Antony
- Department of Chemistry; Arumugam Pillai Seethai Ammal College; Thirupattur-630211 India
| | | |
Collapse
|
19
|
Mohammed HHH, Abd El-Hafeez AA, Abbas SH, Abdelhafez ESMN, Abuo-Rahma GEDA. New antiproliferative 7-(4-(N-substituted carbamoylmethyl)piperazin-1-yl) derivatives of ciprofloxacin induce cell cycle arrest at G2/M phase. Bioorg Med Chem 2016; 24:4636-4646. [PMID: 27555286 DOI: 10.1016/j.bmc.2016.07.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/28/2016] [Accepted: 07/31/2016] [Indexed: 12/11/2022]
Abstract
New N-4-piperazinyl derivatives of ciprofloxacin 2a-g were prepared and tested for their cytotoxic activity. The primary in vitro one dose anticancer assay experienced promising cytotoxic activity against different cancer cell lines especially non-small cell lung cancer. Independently, compounds 2b, 2d, 2f and 2g showed anticancer activity against human non-small cell lung cancer A549 cells (IC50=14.8, 24.8, 23.6 and 20.7μM, respectively) compared to the parent ciprofloxacin (IC50 >100μM) and doxorubicin as a positive control (IC50=1μM). The flow cytometric analysis for 2b showed dose dependent G2/M arrest in A549 cells. Also, 2b increased the expression of p53 and p21 and decreased the expression of cyclin B1 and Cdc2 proteins in A549 cells without any effect on the same proteins expression in WI-38 cells. Specific inhibition of p53 by pifithrin-α reversed the G2/M phase arrest induced by the 2b compound, suggesting contribution of p53 to increase. Taken together, 2b induced G2/M phase arrest via p53/p21 dependent pathway. The results indicate that 2b can be used as a lead compound for further development of new derivatives against non-small cell lung cancer.
Collapse
Affiliation(s)
- Hamada H H Mohammed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Amer Ali Abd El-Hafeez
- Pharmacology and Experimental Oncology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | | | | |
Collapse
|
20
|
Construction of 1,3-disubstituted 4-oxo-1,4-dihydroquinolines as a potential antibacterial agents. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2586-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
21
|
Cui SF, Addla D, Zhou CH. Novel 3-Aminothiazolquinolones: Design, Synthesis, Bioactive Evaluation, SARs, and Preliminary Antibacterial Mechanism. J Med Chem 2016; 59:4488-510. [DOI: 10.1021/acs.jmedchem.5b01678] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sheng-Feng Cui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Department of Public Security Technology, Railway Police College, Zhengzhou 450053, China
| | - Dinesh Addla
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
23
|
Nithyanand P, Beema Shafreen RM, Muthamil S, Karutha Pandian S. Usnic acid inhibits biofilm formation and virulent morphological traits of Candida albicans. Microbiol Res 2015; 179:20-8. [PMID: 26411891 DOI: 10.1016/j.micres.2015.06.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
Abstract
Biofilm formation and the yeast to hyphal switch are considered to be important virulence factors of Candida albicans. The present study reports about the potential of usnic acid, a lichen secondary metabolite inhibiting these virulent factors. Usnic acid, at its biofilm inhibitory concentration (BIC) largely reduced the viability of the metabolically active cells in matured C. albicans biofilms, exhibited significant biofilm inhibition (65%) and prevented the property of adhesion. Light microscopic images revealed that usnic acid effectively inhibited the yeast to hyphal switch and confocal microscopy showed that usnic acid greatly reduced the thickness of matured biofilms. Furthermore, usnic acid was able to reduce various sugars present in the exopolysaccharide layer (EPS) which was also confirmed by FT-IR analysis. Taken together, the present study showcases usnic acid as a potent anti-virulent compound against C. albicans and opens up a new avenue for bioprospecting lichen secondary metabolites as anti-virulent compounds.
Collapse
Affiliation(s)
- Paramasivam Nithyanand
- Biofilm Biology Laboratory, Anusandhan Kendra II, School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India; Centre for Research on Infectious Diseases (CRID), School of Chemical & Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, Tamil Nadu, India.
| | | | - Subramanian Muthamil
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630004, Tamil Nadu, India
| | | |
Collapse
|
24
|
Vijayalakshmi P, Selvaraj C, Shafreen RMB, Singh SK, Pandian SK, Daisy P. Ligand-based pharmacophore modelling and screening of DNA minor groove binders targeting Staphylococcus aureus. J Mol Recognit 2015; 27:429-37. [PMID: 24895275 DOI: 10.1002/jmr.2363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 11/07/2022]
Abstract
The recognition of DNA by small molecules is of special importance in the design of new drugs. Many natural and synthetic compounds have the ability to interact with the minor groove of DNA. In the present study, identification of minor groove binding compounds was attained by the combined approach of pharmacophore modelling, virtual screening and molecular dynamics approach. Experimentally reported 32 minor groove binding compounds were used to develop the pharmacophore model. Based on the fitness score, best three pharmacophore hypotheses were selected and used as template for screening the compounds from drug bank database. This pharmacophore-based screening provides many compounds with the same pharmacological properties. All these compounds were subjected to four phases of docking protocols with combined Glide-quantum-polarized ligand docking approach. Molecular dynamics results indicated that selected compounds are more active and showed good interaction in the binding site of DNA. Based on the scoring parameters and energy values, the best compounds were selected, and antibacterial activity of these compounds was identified using in vitro antimicrobial techniques.
Collapse
Affiliation(s)
- Periyasamy Vijayalakshmi
- Bioinformatics Centre (BIF), PG and Research Department of Biotechnology and Bioinformatics, Holy Cross College (Autonomous), Tiruchirappalli, 620002, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
25
|
Destoumieux-Garzón D, Duperthuy M, Vanhove AS, Schmitt P, Wai SN. Resistance to Antimicrobial Peptides in Vibrios. Antibiotics (Basel) 2014; 3:540-63. [PMID: 27025756 PMCID: PMC4790380 DOI: 10.3390/antibiotics3040540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 09/25/2014] [Accepted: 10/08/2014] [Indexed: 12/19/2022] Open
Abstract
Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Marylise Duperthuy
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| | - Audrey Sophie Vanhove
- Ecology of Coastal Marine Systems, CNRS, Ifremer, University of Montpellier, IRD, Place Eugène Bataillon, CC80, 34095 Montpellier, France.
| | - Paulina Schmitt
- Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, 2373223 Valparaíso, Chile.
| | - Sun Nyunt Wai
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
26
|
Cui SF, Peng LP, Zhang HZ, Rasheed S, Vijaya Kumar K, Zhou CH. Novel hybrids of metronidazole and quinolones: synthesis, bioactive evaluation, cytotoxicity, preliminary antimicrobial mechanism and effect of metal ions on their transportation by human serum albumin. Eur J Med Chem 2014; 86:318-34. [PMID: 25173851 DOI: 10.1016/j.ejmech.2014.08.063] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 08/22/2014] [Accepted: 08/23/2014] [Indexed: 02/05/2023]
Abstract
A novel series of hybrids of metronidazole and quinolones as antimicrobial agents were designed and synthesized. Most prepared compounds exhibited good or even stronger antimicrobial activities in comparison with reference drugs. Furthermore, these highly active metronidazole-quinolone hybrids showed appropriate ranges of pKa, log P and aqueous solubility to pharmacokinetic behaviors and no obvious toxicity to A549 and human hepatocyte LO2 cells. Their competitive interactions with metal ions to HSA revealed that the participation of Mg(2+) ion in compound 7d-HSA association could result in a concentration increase of free compound 7d. Molecular modeling and experimental investigation of compound 7d with DNA suggested that possible antibacterial mechanism might be in relation with multiple binding sites between bioactive molecules and topo IV-DNA complex.
Collapse
Affiliation(s)
- Sheng-Feng Cui
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Li-Ping Peng
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Hui-Zhen Zhang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Syed Rasheed
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Kannekanti Vijaya Kumar
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
27
|
Veisi H, Naeimi A, Kordestani D, Faraji AR. Novel and Efficient Route for the Synthesis of 2-( N, N-dimethyl)amino-4-amino-6-aryl-1,3,5-triazines and 2,4-diamino-6-aryl-1,3,5-triazines catalysed by ionic liquid (IL) 1-butyl-3-methyl imidazolium hydroxide [bmim][OH]. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hojat Veisi
- Department of Chemistry; Payame Noor University; 19395-4697 Tehran Iran
| | - Alireza Naeimi
- Department of Chemistry; Payame Noor University; 19395-4697 Tehran Iran
| | - Davood Kordestani
- Department of Chemistry; Payame Noor University; 19395-4697 Tehran Iran
| | - Ali Reza Faraji
- Faculty of Chemistry, Pharmaceutical Sciences Branch; Islamic Azad University; Tehran Iran
| |
Collapse
|
28
|
Renjith R, Mary YS, Panicker CY, Varghese HT, Pakosińska-Parys M, Alsenoy CV, Manojkumar TK. Vibrational spectroscopic and computational study of 1,7,8,9-Tetrachloro-4-(4-bromo-butyl)-10,10-dimethoxy-4-aza-tricyclo[5.2.1.0(2,6)] dec-8-ene-3,5-dione. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 124:480-491. [PMID: 24508886 DOI: 10.1016/j.saa.2014.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/17/2013] [Accepted: 01/10/2014] [Indexed: 06/03/2023]
Abstract
The optimized molecular structure, vibrational frequencies, corresponding vibrational assignments of 1,7,8,9-Tetrachloro-4-(4-bromo-butyl)-10,10-dimethoxy-4-aza-tricyclo[5.2.1.0(2,6)] dec-8-ene-3,5-dione (TDAD) have been investigated experimentally and theoretically using Gaussian09 software package. Potential energy distribution of normal modes of vibrations was done using GAR2PED program. Gauge-including atomic orbital (1)H NMR chemical shifts calculations were carried out and compared with experimental data. The HOMO and LUMO analysis is used to determine the charge transfer within the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. Molecular Electrostatic Potential was performed by the DFT method and infrared intensities and Raman activities are also reported. Mulliken's net charges have been calculated and compared with the atomic natural charges. First hyperpolarizability is calculated in order to find its role in non-liner optics. The calculated geometrical parameters are in agreement with that of similar derivatives.
Collapse
Affiliation(s)
- R Renjith
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India
| | - Y Sheena Mary
- Department of Physics, Fatima Mata National College, Kollam, Kerala, India
| | - C Yohannan Panicker
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India.
| | | | | | - C Van Alsenoy
- Department of Chemistry, University of Antwerp, B2610 Antwerp, Belgium
| | - T K Manojkumar
- Indian Institute of Information Technology and Management-Kerala, Technopark Campus, Trivandrum, Kerala, India
| |
Collapse
|
29
|
Xiao ZP, Wang XD, Wang PF, Zhou Y, Zhang JW, Zhang L, Zhou J, Zhou SS, Ouyang H, Lin XY, Mustapa M, Reyinbaike A, Zhu HL. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur J Med Chem 2014; 80:92-100. [PMID: 24769347 DOI: 10.1016/j.ejmech.2014.04.037] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/10/2014] [Accepted: 04/11/2014] [Indexed: 12/15/2022]
Abstract
Based on a rationally conceived pharmacophore model to build a multi-target bacterial topoisomerase inhibitor, twenty-one fluoroquinolone-flavonoid hybrids were synthesized. Some obtained hybrids show excellent antibacterial activity against drug-resistant microorganisms with narigenin-ciprofloxacin being the most active, showing 8, 43, 23 and 88 times better activity than ciprofloxacin against Escherichia coli ATCC 35218, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923 and Candida albicans ATCC 90873, respectively. Drug accumulation and DNA supercoiling assays of two active analogues revealed potent inhibition of both the DNA gyrase and efflux pump, confirming the desired dual mode of action. Molecular docking study disclosed that the introduced flavonoid moiety not only provides several additional interactions but also does not disturb the binding mode of the floxacin moiety. Our data also demonstrated that development of antifungals is possible from fluoroquinolones modified at C-7 position.
Collapse
Affiliation(s)
- Zhu-Ping Xiao
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| | - Xu-Dong Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Peng-Fei Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | - Yin Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Jing-Wen Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Jiao Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Sha-Sha Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Hui Ouyang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Xiao-Yi Lin
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Manzira Mustapa
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Asaimuguli Reyinbaike
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China
| | - Hai-Liang Zhu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, PR China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
30
|
Inhibition of Candida albicans virulence factors by novel levofloxacin derivatives. Appl Microbiol Biotechnol 2014; 98:6775-85. [DOI: 10.1007/s00253-014-5719-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/06/2014] [Accepted: 03/22/2014] [Indexed: 12/11/2022]
|
31
|
Shafreen RMB, Selvaraj C, Singh SK, Pandian SK. Exploration of fluoroquinolone resistance in Streptococcus pyogenes: comparative structure analysis of wild-type and mutant DNA gyrase. J Mol Recognit 2013; 26:276-85. [PMID: 23595809 DOI: 10.1002/jmr.2270] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/16/2013] [Accepted: 01/29/2013] [Indexed: 12/20/2022]
Abstract
Quinolone resistance-determining region is known to be the druggability site of the target protein that undergoes frequent mutation and thus renders quinolone resistance. In the present study, ligands were tested for their inhibitory activity against DNA gyrase of Streptococcus pyogenes involved in DNA replication. In silico mutational analysis on modelled gyrase A revealed that GLU85 had the most possible interactions with all the ligands used for the study. The amino acid residue GLU85 had also been predicted with an essential role of maintaining the three-dimensional structure of the protein. When introduced with a mutation (GLU 85 LYS) on this particular residue, it had readily denatured the whole α-helix (from 80 to 90 amino acids). This was confirmed through the molecular dynamics simulation and revealed that this single mutation can cause many functional and structural changes. Furthermore, LYS85 mutation has altered the original secondary structure of the protein, which in turn led to the steric hindrance during the ligand-receptor interaction. The results based on the G-score revealed that ligands have reduced interaction with the mutant protein. The semisynthetic fluoroquinolone 6d, which is an exception, forms a strong interaction with the mutant protein and was experimentally verified using the antimicrobial test. Hence, the present study unravels the fact that mutation at the drug binding site is the major cause for different level of resistance by the S. pyogenes when exposed against the varying concentrations of the fluoroquinolones. Furthermore, a comparative assessment of quinolone derivative with the older generation fluoroquinolones will be of great impact for S. pyogenes-related infections.
Collapse
Affiliation(s)
- Raja Mohmed Beema Shafreen
- Bioinformatics Infrastructure Facility, Department of Biotechnology, Alagappa University, Karaikudi 630 003, Tamil Nadu, India
| | | | | | | |
Collapse
|
32
|
Kathrotiya HG, Patel MP. Synthesis and identification of β-aryloxyquinoline based diversely fluorine substituted N-aryl quinolone derivatives as a new class of antimicrobial, antituberculosis and antioxidant agents. Eur J Med Chem 2013; 63:675-84. [DOI: 10.1016/j.ejmech.2013.03.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/28/2012] [Accepted: 03/08/2013] [Indexed: 10/27/2022]
|
33
|
Biofilm formation by Streptococcus pyogenes: Modulation of exopolysaccharide by fluoroquinolone derivatives. J Biosci Bioeng 2011; 112:345-50. [DOI: 10.1016/j.jbiosc.2011.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 06/03/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
|
34
|
Patel RV, Kumari P, Rajani DP, Chikhalia KH. Synthesis, characterization and pharmacological activities of 2-[4-cyano-(3-trifluoromethyl)phenyl amino)]-4-(4-quinoline/coumarin-4-yloxy)-6-(fluoropiperazinyl)-s-triazines. J Fluor Chem 2011. [DOI: 10.1016/j.jfluchem.2011.06.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Bielenica A, Kossakowski J, Struga M, Dybała I, Loddo R, Ibba C, La Colla P. Synthesis and Biological Evaluation of New 3-Phenyl-1-[(4-arylpiperazin-1-yl)alkyl]-piperidine-2,6-diones. Sci Pharm 2011; 79:225-38. [PMID: 21773062 PMCID: PMC3134852 DOI: 10.3797/scipharm.1012-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 02/10/2011] [Indexed: 12/01/2022] Open
Abstract
A set of 13 alkyl derivatives of 3-phenylpiperidine-2,6-dione were synthesized. Newly obtained compounds were investigated in vitro against HIV-1 and other selected viruses. The benzyl 3f and fluorophenyl 3g derivatives showed moderate protection against CVB-2 and the compound 3g also against HSV-1. Derivatives were tested also for their antibacterial and antifungal activity. The molecular structures of 3a and 3d were determined by an X-ray analysis.
Collapse
Affiliation(s)
- Anna Bielenica
- Department of Medical Chemistry, First Faculty of Medicine, The Medical University of Warsaw, 3 Oczki Street, 02-007 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
36
|
Chai Y, Wang J, Liu M, Yi H, Sun L, You X, Guo H. Design, synthesis and in vitro antibacterial activity of 7-(4-alkoxyimino-3-aminomethylpiperidin-1-yl)fluoroquinolone derivatives. Bioorg Med Chem Lett 2011; 21:3377-80. [DOI: 10.1016/j.bmcl.2011.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 11/29/2022]
|
37
|
Synthesis and in vitro antibacterial activity of 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives. Bioorg Med Chem Lett 2010; 21:928-31. [PMID: 21232952 DOI: 10.1016/j.bmcl.2010.12.073] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 12/14/2010] [Accepted: 12/15/2010] [Indexed: 11/21/2022]
Abstract
We report herein the design and synthesis of novel 7-(3-alkoxyimino-5-amino/methylaminopiperidin-1-yl)fluoroquinolone derivatives based on the structures of new fluoroquinolones IMB and DZH. The antibacterial activity of these newly synthesized compounds was also evaluated and compared with gemifloxacin, ciprofloxacin, and levofloxacin. Results revealed that all of the target compounds 10-27 have good potency in inhibiting the growth of Staphylococcus aureus including MSSA (MIC: 0.125-8 μg/mL), Staphylococcus epidermidis including MRSE (MIC: 0.25-16 μg/mL), Streptococcus pneumoniae (MIC: 0.125-4 μg/mL), and Escherichia coli (MIC: 0.25-0.5 μg/mL). In particular, some compounds showed useful activity against several fluoroquinolone-resistant strains, and the most active compound 15 was found to be 16-128, 2-32, and 4-8-fold more potent than the three reference drugs against fluoroquinolone-resistant MSSA, MRSA, and MRSE.
Collapse
|