1
|
Garrepalli S, Gudipati R, Kapavarapu R, Ravindhranath K, Pal M. Synthesis and characterization of two known and one new impurities of dolutegravir: In silico evaluation of certain intermediates against SARS CoV-2 O-ribose methyltransferase (OMTase). J Mol Struct 2023; 1271:133992. [PMID: 36034527 PMCID: PMC9392419 DOI: 10.1016/j.molstruc.2022.133992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 07/20/2022] [Accepted: 08/19/2022] [Indexed: 02/05/2023]
Abstract
Besides its use against HIV infection the marketed anti-retroviral drug dolutegravir attracted attention as a potential agent against COVID-19 in multiple AI (artificial intelligence) based studies. Due to our interest in accessing the impurities of this drug we report the synthesis and characterization of three impurities of dolutegravir one of which is new. The synthesis of O-methyl ent-dolutegravir was accomplished in three-steps the first one involved the construction of fused 1,3-oxazinane ring. The cleavage of -OEt ether moiety followed by methylation afforded the target compound. The second impurity i.e. N-(2,4-difluorobenzyl)-4-methoxy-3-oxobutanamide was synthesized via a multi-step method involving sequentially the keto group protection, ester hydrolysis, acid chloride formation followed by the reaction with amine and finally keto group deprotection. The synthesis of new or dimer impurity was carried out via another multi-step method similar to the previous one starting from ethyl 4-chloro acetoacetate. The methodology involved preparation of ether derivative, keto group protection, ester hydrolysis, preparation of amide derivative via acid chloride formation in situ and then keto group deprotection for a longer duration. The last step afforded the target compound for which a plausible reaction mechanism has been proposed. All three impurities were prepared in gram scale (minimum 2 g and maximum 8 g). The in silico evaluation of three selected synthesized intermediates e.g. 7, 8 and 9 (structurally similar to dolutegravir) against SARS CoV-2 O-ribose methyltransferase (OMTase) (PDB: 3R24) indicated that compound 7 could be of interest as a possible inhibitor of this protein.
Collapse
Affiliation(s)
- Sailaja Garrepalli
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India,Synix Labs, 5-5-35/33/1, NCS complex, First floor, Prashanth nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | - Ramesh Gudipati
- Synix Labs, 5-5-35/33/1, NCS complex, First floor, Prashanth nagar, Kukatpally, Hyderabad, Telangana 500072, India
| | | | - Kunta Ravindhranath
- Department of Chemistry, Koneru Lakshmaiah Education Foundation, Guntur District, Vaddeswaram, Andhra Pradesh 522502, India,Corresponding authors
| | - Manojit Pal
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India,Corresponding authors
| |
Collapse
|
2
|
Lotfaliei M, Rezaee E, Hajimahdi Z, Mahboubi Rabbani M, Zabihollahi R, Aghasadeghi MR, Tabatabai SA. Novel 2-(Diphenylmethylidene) Malonic Acid Derivatives as Anti-HIV Agents: Molecular Modeling, Synthesis and Biological Evaluation. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH 2021; 21:e123827. [PMID: 35765501 PMCID: PMC9191218 DOI: 10.5812/ijpr.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/04/2021] [Accepted: 12/07/2021] [Indexed: 11/26/2022]
Abstract
HIV, the virus that causes AIDS (acquired immunodeficiency syndrome), is one of the world's most severe health and development challenges. In this study, a novel series of 2-(diphenyl methylidene) malonic acid derivatives were designed as triple inhibitors of HIV reverse transcriptase, integrase, and protease. Docking models revealed that the target compounds have appropriate affinities to the active sites of the three HIV key enzymes. The synthesized malonic acid analogs were evaluated for their activities against the HIV virus (NL4-3) in HeLa cells cultures. Among them, compound 3 was the most potent anti-HIV agent with 55.20% inhibition at 10 μM and an EC50 of 8.4 μM. Interestingly, all the synthesized compounds do not show significant cytotoxicity at a concentration of 10 μM. As a result, these compounds may serve as worthy hits for the development of novel anti-HIV-agents.
Collapse
Affiliation(s)
- Mehrnaz Lotfaliei
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Zahra Hajimahdi
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahboubi Rabbani
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Corresponding Author: Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Ercan S, Şenyiğit B, Şenses Y. Dual inhibitor design for HIV-1 reverse transcriptase and integrase enzymes: a molecular docking study. J Biomol Struct Dyn 2019; 38:573-580. [DOI: 10.1080/07391102.2019.1700166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Selami Ercan
- School of Health Sciences, Department of Nursing, Batman University, Batman, Turkey
| | | | - Yusuf Şenses
- Institute of Science, Batman University, Batman, Turkey
| |
Collapse
|
4
|
Pedras MSC, Abdoli A. Methoxycamalexins and related compounds: Syntheses, antifungal activity and inhibition of brassinin oxidase. Bioorg Med Chem 2018; 26:4461-4469. [DOI: 10.1016/j.bmc.2018.07.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/31/2022]
|
5
|
Ciubotaru M, Musat MG, Surleac M, Ionita E, Petrescu AJ, Abele E, Abele R. The Design of New HIV-IN Tethered Bifunctional Inhibitors Using Multiple Microdomain Targeted Docking. Curr Med Chem 2018; 26:2574-2600. [PMID: 29623824 DOI: 10.2174/0929867325666180406114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Mihaela Georgiana Musat
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Marius Surleac
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Elena Ionita
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Andrei Jose Petrescu
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Edgars Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Ramona Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
6
|
Du W, Zuo K, Sun X, Liu W, Yan X, Liang L, Wan H, Chen F, Hu J. An effective HIV-1 integrase inhibitor screening platform: Rationality validation of drug screening, conformational mobility and molecular recognition analysis for PFV integrase complex with viral DNA. J Mol Graph Model 2017; 78:96-109. [PMID: 29055187 DOI: 10.1016/j.jmgm.2017.10.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 01/26/2023]
Abstract
As an important target for the development of novel anti-AIDS drugs, HIV-1 integrase (IN) has been widely concerned. However, the lack of a complete accurate crystal structure of HIV-1 IN greatly blocks the discovery of novel inhibitors. In this work, an effective HIV-1 IN inhibitor screening platform, namely PFV IN, was filtered from all species of INs. Next, the 40.8% similarity with HIV-1 IN, as well as the high efficiency of virtual screening and the good agreement between calculated binding free energies and experimental ones all proved PFV IN is a promising screening platform for HIV-1 IN inhibitors. Then, the molecular recognition mechanism of PFV IN by its substrate viral DNA and six naphthyridine derivatives (NRDs) inhibitors was investigated through molecular docking, molecular dynamics simulations and water-mediated interactions analyses. The functional partition of NRDs IN inhibitors could be divided into hydrophobic and hydrophilic ones, and the Mg2+ ions, water molecules and conserved DDE motif residues all interacted with the hydrophilic partition, while the bases in viral DNA and residues like Tyr212, Pro214 interacted with the hydrophobic one. Finally, the free energy landscape (FEL) and cluster analyses were performed to explore the molecular motion of PFV IN-DNA system. It is found that the association with NRDs inhibitors would obviously decrease the motion amplitude of PFV IN-DNA, which may be one of the most potential mechanisms of IN inhibitors. This work will provide a theoretical basis for the inhibitor design based on the structure of HIV-1 IN.
Collapse
Affiliation(s)
- Wenyi Du
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Ke Zuo
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xin Sun
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Wei Liu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Xiao Yan
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Li Liang
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China
| | - Hua Wan
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, China
| | - Fengzheng Chen
- Department of Chemistry, Leshan Normal University, Leshan, China
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Sichuan Industrial Institute of Antibiotics, Key Laboratory of Medicinal and Edible Plants Resources Development, Chengdu University, Chengdu, China.
| |
Collapse
|
7
|
Llabres-Campaner PJ, Ballesteros-Garrido R, Ballesteros R, Abarca B. β-Amino alcohols from anilines and ethylene glycol through heterogeneous Borrowing Hydrogen reaction. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Ercan S. Docking and Molecular Dynamics Calculations of Some Previously Studied and newly Designed Ligands to Catalytic Core Domain of HIV-1 Integrase and an Investigation to Effects of Conformational Changes of Protein on Docking Results. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2016. [DOI: 10.18596/jotcsa.287327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
9
|
Singh R, Yadav P, Urvashi, Tandon V. Novel Dioxolan Derivatives of Indole as HIV-1 Integrase Strand Transfer Inhibitors Active Against RAL Resistant Mutant Virus. ChemistrySelect 2016. [DOI: 10.1002/slct.201601024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Raja Singh
- Special Centre for Molecular Medicine; Jawaharlal Nehru University
| | - Pooja Yadav
- Department of Chemistry; University of Delhi
| | - Urvashi
- Department of Chemistry; University of Delhi
| | - Vibha Tandon
- Department of Chemistry; University of Delhi
- Special Centre for Molecular Medicine; Jawaharlal Nehru University
| |
Collapse
|
10
|
Hajimahdi Z, Zabihollahi R, Aghasadeghi MR, Ashtiani SH, Zarghi A. Novel quinolone-3-carboxylic acid derivatives as anti-HIV-1 agents: design, synthesis, and biological activities. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1631-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Patel SB, Patel BD, Pannecouque C, Bhatt HG. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur J Med Chem 2016; 117:230-40. [DOI: 10.1016/j.ejmech.2016.04.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
|
12
|
Sachithanandham J, Konda Reddy K, Solomon K, David S, Kumar Singh S, Vadhini Ramalingam V, Alexander Pulimood S, Cherian Abraham O, Rupali P, Sridharan G, Kannangai R. Effect of HIV-1 Subtype C integrase mutations implied using molecular modeling and docking data. Bioinformation 2016; 12:221-230. [PMID: 28149058 PMCID: PMC5267967 DOI: 10.6026/97320630012221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 01/12/2023] Open
Abstract
The degree of sequence variation in HIV-1 integrase genes among infected patients and their impact on clinical response to Anti retroviral therapy (ART) is of interest. Therefore, we collected plasma samples from 161 HIV-1 infected individuals for subsequent integrase gene amplification (1087 bp). Thus, 102 complete integrase gene sequences identified as HIV-1 subtype-C was assembled. This sequence data was further used for sequence analysis and multiple sequence alignment (MSA) to assess position specific frequency of mutations within pol gene among infected individuals. We also used biophysical geometric optimization technique based molecular modeling and docking (Schrodinger suite) methods to infer differential function caused by position specific sequence mutations towards improved inhibitor selection. We thus identified accessory mutations (usually reduce susceptibility) leading to the resistance of some known integrase inhibitors in 14% of sequences in this data set. The Stanford HIV-1 drug resistance database provided complementary information on integrase resistance mutations to deduce molecular basis for such observation. Modeling and docking analysis show reduced binding by mutants for known compounds. The predicted binding values further reduced for models with combination of mutations among subtype C clinical strains. Thus, the molecular basis implied for the consequence of mutations in different variants of integrase genes of HIV-1 subtype C clinical strains from South India is reported. This data finds utility in the design, modification and development of a representative yet an improved inhibitor for HIV-1 integrase.
Collapse
Affiliation(s)
| | - Karnati Konda Reddy
- SNHRC Vellore and Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics Alagappa University, Karaikudi, Tamil Nadu, India
| | - King Solomon
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| | - Shoba David
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- SNHRC Vellore and Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics Alagappa University, Karaikudi, Tamil Nadu, India
| | | | | | | | - Pricilla Rupali
- Departments of Internal Medicine, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Gopalan Sridharan
- Christian Medical College, Vellore, Sri Sakthi Amma Institute of Biomedical Research Institute
| | - Rajesh Kannangai
- Departments of Clinical Virology Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
13
|
Pescatori L, Métifiot M, Chung S, Masoaka T, Cuzzucoli Crucitti G, Messore A, Pupo G, Madia VN, Saccoliti F, Scipione L, Tortorella S, Di Leva FS, Cosconati S, Marinelli L, Novellino E, Le Grice SFJ, Pommier Y, Marchand C, Costi R, Di Santo R. N-Substituted Quinolinonyl Diketo Acid Derivatives as HIV Integrase Strand Transfer Inhibitors and Their Activity against RNase H Function of Reverse Transcriptase. J Med Chem 2015; 58:4610-23. [PMID: 25961960 DOI: 10.1021/acs.jmedchem.5b00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bifunctional quinolinonyl DKA derivatives were first described as nonselective inhibitors of 3'-processing (3'-P) and strand transfer (ST) functions of HIV-1 integrase (IN), while 7-aminosubstituted quinolinonyl derivatives were proven IN strand transfer inhibitors (INSTIs) that also displayed activity against ribonuclease H (RNase H). In this study, we describe the design, synthesis, and biological evaluation of new quinolinonyl diketo acid (DKA) derivatives characterized by variously substituted alkylating groups on the nitrogen atom of the quinolinone ring. Removal of the second DKA branch of bifunctional DKAs, and the amino group in position 7 of quinolinone ring combined with a fine-tuning of the substituents on the benzyl group in position 1 of the quinolinone, increased selectivity for IN ST activity. In vitro, the most potent compound was 11j (IC50 = 10 nM), while the most active compounds against HIV infected cells were ester derivatives 10j and 10l. In general, the activity against RNase H was negligible, with only a few compounds active at concentrations higher than 10 μM. The binding mode of the most potent IN inhibitor 11j within the IN catalytic core domain (CCD) is described as well as its binding mode within the RNase H catalytic site to rationalize its selectivity.
Collapse
Affiliation(s)
- Luca Pescatori
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Mathieu Métifiot
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Suhman Chung
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Takashi Masoaka
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Giuliana Cuzzucoli Crucitti
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Antonella Messore
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Giovanni Pupo
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Valentina Noemi Madia
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Francesco Saccoliti
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Luigi Scipione
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Silvano Tortorella
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Francesco Saverio Di Leva
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Sandro Cosconati
- ⊥DiSTABiF, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Luciana Marinelli
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Ettore Novellino
- ∥Dipartimento di Farmacia, Università di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Stuart F J Le Grice
- §Resistance Mechanisms Laboratory, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Yves Pommier
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Christophe Marchand
- ‡Laboratory of Molecular Pharmacology and Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 5068, Bethesda, Maryland 20892-4255, United States
| | - Roberta Costi
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| | - Roberto Di Santo
- †Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" Università di Roma, P-le Aldo Moro 5, I-00185, Roma, Italy
| |
Collapse
|
14
|
Ferro S, Certo G, De Luca L, Germanò MP, Rapisarda A, Gitto R. Searching for indole derivatives as potential mushroom tyrosinase inhibitors. J Enzyme Inhib Med Chem 2015; 31:398-403. [DOI: 10.3109/14756366.2015.1029470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
15
|
Jang YJ, Chen YS, Lee CJ, Chen CH, Reddy GM, Ko CT, Lin W. Asymmetric Organocatalytic Synthesis of Highly Substituted Cyclohexenols by Domino Double-Michael Reactions of 1-Hydroxy-1,4-dien-3-ones and 2-Alkylidenemalononitriles. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Crosby DC, Lei X, Gibbs CG, Reinecke MG, Robinson WE. Mutagenesis of Lysines 156 and 159 in Human Immunodeficiency Virus Type 1 Integrase (IN) Reveals Differential Interactions between these Residues and Different IN Inhibitors. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus (HIV) type 1 integrase (IN) active site, and viral DNA-binding residues K156 and K159 are predicted to interact both with strand transfer-selective IN inhibitors (STI), e.g. L-731,988, Elvitegravir (EVG), and the FDA-approved IN inhibitor, Raltegravir (RGV), and strand transfer non-selective inhibitors, e.g. dicaffeoyltartaric acids (DCTAs), e.g. L-chicoric acid (L-CA). To test posited roles for these two lysine residues in inhibitor action we assayed the potency of L-CA and several STI against a panel of K156 and K159 mutants. Mutagenesis of K156 conferred resistance to L-CA and mutagenesis of either K156 or K159 conferred resistance to STI indicating that the cationic charge at these two viral DNA-binding residues is important for inhibitor potency. IN K156N, a reported polymorphism associated with resistance to RGV, conferred resistance to L-CA and STI as well. To investigate the apparent preference L-CA exhibits for interactions with K156, we assayed the potency of several hybrid inhibitors containing combinations of DCTA and STI pharmacophores against recombinant IN K156A or K159A. Although K156A conferred resistance to diketo acid-branched bis-catechol hybrid inhibitors, neither K156A nor K159A conferred resistance to their monocatechol counterparts, suggesting that bis-catechol moieties direct DCTAs toward K156. In contrast, STI were more promiscuous in their interaction with K156 and K159. Taken together, the results of this study indicate that DCTAs interact with IN in a manner different than that of STI and suggest that DCTAs are an attractive candidate chemotype for development into drugs potent against STI-resistant IN.
Collapse
Affiliation(s)
- David C. Crosby
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
| | - Xiangyang Lei
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Charles G. Gibbs
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - Manfred G. Reinecke
- Department of Chemistry, Texas Christian University, Fort Worth, TX 76129, USA
| | - W. Edward Robinson
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA 92697-4800, USA
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4800, USA
| |
Collapse
|
17
|
Zhang MZ, Chen Q, Yang GF. A review on recent developments of indole-containing antiviral agents. Eur J Med Chem 2014; 89:421-41. [PMID: 25462257 PMCID: PMC7115707 DOI: 10.1016/j.ejmech.2014.10.065] [Citation(s) in RCA: 561] [Impact Index Per Article: 56.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 10/20/2014] [Accepted: 10/22/2014] [Indexed: 02/07/2023]
Abstract
Indole represents one of the most important privileged scaffolds in drug discovery. Indole derivatives have the unique property of mimicking the structure of peptides and to bind reversibly to enzymes, which provide tremendous opportunities to discover novel drugs with different modes of action. There are seven indole-containing commercial drugs in the Top-200 Best Selling Drugs by US Retail Sales in 2012. There are also an amazing number of approved indole-containing drugs in the market as well as compounds currently going through different clinical phases or registration statuses. This review focused on the recent development of indole derivatives as antiviral agents with the following objectives: 1) To present one of the most comprehensive listings of indole antiviral agents, drugs on market or compounds in clinical trials; 2) To focus on recent developments of indole compounds (including natural products) and their antiviral activities, summarize the structure property, hoping to inspire new and even more creative approaches; 3) To offer perspectives on how indole scaffolds as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China; Collaborative Innovation Center of Chemical Science and Engineering, Tianjing 30071, PR China.
| |
Collapse
|
18
|
Buemi MR, Luca LD, Ferro S, Gitto R. Targeting GluN2B-ContainingN-Methyl-D-aspartate Receptors: Design, Synthesis, and Binding Affinity Evaluation of Novel 3-Substituted Indoles. Arch Pharm (Weinheim) 2014; 347:533-9. [DOI: 10.1002/ardp.201400061] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Maria Rosa Buemi
- Dipartimento di Scienze del Farmaco e Prodotti per la Salute; Università di Messina; Messina Italy
| | - Laura De Luca
- Dipartimento di Scienze del Farmaco e Prodotti per la Salute; Università di Messina; Messina Italy
| | - Stefania Ferro
- Dipartimento di Scienze del Farmaco e Prodotti per la Salute; Università di Messina; Messina Italy
| | - Rosaria Gitto
- Dipartimento di Scienze del Farmaco e Prodotti per la Salute; Università di Messina; Messina Italy
| |
Collapse
|
19
|
Diketoacid chelating ligands as dual inhibitors of HIV-1 integration process. Eur J Med Chem 2014; 78:425-30. [DOI: 10.1016/j.ejmech.2014.03.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/07/2014] [Accepted: 03/24/2014] [Indexed: 02/07/2023]
|
20
|
A new potential approach to block HIV-1 replication via protein-protein interaction and strand-transfer inhibition. Bioorg Med Chem 2014; 22:2269-79. [PMID: 24618511 DOI: 10.1016/j.bmc.2014.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/28/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Therapeutic treatment of AIDS is recently characterized by a crescent effort towards the identification of multiple ligands able to target different steps of HIV-1 life cycle. Taking into consideration our previously obtained SAR information and combining some important chemical structural features we report herein the synthesis of novel benzyl-indole derivatives as anti-HIV agents. Through this work we identified new dual target small molecules able to inhibit both IN-LEDGF/p75 interaction and the IN strand-transfer step considered as two crucial phases of viral life cycle.
Collapse
|
21
|
Yu S, Wang P, Li Y, Liu Y, Zhao G. Docking-based CoMFA and CoMSIA study of azaindole carboxylic acid derivatives as promising HIV-1 integrase inhibitors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:819-839. [PMID: 23988186 DOI: 10.1080/1062936x.2013.820792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed based on a series of azaindole carboxylic acid derivatives that had previously been reported as promising HIV-1 integrase inhibitors. Docking studies to explore the binding mode were performed based on the highly active molecule 36. The best docked conformation of molecule 36 was used as template for alignment. The comparative molecular field analysis (CoMFA) model (including steric and electrostatic fields) yielded the cross validation q (2) = 0.655, non-cross validation r (2) = 0.989 and predictive r (2) pred = 0.979. The best comparative molecular similarity indices analysis (CoMSIA) model (including steric, electrostatic, hydrophobic and hydrogen-bond acceptor fields) yielded the cross validation q (2) = 0.719, non-cross validation r (2) = 0.992 and predictive r (2) pred = 0.953. A series of new azaindole carboxylic acid derivatives were designed and the HIV-1 integrase inhibitory activities of these designed compounds were predicted based on the CoMFA and CoMSIA models.
Collapse
Affiliation(s)
- S Yu
- a Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences , Shandong University , Shandong , China
| | | | | | | | | |
Collapse
|
22
|
Ferro S, De Luca L, Morreale F, Christ F, Debyser Z, Gitto R, Chimirri A. Synthesis and biological evaluation of novel antiviral agents as protein–protein interaction inhibitors. J Enzyme Inhib Med Chem 2013; 29:237-42. [DOI: 10.3109/14756366.2013.766609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Stefania Ferro
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Laura De Luca
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Francesca Morreale
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Frauke Christ
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK
Leuven, FlandersBelgium
| | - Zeger Debyser
- Molecular Virology and Gene Therapy KU Leuven and IRC KULAK
Leuven, FlandersBelgium
| | - Rosaria Gitto
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| | - Alba Chimirri
- Dipartimento di Scienze del Farmaco e dei Prodotti per la Salute, Università di Messina
MessinaItaly
| |
Collapse
|
23
|
Nunthaboot N, Lugsanangarm K, Kokpol S, Abd-Elazem IS. Binding mode prediction of biologically active compounds from plant Salvia Miltiorrhiza as integrase inhibitor. Bioinformation 2013; 9:426-31. [PMID: 23750093 PMCID: PMC3670126 DOI: 10.6026/97320630009426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 04/01/2013] [Indexed: 11/23/2022] Open
Abstract
Integrase (IN), an essential enzyme for HIV-1 replication, has been targeted in antiretroviral drug therapy. The emergence of HIV-1 variants clinically resistant to antiretroviral agents has lead to the development of alternative IN inhibitors. In the present work, binding modes of a high potent IN inhibitor, M522 and M532, within the catalytic binding site of wild type (WT) IN were determined using molecular docking calculation. Both M522 and M532 displayed similar modes of binding within the IN putative binding pocket and exhibited favorable interactions with the catalytic Mg(2+) ions, the nearby amino acids and viral DNA through metal-ligand chelation, hydrogen bonding and π-π stacking interactions. Furthermore, the modes of action of these two compounds against the mutated Y212R, N224H and S217H PFV IN were also predicted. Although the replacement of amino acid could somehow disturb inhibitor binding mode, almost key interactions which detected in the WT complexes were fairly conserved. Detailed information could highlight the application of M522 and M532 as candidate IN inhibitors for drug development against drug resistant strains.
Collapse
Affiliation(s)
- Nadtanet Nunthaboot
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham,44150, Thailand
| | - Kiattisak Lugsanangarm
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirirat Kokpol
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ibrahim S Abd-Elazem
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, 21218, USA
| |
Collapse
|
24
|
Ardakani A, Ghasemi JB. Identification of novel inhibitors of HIV-1 integrase using pharmacophore-based virtual screening combined with molecular docking strategies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0545-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Christ F, Debyser Z. The LEDGF/p75 integrase interaction, a novel target for anti-HIV therapy. Virology 2013; 435:102-9. [PMID: 23217620 DOI: 10.1016/j.virol.2012.09.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/12/2023]
Abstract
To accomplish their viral life cycle, lentiviruses such as HIV highjack host proteins, the so-called cellular co-factors of replication. Lens Epithelium-derived Growth factor (LEDGF/p75), a transcriptional co-activator, is a co-factor of HIV-integrase (IN) and is required for the tethering and correct integration of the viral genome into the host chromatin. Due to its important role in HIV-replication the LEDGF/p75-IN interaction is an attractive antiviral novel target for the treatment of HIV/AIDS. Intensive drug discovery efforts over the past years have validated the LEDGF/p75-IN interaction as a drugable target for antiviral therapy and have resulted in the design and synthesis of LEDGINs, small molecule inhibitors binding to the dimer interface of HIV-integrase and inhibiting viral replication with a dual mechanism of action: potent inhibition of the LEDGF/p75-IN protein-protein interaction and allosteric inhibition of the catalytic function. Furthermore they inhibit both early and late steps of the replication cycle which increases their potential for further clinical development. In this review we will highlight the research validating the LEDGF/p75-IN interaction as a target for anti-HIV drug discovery and the recent advances in the design and development of LEDGINs.
Collapse
Affiliation(s)
- Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Division of Molecular Medicine, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium.
| | | |
Collapse
|
26
|
Benyamini H, Loyter A, Friedler A. A structural model of the HIV-1 Rev-integrase complex: the molecular basis of integrase regulation by Rev. Biochem Biophys Res Commun 2011; 416:252-7. [PMID: 22093836 DOI: 10.1016/j.bbrc.2011.10.116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/25/2011] [Indexed: 11/17/2022]
Abstract
The HIV-1 Rev and integrase (IN) proteins control important functions in the viral life cycle. We have recently discovered that the interaction between these proteins results in inhibition of IN enzymatic activity. Peptides derived from the Rev and IN binding interfaces have a profound effect on IN catalytic activity: Peptides derived from Rev inhibit IN, while peptides derived from IN stimulate IN activity by inhibiting the Rev-IN interaction. This inhibition leads to multi integration, genomic instability and specific death of virus-infected cells. Here we used protein docking combined with refinement and energy function ranking to suggest a structural model for the Rev-IN complex. Our results indicate that a Rev monomer binds IN at two sites that match our experimental binding data: (1) IN residues 66-80 and 118-128; (2) IN residues 174-188. According to our model, IN binds Rev and its cellular cofactor, lens epithelium derived growth factor (LEDGF), through overlapping interfaces. This supports previous observations that IN is regulated by a tight interplay between Rev and LEDGF. Rev may bind either the IN dimer or tetramer. Accordingly, Rev is suggested to inhibit IN by two possible mechanisms: (i) shifting the oligomerization equilibrium of IN from an active dimer to an inactive tetramer; (ii) displacing LEDGF from IN, resulting in inhibition of IN binding to the viral DNA. Our model is expected to contribute to the development of lead compounds that inhibit the Rev-IN interaction and thus lead to multi-integration of viral cDNA and consequently to apoptosis of HIV-1 infected cells.
Collapse
Affiliation(s)
- Hadar Benyamini
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
27
|
4-[1-(4-Fluorobenzyl)-4-hydroxy-1H-indol-3-yl]-2-hydroxy-4-oxobut-2-enoic acid as a prototype to develop dual inhibitors of HIV-1 integration process. Antiviral Res 2011; 92:102-7. [DOI: 10.1016/j.antiviral.2011.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/16/2011] [Accepted: 07/05/2011] [Indexed: 01/22/2023]
|
28
|
Hashimoto C, Tanaka T, Narumi T, Nomura W, Tamamura H. The successes and failures of HIV drug discovery. Expert Opin Drug Discov 2011; 6:1067-90. [DOI: 10.1517/17460441.2011.611129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ferro S, Grazia SD, Luca LD, Gitto R, Faliti CE, Debyzer Z, Chimirri A. Microwave assisted organic synthesis (MAOS) of small molecules as potential HIV-1 integrase inhibitors. Molecules 2011; 16:6858-70. [PMID: 21836543 PMCID: PMC6264142 DOI: 10.3390/molecules16086858] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/04/2011] [Accepted: 08/08/2011] [Indexed: 01/22/2023] Open
Abstract
Integrase (IN) represents a clinically validated target for the development of antivirals against human immunodeficiency virus (HIV). In recent years our research group has been engaged in the stucture-function study of this enzyme and in the development of some three-dimensional pharmacophore models which have led to the identification of a large series of potent HIV-1 integrase strand-transfer inhibitors (INSTIs) bearing an indole core. To gain a better understanding of the structure-activity relationships (SARs), herein we report the design and microwave-assisted synthesis of a novel series of 1-H-benzylindole derivatives.
Collapse
Affiliation(s)
- Stefania Ferro
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
- Author to whom correspondence should be addressed ; Tel.: +39-090-676-6465; Fax: +39-090-676-6402
| | - Sara De Grazia
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| | - Laura De Luca
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| | - Rosaria Gitto
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| | - Caterina Elisa Faliti
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| | - Zeger Debyzer
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| | - Alba Chimirri
- Department of Medicinal Chemistry, University of Messina, Viale Annunziata, I-98168 Messina, Italy; (S.D.G.); (L.D.L.); (R.G.); (C.E.F.); (A.C.)
| |
Collapse
|
30
|
Morelli X, Bourgeas R, Roche P. Chemical and structural lessons from recent successes in protein–protein interaction inhibition (2P2I). Curr Opin Chem Biol 2011; 15:475-81. [DOI: 10.1016/j.cbpa.2011.05.024] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 05/12/2011] [Accepted: 05/23/2011] [Indexed: 10/18/2022]
|