1
|
Mando Z, Mando H, Afzan A, Shaari K, Hassan Z, Mohamad Taib MNA, Zakaria F. Biomarker triterpenoids of Centella asiatica as potential antidepressant agents: Combining in vivo and in silico studies. Behav Brain Res 2024; 466:114976. [PMID: 38599249 DOI: 10.1016/j.bbr.2024.114976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Although there are various treatments available for depression, some patients may experience resistance to treatment or encounter adverse effects. Centella asiatica (C. asiatica) is an ancient medicinal herb used in Ayurvedic medicine for its rejuvenating, neuroprotective and psychoactive properties. This study aims to explore the antidepressant-like effects of the major constituents found in C. asiatica, i.e., asiatic acid, asiaticoside, madecassic acid, and madecassoside at three doses (1.25, 2.5, and 5 mg/kg, i.p), on the behavioural and cortisol level of unpredictable chronic stress (UCS) zebrafish model. Based on the findings from the behavioural study, the cortisol levels in the zebrafish body after treatment with the two most effective compounds were measured using enzyme-linked immunosorbent assay (ELISA). Furthermore, a molecular docking study was conducted to predict the inhibitory impact of the triterpenoid compounds on serotonin reuptake. The in vivo results indicate that madecassoside (1.25, 2.5, and 5 mg/kg), asiaticoside and asiatic acid (5 mg/kg) activated locomotor behaviour. Madecassoside at all tested doses and asiaticoside at 2.5 and 5 mg/kg significantly decreased cortisol levels compared to the stressed group, indicating the potential regulation effect of madecassoside and asiaticoside on the hypothalamic-pituitary-adrenal axis overactivity. This study highlights the potential benefits of madecassoside and asiaticoside in alleviating depressive symptoms through their positive effects on behaviour and the hypothalamic-pituitary-adrenal (HPA)- axis in a chronic unpredictable stress zebrafish model. Furthermore, the in silico study provided additional evidence to support these findings. These promising results suggest that C. asiatica may be a valuable and cost-effective therapeutic option for depression, and further research should be conducted to explore its potential benefits.
Collapse
Affiliation(s)
- Zaynab Mando
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
| | - Huda Mando
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry and Drug Control, Arab International University, Daraa, Syrian Arab Republic
| | - Adlin Afzan
- Phytochemistry Unit, Herbal Medicine Research Institute, Institute for Medical Research, National Institutes of Health, Shah Alam 40170, Malaysia
| | - Khozirah Shaari
- Laboratory of Natural Medicines and Products (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang, 43400, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang 11800 USM, Malaysia
| | - Mohamad Nurul Azmi Mohamad Taib
- Natural Products and Synthesis Organic Laboratory (NPSOLab), School of Chemical Sciences, Universiti Sains Malaysia, Minden, Penang 11800, Malaysia
| | - Fauziahanim Zakaria
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia.
| |
Collapse
|
2
|
Kumari P, Sharma B, Som A. (2-Cyclohexyl-1-methylpropyl) cyclohexane isolated from garlic extract exhibits antidepressant-like activity: extraction, docking, drug-like properties, molecular dynamics simulations and MM/GBSA studies. J Biomol Struct Dyn 2024; 42:1765-1777. [PMID: 37097971 DOI: 10.1080/07391102.2023.2202250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/08/2023] [Indexed: 04/26/2023]
Abstract
Depressive disorders are among most common psychiatric diseases and second most common form of psychiatric illness globally. Commonly available chemical drugs used for treatment of nervous system disorders exert undesirable effects. Therefore, there is a growing need towards exploring novel antidepressants of herbal origin. Earlier, the antidepressant effect of methanolic extract of garlic has been shown. In this study, the ethanolic extract of garlic was prepared and chemically analysed using Gas Chromatography - Mass Spectrometry (GC-MS) screening. A total of 35 compounds were found to be present, which might act as antidepressant. Using computational analyses, these compounds were screened as potential inhibitors (selective serotonin reuptake inhibitor (SSRI)) against serotonin transporter (SERT)/leucine receptor (LEUT). In silico docking studies and other physicochemical, bioactivity and ADMET studies resulted in the selection of compound 1 ((2-Cyclohexyl-1-methylpropyl) cyclohexane) as potential SSRI (binding energy -8.1 kcal/mol) compared to known reference SSRI fluoxetine (binding energy -8.0 kcal/mol). Analysis of conformational stability, residue flexibility, compactness, binding interactions, solvent accessible surface area (SASA), dynamic correlation, and binding free energy predicted from molecular mechanics (MD) with generalised Born and surface area solvation (MM/GBSA) studies revealed formation of a more stable SSRI like complex with compound 1 having strong inhibitory interaction compared to known SSRI fluoxetine/reference complex. Thus, compound 1 may act as an active SSRI leading to discovery of potential antidepressant drug.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priyanka Kumari
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| |
Collapse
|
3
|
Kosmalski T, Kupczyk D, Baumgart S, Paprocka R, Studzińska R. A Review of Biologically Active Oxime Ethers. Molecules 2023; 28:5041. [PMID: 37446703 DOI: 10.3390/molecules28135041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Oxime ethers are a class of compounds containing the >C=N-O-R moiety. The presence of this moiety affects the biological activity of the compounds. In this review, the structures of oxime ethers with specific biological activity have been collected and presented, and bactericidal, fungicidal, antidepressant, anticancer and herbicidal activities, among others, are described. The review includes both those substances that are currently used as drugs (e.g., fluvoxamine, mayzent, ridogrel, oxiconazole), as well as non-drug structures for which various biological activity studies have been conducted. To the best of our knowledge, this is the first review of the biological activity of compounds containing such a moiety. The authors hope that this review will inspire scientists to take a greater interest in this group of compounds, as it constitutes an interesting research area.
Collapse
Affiliation(s)
- Tomasz Kosmalski
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Daria Kupczyk
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karłowicza Str. 24, 85-092 Bydgoszcz, Poland
| | - Szymon Baumgart
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Paprocka
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| | - Renata Studzińska
- Department of Organic Chemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Jurasza Str. 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
4
|
Li Y, Yu Q, Yu W, Zhang S, Wen K, Shen J, Wang Z, Yu X. Development of Fluorescence Polarization Immunoassay With scFv to Detect Fumonisin Bs in Maize and Simultaneous Study of Their Molecular Recognition Mechanism. Front Chem 2022; 10:829038. [PMID: 35265585 PMCID: PMC8900220 DOI: 10.3389/fchem.2022.829038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, a fluorescence polarization immunoassay (FPIA) was developed based on the single-chain variable fragments (scFvs) for fumonisin Bs (FBs). The scFvs were prepared from FBs-specific monoclonal antibody secreting hybridomas (4F5 and 4B9). The established FPIA could determine the sum of fumonisin B1 (FB1) and fumonisin B2 (FB2) within a short time. The IC50 of FPIA for the detection of FB1 and FB2 were 29.36 ng/ml and 1,477.82 ng/ml with 4F5 scFv, and 125.16 ng/ml and 30.44 ng/ml with 4B9 scFv, so the 4B9 scFv was selected for detection of FB1 and FB2 in maize samples with a limit of detection of 441.54 μg/kg and 344.933 μg/kg. The recoveries ranged from 84.7 to 104.1% with a coefficient of variation less than 14.1% in spiked samples, and the result of the FPIA method was in good consistency with that of HPLC-MS/MS. To supply a better understanding of the immunoassay results, the interactions mechanism of scFvs-FBs was further revealed by the homology modelling, molecular docking, and molecular dynamic simulation. It was indicated that six complementarity-determining regions (CDRs) were involved in 4B9 scFv recognition, forming a narrow binding cavity, and FB1/FB2 could be inserted into this binding cavity stably through strong hydrogen bonds and other interactions. While in 4F5 scFv, only the FB1 stably inserted in the binding pocket formed by four CDRs through strong hydrogen bonds, and FB2 did not fit the binding cavity due to the lack of hydroxyl at C10, which is the key recognition site of 4F5 scFv. Also, the binding energy of FB2-4B9 scFv complex is higher than the FB2-4F5 scFv complex. This study established a FPIA method with scFv for the detection of FB1 and FB1 in maize, and systematically predicted recognition mechanism of FBs and scFvs, which provided a reference for the better understanding of the immunoassay mechanism.
Collapse
|
5
|
Xu T, Xue Y, Lu J, Jin C. Synthesis and biological evaluation of 1-(4-(piperazin-1-yl)phenyl)pyridin-2(1H)-one derivatives as potential SSRIs. Eur J Med Chem 2021; 223:113644. [PMID: 34182358 DOI: 10.1016/j.ejmech.2021.113644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/20/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022]
Abstract
A series of novel 1-(4-(piperazin-1-yl)phenyl)pyridin-2(1H)-one derivatives were synthesized and evaluated for their serotonin (5-HT) reuptake inhibitory activity. The results in vitro indicated that most of the evaluated compounds displayed potent 5-HT reuptake inhibition. The most promising compound A20 was stable in human liver microsomes and possessed good pharmacokinetic properties. Antidepressant study in vivo of the compound A20 showed that A20 could potently antagonize the p-chloroamphetamine (PCA)-induced depletion of serotonin in hypothalamus and reduce immobility times in the rat forced swimming test (FST).
Collapse
Affiliation(s)
- Tengfei Xu
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, PR China; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, PR China
| | - Yaping Xue
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, PR China; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, PR China
| | - Jielian Lu
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, PR China; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, PR China
| | - Chuanfei Jin
- Sunshine Lake Pharma Co. Ltd., Shenzhen, 518000, PR China; HEC Pharm Group, HEC Research and Development Center, Dongguan 523871, PR China.
| |
Collapse
|
6
|
Cui F, Zhu Y, Di S, Wang X, Zhang Y, Chai T. Toxicological Study on Chiral Fluoxetine Exposure to Adult Zebrafish ( Danio rerio): Enantioselective and Sexual Mechanism on Disruption of the Brain Serotonergic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7479-7490. [PMID: 34002605 DOI: 10.1021/acs.est.1c01397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The increasing number of people with depression worldwide has led to concerns regarding antidepressant contamination in aquatic environments, which could have the risk of negative effects on aquatic organisms. Chirality increases its toxicity potentials. Accordingly, we investigated the negative effects of racemic (rac-), R-, and S-FX at environmental levels (100 ng/L) on the brain serotonergic system in zebrafish (Danio rerio) for 42 days. Additionally, we measured the whole-body concentrations of FX and norfluoxetine (NFX). We found that S-FX exposure disrupted the brain serotonergic system more severely than rac- and R-FX exposure. The mechanism underlying this disruption induced by S-FX was sex-specific, with female zebrafish showing disruption of the serotonin (5-HT) release process but male zebrafish showing disruption of the 5-HT synthesis process. In addition, enantioselective enrichment and biotransformation (R-FX to R-NFX and S-FX to S-NFX) occurred in zebrafish. Sex-specific accumulation was also observed, with higher concentrations in females. Our study provides evidence for enantiomer- and sex-specific effects of FX exposure at biologically relevant concentrations. More broadly, our study demonstrated that SSRI antidepressants, such as FX, can affect aquatic life by causing important shifts in not only their active sites of the serotonin transporter.
Collapse
Affiliation(s)
- Feng Cui
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Lin'an, Hangzhou, 311300 Zhejiang Province, China
| | - Yunlong Zhu
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Shanshan Di
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinquan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products/Key Laboratory of Detection for Pesticide Residues and Control of Zhejiang Province, Institute of Quality and Standard of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yiming Zhang
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Tingting Chai
- Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Agriculture and Food Science, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
7
|
Ortore G, Orlandini E, Betti L, Giannaccini G, Mazzoni MR, Camodeca C, Nencetti S. Focus on Human Monoamine Transporter Selectivity. New Human DAT and NET Models, Experimental Validation, and SERT Affinity Exploration. ACS Chem Neurosci 2020; 11:3214-3232. [PMID: 32991141 PMCID: PMC8015229 DOI: 10.1021/acschemneuro.0c00304] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
![]()
The most commonly used antidepressant
drugs are the serotonin transporter
inhibitors. Their effects depend strongly on the selectivity for a
single monoamine transporter compared to other amine transporters
or receptors, and the selectivity is roughly influenced by the spatial
protein structure. Here, we provide a computational study on three
human monoamine transporters, i.e., DAT, NET, and SERT. Starting from
the construction of hDAT and hNET models, whose three-dimensional
structure is unknown, and the prediction of the binding pose for 19
known inhibitors, 3D-QSAR models of three human transporters were
built. The training set variability, which was high in structure and
activity profile, was validated using a set of in-house compounds.
Results concern more than one aspect. First of all, hDAT and hNET
three-dimensional structures were built, validated, and compared to
the hSERT one; second, the computational study highlighted the differences
in binding site arrangement statistically correlated to inhibitor
selectivity; third, the profiling of new inhibitors pointed out a
conservation of the inhibitory activity trend between rabbit and human
SERT with a difference of about 1 order of magnitude; fourth, binding
and functional studies confirmed 4-(benzyloxy)-4-phenylpiperidine 20a–d and 21a–d as potent SERT
inhibitors. In particular, one of the compounds (compound 20b) revealed a higher affinity for SERT than paroxetine in human platelets.
Collapse
Affiliation(s)
- Gabriella Ortore
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisabetta Orlandini
- Research Center “E. Piaggio”, University of Pisa, Pisa 56122, Italy
- Department of Earth Sciences, University of Pisa, Via Santa Maria 53-55, 56100 Pisa, Italy
| | - Laura Betti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gino Giannaccini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Maria Rosa Mazzoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Caterina Camodeca
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
8
|
Xue W, Fu T, Zheng G, Tu G, Zhang Y, Yang F, Tao L, Yao L, Zhu F. Recent Advances and Challenges of the Drugs Acting on Monoamine Transporters. Curr Med Chem 2020; 27:3830-3876. [DOI: 10.2174/0929867325666181009123218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/03/2018] [Indexed: 01/06/2023]
Abstract
Background:
The human Monoamine Transporters (hMATs), primarily including hSERT,
hNET and hDAT, are important targets for the treatment of depression and other behavioral disorders
with more than the availability of 30 approved drugs.
Objective:
This paper is to review the recent progress in the binding mode and inhibitory mechanism of
hMATs inhibitors with the central or allosteric binding sites, for the benefit of future hMATs inhibitor
design and discovery. The Structure-Activity Relationship (SAR) and the selectivity for hit/lead compounds
to hMATs that are evaluated by in vitro and in vivo experiments will be highlighted.
Methods:
PubMed and Web of Science databases were searched for protein-ligand interaction, novel
inhibitors design and synthesis studies related to hMATs.
Results:
Literature data indicate that since the first crystal structure determinations of the homologous
bacterial Leucine Transporter (LeuT) complexed with clomipramine, a sizable database of over 100 experimental
structures or computational models has been accumulated that now defines a substantial degree
of structural variability hMATs-ligands recognition. In the meanwhile, a number of novel hMATs
inhibitors have been discovered by medicinal chemistry with significant help from computational models.
Conclusion:
The reported new compounds act on hMATs as well as the structures of the transporters
complexed with diverse ligands by either experiment or computational modeling have shed light on the
poly-pharmacology, multimodal and allosteric regulation of the drugs to transporters. All of the studies
will greatly promote the Structure-Based Drug Design (SBDD) of structurally novel scaffolds with high
activity and selectivity for hMATs.
Collapse
Affiliation(s)
- Weiwei Xue
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Tingting Fu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Guoxun Zheng
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Gao Tu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Yang Zhang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Fengyuan Yang
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Lixia Yao
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States
| | - Feng Zhu
- Innovative Drug Research and Bioinformatics Group, School of Pharmaceutical Sciences and Chongqing Key Laboratory of Natural Drug Research, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
Abramyan AM, Slack RD, Meena S, Davis BA, Newman AH, Singh SK, Shi L. Computation-guided analysis of paroxetine binding to hSERT reveals functionally important structural elements and dynamics. Neuropharmacology 2018; 161:107411. [PMID: 30391505 DOI: 10.1016/j.neuropharm.2018.10.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
The serotonin transporter (SERT) is one of the primary targets for medications to treat neuropsychiatric disorders and functions by exploiting pre-existing ion gradients of Na+, Cl-, and K+ to translocate serotonin from the synaptic cleft into the presynaptic neuron. Although recent hSERT crystal structures represent a milestone for structure-function analyses of mammalian neurotransmitter:sodium symporters, they are all derived from thermostabilized but transport-deficient constructs. Two of these structures are in complex with paroxetine, the most potent selective serotonin reuptake inhibitor known. In this study, by carrying out and analyzing the results of extensive and comparative molecular dynamics simulations while also re-evaluating the transport and binding properties of the thermostabilized constructs, we identified functionally important structural elements that are perturbed by these mutations, revealed unexpected dynamics in the central primary binding site of SERT, and uncovered a conceivable ambiguity in paroxetine's binding orientation. We propose that the favored entropy contribution plays a significant role in paroxetine's extraordinarily high affinity for SERT. Our findings lay the foundation for future mechanistic studies and rational design of high-affinity SERT inhibitors. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Ara M Abramyan
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Rachel D Slack
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States
| | - Sitaram Meena
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Bruce A Davis
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States
| | - Amy Hauck Newman
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| | - Satinder K Singh
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06520, United States.
| | - Lei Shi
- Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, MD, 21224, United States.
| |
Collapse
|
10
|
Li K, Li ML, Zhang Q, Zhu SF, Zhou QL. Highly Enantioselective Nickel-Catalyzed Intramolecular Hydroalkenylation of N- and O-Tethered 1,6-Dienes To Form Six-Membered Heterocycles. J Am Chem Soc 2018; 140:7458-7461. [PMID: 29863857 DOI: 10.1021/jacs.8b04703] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A highly enantioselective nickel-catalyzed intramolecular hydroalkenylation of N- or O-tethered 1,6-dienes was developed by using monodentate chiral spiro phosphoramidite ligands. The reaction provides an efficient and straightforward method for preparing very useful six-membered N- and O-heterocycles with high regioselectivity as well as excellent stereoselectivity from easily accessible starting materials under mild reaction conditions. The chiral spiro nickel catalyst developed in this study represents one of the few catalysts for highly enantioselective cyclization of unconjugated dienes.
Collapse
Affiliation(s)
- Ke Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Mao-Lin Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Qi Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
11
|
Erol I, Aksoydan B, Kantarcioglu I, Salmas RE, Durdagi S. Identification of novel serotonin reuptake inhibitors targeting central and allosteric binding sites: A virtual screening and molecular dynamics simulations study. J Mol Graph Model 2017; 74:193-202. [DOI: 10.1016/j.jmgm.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/26/2017] [Accepted: 02/02/2017] [Indexed: 10/19/2022]
|
12
|
He X, Duan CF, Qi YH, Dong J, Wang GN, Zhao GX, Wang JP, Liu J. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Anal Biochem 2017; 517:9-17. [DOI: 10.1016/j.ab.2016.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/07/2016] [Accepted: 10/20/2016] [Indexed: 11/25/2022]
|
13
|
Liu J, Zhang HC, Duan CF, Dong J, Zhao GX, Wang JP, Li N, Liu JZ, Li YW. Production of anti-amoxicillin ScFv antibody and simulation studying its molecular recognition mechanism for penicillins. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2016; 51:742-750. [PMID: 27383141 DOI: 10.1080/03601234.2016.1198639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The molecular recognition mechanism of an antibody for its hapten is very interesting. The objective of this research was to study the intermolecular interactions of an anti-amoxicillin antibody with penicillin drugs. The single chain variable fragment (ScFv) antibody was generated from a hybridoma cell strain excreting the monoclonal antibody for amoxicillin. The recombinant ScFv antibody showed similar recognition ability for penicillins to its parental monoclonal antibody: simultaneous recognizing 11 penicillins with cross-reactivities of 18-107%. The three-dimensional structure of the ScFv antibody was simulated by using homology modeling, and its intermolecular interactions with 11 penicillins were studied by using molecular docking. Results showed that three CDRs are involved in antibody recognition; CDR L3 Arg 100, CDR H3 Tyr226, and CDR H3 Arg 228 were the key contact amino acid residues; hydrogen bonding was the main antibody-drug intermolecular force; and the core structure of penicillin drugs was the main antibody binding position. These results could explain the recognition mechanism of anti-amoxicillin antibody for amoxicillin and its analogs. This is the first study reporting the production of ScFv antibody for penicillins and stimulation studying its recognition mechanism.
Collapse
Affiliation(s)
- Jing Liu
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Hui C Zhang
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Chang F Duan
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Jun Dong
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Guo X Zhao
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Jian P Wang
- a College of Veterinary Medicine, Agricultural University of Hebei , Baoding Hebei , China
| | - Nan Li
- b College of Animal Science and Technology, Agricultural University of Hebei , Baoding Hebei , China
| | - Jin Z Liu
- c Agricultural Bureau of Botou , Cangzhou Hebei , China
| | - Yu W Li
- d Hangu Animal Health Supervision Institute , Tangshan Hebei , China
| |
Collapse
|
14
|
Bagatin MC, Tozatti CSS, Abiko LA, Yamazaki DADS, Silva PRA, Perego LM, Audi EA, Seixas FAV, Basso EA, Gauze GDF. Molecular docking and panicolytic effect of 8-prenylnaringenin in the elevated T-maze. Chem Pharm Bull (Tokyo) 2014; 62:1231-7. [PMID: 25450631 DOI: 10.1248/cpb.c14-00569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to investigate the effects of the chronic administration of a racemic mixture of 8-prenylnaringenin (8-PN) on rats submitted to the elevated T-maze (ETM) model of generalized anxiety and panic disorders. The selective serotonin (SERT) reuptake inhibitor fluoxetine was used as a positive control. Rat locomotion was assessed in a circular arena following each drug treatment. The administration of racemic 8-PN for 21 d in rats increased one-way escape latencies from the ETM open arm, indicating a panicolytic effect. To evaluate the interactions of 8-PN with monoamine transporters, a docking study was performed for both the R and S configurations of 8-PN towards SERT, norepinephrine (NET) and dopamine transporters (DAT). The application of the docking protocol showed that (R)-8-PN provides greater affinity to all transporters than does the S enantiomer. This result suggests that enantiomer (R)-8-PN is the active form in the in vivo test of the racemic mixture.
Collapse
|
15
|
Ahari-Mostafavi MM, Sharifi A, Mirzaei M, Amanlou M. Novel and versatile methodology for synthesis of β-aryl-β-mercapto ketone derivatives as potential urease inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2013. [DOI: 10.1007/s13738-013-0379-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Sørensen L, Andersen J, Thomsen M, Hansen SMR, Zhao X, Sandelin A, Strømgaard K, Kristensen AS. Interaction of antidepressants with the serotonin and norepinephrine transporters: mutational studies of the S1 substrate binding pocket. J Biol Chem 2012; 287:43694-707. [PMID: 23086945 DOI: 10.1074/jbc.m112.342212] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The serotonin transporter (SERT) and the norepinephrine transporter (NET) are sodium-dependent neurotransmitter transporters responsible for reuptake of released serotonin and norepinephrine, respectively, into nerve terminals in the brain. A wide range of inhibitors of SERT and NET are used as treatment of depression and anxiety disorders or as psychostimulant drugs of abuse. Despite their clinical importance, the molecular mechanisms by which various types of antidepressant drugs bind and inhibit SERT and NET are still elusive for the majority of the inhibitors, including the molecular basis for SERT/NET selectivity. Mutational analyses have suggested that a central substrate binding site (denoted the S1 pocket) also harbors an inhibitor binding site. In this study, we determine the effect of mutating six key S1 residues in human SERT (hSERT) and NET (hNET) on the potency of 15 prototypical SERT/NET inhibitors belonging to different drug classes. Analysis of the resulting drug sensitivity profiles provides novel information on drug binding modes in hSERT and hNET and identifies specific S1 residues as important molecular determinants for inhibitor potency and hSERT/hNET selectivity.
Collapse
Affiliation(s)
- Lena Sørensen
- Department of Drug Design and Pharmacology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|