1
|
Ptacek J, Snajdr I, Schimer J, Kutil Z, Mikesova J, Baranova P, Havlinova B, Tueckmantel W, Majer P, Kozikowski A, Barinka C. Selectivity of Hydroxamate- and Difluoromethyloxadiazole-Based Inhibitors of Histone Deacetylase 6 In Vitro and in Cells. Int J Mol Sci 2023; 24:4720. [PMID: 36902164 PMCID: PMC10003107 DOI: 10.3390/ijms24054720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family of enzymes due to its complex domain organization and cytosolic localization. Experimental data point toward the therapeutic use of HDAC6-selective inhibitors (HDAC6is) for use in both neurological and psychiatric disorders. In this article, we provide side-by-side comparisons of hydroxamate-based HDAC6is frequently used in the field and a novel HDAC6 inhibitor containing the difluoromethyl-1,3,4-oxadiazole function as an alternative zinc-binding group (compound 7). In vitro isotype selectivity screening uncovered HDAC10 as a primary off-target for the hydroxamate-based HDAC6is, while compound 7 features exquisite 10,000-fold selectivity over all other HDAC isoforms. Complementary cell-based assays using tubulin acetylation as a surrogate readout revealed approximately 100-fold lower apparent potency for all compounds. Finally, the limited selectivity of a number of these HDAC6is is shown to be linked to cytotoxicity in RPMI-8226 cells. Our results clearly show that off-target effects of HDAC6is must be considered before attributing observed physiological readouts solely to HDAC6 inhibition. Moreover, given their unparalleled specificity, the oxadiazole-based inhibitors would best be employed either as research tools in further probing HDAC6 biology or as leads in the development of truly HDAC6-specific compounds in the treatment of human disease states.
Collapse
Affiliation(s)
- Jakub Ptacek
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Ivan Snajdr
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiri Schimer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Zsofia Kutil
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jana Mikesova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petra Baranova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Barbora Havlinova
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Werner Tueckmantel
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Alan Kozikowski
- StarWise Therapeutics LLC, University Research Park, Inc., Madison, WI 53719, USA
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cyril Barinka
- Institute of Biotechnology CAS, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
2
|
Pun MD, Wu HH, Olatunji FP, Kesic BN, Peters JW, Berkman CE. Phosphorus containing analogues of SAHA as inhibitors of HDACs. J Enzyme Inhib Med Chem 2022; 37:1315-1319. [PMID: 35514164 PMCID: PMC9090410 DOI: 10.1080/14756366.2022.2063281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/11/2022] [Accepted: 04/03/2022] [Indexed: 11/23/2022] Open
Abstract
Histone deacetylases (HDACs) are a family of enzymes responsible for regulating DNA transcription by modulating its binding to histone proteins. HDACs are overexpressed in several types of cancers and are recognised as drug targets. Vorinostat, or suberanilohydroxamic acid (SAHA), is an histone deacetylase (HDAC) inhibitor with a hydroxamic acid as a zinc-binding group (ZBG), and it has been FDA approved for the treatment of T-cell lymphoma. In this work, phosphorus-based SAHA analogues were synthesised to assess their zinc-binding effectiveness compared to the hydroxamic acid of SAHA. Specifically, we examined phosphate, phosphoramidate and phosphorothiolate groups as isosteres of the canonical hydroxamic acid motif of conventional HDAC inhibitors. The compounds were screened for binding to HDAC enzymes from HeLa cell lysate. The most potent derivatives were then screened against HDAC3 and HDAC8 isoforms. HDAC inhibition assays demonstrated that these phosphorus-based SAHA analogs exhibited slow binding to HDACs but with greater potency than phosphonate SAHA analogs examined previously. All compounds inhibited HDACs, the most potent having an IC50 of 50 µM.
Collapse
Affiliation(s)
- Michael D. Pun
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - Hsin-Hua Wu
- Department of Chemistry, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | | - Britany N. Kesic
- Department of Chemistry, Washington State University, Pullman, WA, USA
| | - John W. Peters
- Department of Chemistry, Washington State University, Pullman, WA, USA
- Institute of Biological Chemistry, Washington State University, Pullman, WA, USA
| | | |
Collapse
|
3
|
Synthesis, structure activity relationship and biological evaluation of a novel series of quinoline–based benzamide derivatives as anticancer agents and histone deacetylase (HDAC) inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Ren Z, Lv M, Xu H. Osthole: Synthesis, Structural Modifications and Biological Properties. Mini Rev Med Chem 2022; 22:2124-2137. [DOI: 10.2174/1389557522666220214101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Osthole, a naturally occurring coumarin-type compound, is isolated from a Chinese herbal medicine Cnidium monnieri (L.), and exhibits a broad range of biological properties. In this review, the total synthesis and structural modifications of osthole and its analogs are described. Additionally, the progress on bioactivities of osthole and its analogs is outlined since 2016. Moreover, the structure-activity relationships and mechanisms of action of osthole and its derivatives are discussed. These can provide references for future design, development and application of osthole and its analogs as drugs or pesticides in the fields of medicine and agriculture.
Collapse
Affiliation(s)
- Zili Ren
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| |
Collapse
|
5
|
Osthole: an overview of its sources, biological activities, and modification development. Med Chem Res 2021; 30:1767-1794. [PMID: 34376964 PMCID: PMC8341555 DOI: 10.1007/s00044-021-02775-w] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022]
Abstract
Osthole, also known as osthol, is a coumarin derivative found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. It can be obtained via extraction and separation from plants or total synthesis. Plenty of experiments have suggested that osthole exhibited multiple biological activities covering antitumor, anti-inflammatory, neuroprotective, osteogenic, cardiovascular protective, antimicrobial, and antiparasitic activities. In addition, there has been some research done on the optimization and modification of osthole. This article summarizes the comprehensive information regarding the sources and modification progress of osthole. It also introduces the up-to-date biological activities of osthole, which could be of great value for its use in future research. ![]()
Collapse
|
6
|
Ren Z, Lv M, Li T, Hao M, Li S, Xu H. Construction of oxime ester derivatives of osthole from Cnidium monnieri, and evaluation of their agricultural activities and control efficiency. PEST MANAGEMENT SCIENCE 2020; 76:3560-3567. [PMID: 32815273 DOI: 10.1002/ps.6056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/03/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND In order to discover natural-product-based pesticidal candidates, a series of coumarin-like derivatives containing oxime ester fragments at the C-8 position were prepared by structural modification of osthole, a natural plant product isolated from Cnidium monnieri. Their pesticidal activities were evaluated against two typically fruit trees/crop-threatening agricultural pests, Mythimna separata Walker and Tetranychus cinnabarinus Boisduval. RESULTS Osthole was regioselectively oxidized by selenium dioxide to give the E-isomer, (2'E)-3'-formaldehydylosthole (2). Four key steric structures of 2, (2'E, 4'E)-(o-chloropyrid-3-ylcarbonyl)oximinylosthole (4o), (2'E, 4'E)-(styrylcarbonyl)oximinylosthole (4t), and (2'E, 4'E)-(acetyl)oximinylosthole (4w) were undoubtedly confirmed by X-ray crystallography. Against T. cinnabarinus, it is noteworthy that (2'E, 4'E)-(p-chlorophenylcarbonyl)oximinylosthole (4c) exhibited over three-fold more potent acaricidal activity of the precursor osthole, with especially good control efficiency observed in the glasshouse. Against M. separata, compounds 4c and (2'E, 4'E)-(p-nitrophenylcarbonyl)oximinylosthole (4f) showed the most pronounced growth inhibitory activity. The relationships between their structures and agricultural activities also were studied. CONCLUSION These results demonstrate that compound 4c could be further structurally modified as pesticidal agents. It will lay the foundation for future application of osthole derivatives as pesticides. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling,, People's Republic of China
| | - Tianze Li
- College of Plant Protection, Northwest A&F University, Yangling,, People's Republic of China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling,, People's Republic of China
| | - Shaochen Li
- College of Plant Protection, Northwest A&F University, Yangling,, People's Republic of China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling,, People's Republic of China
| |
Collapse
|
7
|
Rather Z, Banday JA, Chisti H. Spectroscopic, X‐ray Crystal, DFT and In Vitro Analysis of 3‐(2,4‐Dimethoxy‐3‐(3‐methylbut‐2‐en‐1‐yl)phenyl) Acrylic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202001491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zubaid‐ul‐khazir Rather
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| | - Javid A. Banday
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| | - Hamida‐Tun‐Nisa Chisti
- Department of ChemistryNational Institute of Technology Srinagar Srinagar 190006, J & K India
| |
Collapse
|
8
|
Pardo-Jiménez V, Navarrete-Encina P, Díaz-Araya G. Synthesis and Biological Evaluation of Novel Thiazolyl-Coumarin Derivatives as Potent Histone Deacetylase Inhibitors with Antifibrotic Activity. Molecules 2019; 24:molecules24040739. [PMID: 30791388 PMCID: PMC6412891 DOI: 10.3390/molecules24040739] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 01/04/2023] Open
Abstract
New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.
Collapse
Affiliation(s)
- Viviana Pardo-Jiménez
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Patricio Navarrete-Encina
- Laboratory of Advanced Organic Chemistry, Department of Organic Chemistry and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
| | - Guillermo Díaz-Araya
- Laboratory of Molecular Pharmacology, Department of Pharmacological & Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences; University of Chile, Santiago 8380000, Chile.
- Advanced Center of Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380000, Chile.
| |
Collapse
|
9
|
Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem 2018; 164:214-240. [PMID: 30594678 DOI: 10.1016/j.ejmech.2018.12.039] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
Abstract
The histone deacetylases (HDACs) enzymes provided crucial role in transcriptional regulation of cells through deacetylation of nuclear histone proteins. Discoveries related to the HDAC8 enzyme activity signified the importance of HDAC8 isoform in cell proliferation, tumorigenesis, cancer, neuronal disorders, parasitic/viral infections and other epigenetic regulations. The pan-HDAC inhibitors can confront these conditions but have chances to affect epigenetic functions of other HDAC isoforms. Designing of selective HDAC8 inhibitors is a key feature to combat the pathophysiological and diseased conditions involving the HDAC8 activity. This review is concerned about the structural and positional aspects of HDAC8 in the HDAC family. It also covers the contributions of HDAC8 in the pathophysiological conditions, a preliminary discussion about the recent scenario of HDAC8 inhibitors. This review might help to deliver the structural, functional and computational information in order to identify and design potent and selective HDAC8 inhibitors for target specific treatment of diseases involving HDAC8 enzymatic activity.
Collapse
|
10
|
Garmpis N, Damaskos C, Garmpi A, Kalampokas E, Kalampokas T, Spartalis E, Daskalopoulou A, Valsami S, Kontos M, Nonni A, Kontzoglou K, Perrea D, Nikiteas N, Dimitroulis D. Histone Deacetylases as New Therapeutic Targets in Triple-negative Breast Cancer: Progress and Promises. Cancer Genomics Proteomics 2018; 14:299-313. [PMID: 28870998 DOI: 10.21873/cgp.20041] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) lacks expression of estrogen receptor (ER), progesterone receptor (PR) and HER2 gene. It comprises approximately 15-20% of breast cancers (BCs). Unfortunately, TNBC's treatment continues to be a clinical problem because of its relatively poor prognosis, its aggressiveness and the lack of targeted therapies, leaving chemotherapy as the mainstay of treatment. It is essential to find new therapies against TNBC, in order to surpass the resistance and the invasiveness of already existing therapies. Given the fact that epigenetic processes control both the initiation and progression of TNBC, there is an increasing interest in the mechanisms, molecules and signaling pathways that participate at the epigenetic modulation of genes expressed in carcinogenesis. The acetylation of histone proteins provokes the transcription of genes involved in cell growth, and the expression of histone deacetylases (HDACs) is frequently up-regulated in many malignancies. Unfortunately, in the field of BC, HDAC inhibitors have shown limited effect as single agents. Nevertheless, their use in combination with kinase inhibitors, autophagy inhibitors, ionizing radiation, or two HDAC inhibitors together is currently being evaluated. HDAC inhibitors such as suberoylanilidehydroxamic acid (SAHA), sodium butyrate, mocetinostat, panobinostat, entinostat, YCW1 and N-(2-hydroxyphenyl)-2-propylpentanamide have shown promising therapeutic outcomes against TNBC, especially when they are used in combination with other anticancer agents. More studies concerning HDAC inhibitors in breast carcinomas along with a more accurate understanding of the TNBC's pathobiology are required for the possible identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Garmpi
- Internal Medicine Department, Laiko General Hospital, University of Athens Medical School, Athens, Greece
| | | | - Theodoros Kalampokas
- Assisted Conception Unit, Second Department of Obstetrics and Gynecology, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Spartalis
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afrodite Daskalopoulou
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Serena Valsami
- Blood Transfusion Department, Aretaieion Hospital, Medical School, National and Kapodistrian Athens University, Athens, Greece
| | - Michael Kontos
- First Department of Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Despina Perrea
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Nikiteas
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Dimitroulis
- Second Department of Propedeutic Surgery, Laiko General Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| |
Collapse
|
11
|
Discovery of aliphatic-chain hydroxamates containing indole derivatives with potent class I histone deacetylase inhibitory activities. Eur J Med Chem 2018; 143:792-805. [DOI: 10.1016/j.ejmech.2017.11.092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/11/2017] [Accepted: 11/28/2017] [Indexed: 12/20/2022]
|
12
|
Structure–activity relationships of hydroxamate-based histone deacetylase-8 inhibitors: reality behind anticancer drug discovery. Future Med Chem 2017; 9:2211-2237. [PMID: 29182018 DOI: 10.4155/fmc-2017-0130] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pan-histone deacetylase (HDAC) inhibitors comprise a fish-like structural orientation where hydrophobic aryl- and zinc-binding groups act as head and tail, respectively of a fish. The linker moiety correlates the body of the fish linking head and tail groups. Despite these pan-HDAC inhibitors, selective HDAC-8 inhibitors are still in demand as a safe remedy. HDAC-8 is involved in invasion and metastasis in cancer. This review deals with the rationale behind HDAC-8 inhibitory activity and selectivity along with detailed structure–activity relationships of diverse hydroxamate-based HDAC-8 inhibitors. HDAC-8 inhibitory potency may be increased by modifying the fish-like pharmacophoric features of such type of pan-HDAC inhibitors. This review may provide a preliminary basis to design and optimize new lead molecules with higher HDAC-8 inhibitory activity. This work may surely enlighten in providing useful information in the field of target-specific anticancer therapy.
Collapse
|
13
|
Lernoux M, Schnekenburger M, Dicato M, Diederich M. Anti-cancer effects of naturally derived compounds targeting histone deacetylase 6-related pathways. Pharmacol Res 2017; 129:337-356. [PMID: 29133216 DOI: 10.1016/j.phrs.2017.11.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/02/2017] [Accepted: 11/06/2017] [Indexed: 12/20/2022]
Abstract
Alterations of the epigenetic machinery, affecting multiple biological functions, represent a major hallmark enabling the development of tumors. Among epigenetic regulatory proteins, histone deacetylase (HDAC)6 has emerged as an interesting potential therapeutic target towards a variety of diseases including cancer. Accordingly, this isoenzyme regulates many vital cellular regulatory processes and pathways essential to physiological homeostasis, as well as tumor multistep transformation involving initiation, promotion, progression and metastasis. In this review, we will consequently discuss the critical implications of HDAC6 in distinct mechanisms relevant to physiological and cancerous conditions, as well as the anticancer properties of synthetic, natural and natural-derived compounds through the modulation of HDAC6-related pathways.
Collapse
Affiliation(s)
- Manon Lernoux
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Michael Schnekenburger
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer, Kirchberg Hospital, 9, Edward Steichen Street, L-2540 Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, 08826, South Korea.
| |
Collapse
|
14
|
Farooqi AA, Naqvi SKUH, Perk AA, Yanar O, Tabassum S, Ahmad MS, Mansoor Q, Ashry MS, Ismail M, Naoum GE, Arafat WO. Natural Agents-Mediated Targeting of Histone Deacetylases. Arch Immunol Ther Exp (Warsz) 2017; 66:31-44. [PMID: 28852775 DOI: 10.1007/s00005-017-0488-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
In the past few years, basic and clinical scientists have witnessed landmark achievements in many research projects, such as those conducted by the US National Institutes of Health Roadmap Epigenomics Mapping Consortium, the International Human Epigenome Consortium, The Cancer Genome Atlas Network and the International Cancer Genome Consortium, which have provided near-complete resolution of epigenetic landscape in different diseases. Furthermore, genome sequencing of tumors has provided compelling evidence related to frequent existence of mutations in readers, erasers and writers of epigenome in different cancers. Histone acetylation is an intricate mechanism modulated by two opposing sets of enzymes and deeply studied as a key biological phenomenon in 1964 by Vincent Allfrey and colleagues. The research group suggested that this protein modification contributed substantially in transcriptional regulation. Subsequently, histone deacetylases (HDACs), histone acetyltransferases and acetyl-Lys-binding proteins were identified as transcriptional mediators, which further deepened our comprehension regarding biochemical modifications. Overwhelmingly increasing high-impact research is improving our understanding of this molecularly controlled mechanism; moreover, quantification and identification of lysine acetylation by mass spectrometry has added new layers of information. We partition this multi-component review into how both activity and expression of HDAC are targeted using natural agents. We also set spotlight on how oncogenic fusion proteins tactfully utilize HDAC-associated nano-machinery to modulate expression of different genes and how HDAC inhibitors regulate TRAIL-induced apoptosis in cancer cells. HDAC inhibitors have been reported to upregulate expression of TRAIL receptors and protect TRAIL from proteasomal degradation. Deeper understanding of HDAC biology will be useful for stratification and selection of patients who are responders, non-responders and poor-responders for HDACi therapy, and for the rational design of combination studies using HDACi.
Collapse
Affiliation(s)
| | | | - Aliye Aras Perk
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Onur Yanar
- Division of Botany, Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Sobia Tabassum
- Department of Bioinformatics and Biotechnology, International Islamic University, Islamabad, Pakistan
| | - Muhammad Sheeraz Ahmad
- Institute of Biochemistry and Biotechnology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Qaisar Mansoor
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - Mohamed S Ashry
- Clinical Oncology Department, Mansoura University, Mansoura, Egypt
| | - Muhammad Ismail
- Institute of Biomedical and Genetic Engineering, Islamabad, Pakistan
| | - George E Naoum
- Alexandria Comprehensive Cancer Center, Alexandria, Egypt.,Department of radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, USA
| | - Waleed O Arafat
- Clinical Oncology Department, Alexandria University, Alexandria, Egypt.
| |
Collapse
|
15
|
Abdizadeh T, Kalani MR, Abnous K, Tayarani-Najaran Z, Khashyarmanesh BZ, Abdizadeh R, Ghodsi R, Hadizadeh F. Design, synthesis and biological evaluation of novel coumarin-based benzamides as potent histone deacetylase inhibitors and anticancer agents. Eur J Med Chem 2017; 132:42-62. [PMID: 28340413 DOI: 10.1016/j.ejmech.2017.03.024] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 01/26/2023]
Abstract
Histone deacetylases (HDACs) are attractive therapeutic targets for the treatment of cancer and other diseases. It has four classes (I-IV), among them especially class I isozyme are involved in promoting tumor cells proliferation, angiogenesis, differentiation, invasion and metastasis and also viable targets for cancer therapeutics. A novel series of coumarin-based benzamides was designed and synthesized as HDAC inhibitors. The cytotoxic activity of the synthesized compounds (8a-u) was evaluated against six human cancer cell lines including HCT116, A2780, MCF7, PC3, HL60 and A549 and a single normal cell line (Huvec). We evaluated their inhibitory activities against pan HDAC and HDAC1 isoform. Four compounds (8f, 8q, 8r and 8u) showed significant cytotoxicity with IC50 in the range of 0.53-57.59 μM on cancer cells and potent pan-HDAC inhibitory activity (consists of HDAC isoenzymes) (IC50 = 0.80-14.81 μM) and HDAC1 inhibitory activity (IC50 = 0.47-0.87 μM and also, had no effect on Huvec (human normal cell line) viability (IC50 > 100 μM). Among them, 8u displayed a higher potency for HDAC1 inhibition with IC50 value of 0.47 ± 0.02 μM near equal to the reference drug Entinostat (IC50 = 0.41 ± 0.06 μM). Molecular docking studies and Molecular dynamics simulation of compound 8a displayed possible mode of interaction between this compound and HDAC1enzyme.
Collapse
Affiliation(s)
- Tooba Abdizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Kalani
- School of Cell and Molecular Biology, University of Illinois at Urbana-Champaign, Urbana, United States; Department of Molecular Medicine, Golestan University of Medical Sciences, Golestan, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Zahra Khashyarmanesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Razieh Ghodsi
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzin Hadizadeh
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Kandhasamy S, Perumal S, Madhan B, Umamaheswari N, Banday JA, Perumal PT, Santhanakrishnan VP. Synthesis and Fabrication of Collagen-Coated Ostholamide Electrospun Nanofiber Scaffold for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8556-8568. [PMID: 28221758 DOI: 10.1021/acsami.6b16488] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel scaffold for effective wound healing treatment was developed utilizing natural product bearing collagen-based biocompatible electrospun nanofibers. Initially, ostholamide (OSA) was synthesized from osthole (a natural coumarin), characterized by 1H, 13C, DEPT-135 NMR, ESI-MS, and FT-IR spectroscopy analysis. OSA was incorporated into polyhydroxybutyrate (PHB) and gelatin (GEL), which serve as templates for electrospun nanofibers. The coating of OSA-PHB-GEL nanofibers with collagen resulted in PHB-GEL-OSA-COL nanofibrous scaffold which mimics extracellular matrix and serves as an effective biomaterial for tissue engineering applications, especially for wound healing. PHB-GEL-OSA-COL, along with PHB-GEL-OSA and collagen film (COLF), was characterized in vitro and in vivo to determine its efficacy. The developed PHB-GEL-OSA-COL nanofibers posed an impressive mechanical stability, an essential requirement for wound healing. The presence of OSA had contributed to antimicrobial efficacy. These scaffolds exhibited efficient antibacterial activity against common wound pathogens, Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). The zones of inhibition were observed to be 14 ± 22 and 10 ± 2 mm, respectively. It was observed that nanofibrous scaffold had the ability to release OSA in a controlled manner, and hence, OSA would be present at the site of application and exhibit bioactivity in a sustained manner. PHB-GEL-OSA-COL nanofiber was determined to be stable against enzymatic degradation, which is the most important parameter for promoting proliferation of cells contributing to repair and remodeling of tissues during wound healing applications. As hypothesized, PHB-GEL-OSA-COL was observed to imbibe excellent cytocompatibility, which was determined using NIH 3T3 fibroblast cell proliferation studies. PHB-GEL-OSA-COL exhibited excellent wound healing efficacy which was confirmed using full thickness excision wound model in Wistar rats. The rats treated with PHB-GEL-OSA-COL nanofibrous scaffold displayed enhanced healing when compared to untreated control. Both in vitro and in vivo analysis of PHB-GEL-OSA-COL presents a strong case of therapeutic biomaterial suiting wound repair and regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Javid Ahmad Banday
- Department of Chemistry, National Institute of Technology , Srinagar, India
| | | | | |
Collapse
|
17
|
A combined pharmacophore modeling, 3D QSAR, virtual screening, molecular docking, and ADME studies to identify potential HDAC8 inhibitors. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Chiu HW, Yeh YL, Wang YC, Huang WJ, Ho SY, Lin P, Wang YJ. Combination of the novel histone deacetylase inhibitor YCW1 and radiation induces autophagic cell death through the downregulation of BNIP3 in triple-negative breast cancer cells in vitro and in an orthotopic mouse model. Mol Cancer 2016; 15:46. [PMID: 27286975 PMCID: PMC4902929 DOI: 10.1186/s12943-016-0531-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 05/31/2016] [Indexed: 12/31/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is the most aggressive and invasive of the breast cancer subtypes. TNBC is a challenging disease that lacks targets for treatment. Histone deacetylase inhibitors (HDACi) are a group of targeted anticancer agents that enhance radiosensitivity. Bcl-2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3) is a member of the Bcl-2 subfamily. BNIP3 is not found in normal breast tissue but is up-regulated in breast cancer. In the present study, we investigated the anti-cancer effects of a newly developed HDACi, YCW1, combined with ionizing radiation (IR) in TNBC in vitro and in an orthotopic mouse model. Furthermore, we examined the relationship between autophagy and BNIP3. Methods Trypan blue exclusion was used to investigate the viability of 4 T1 (a mouse TNBC cell line) and MDA-MB-231 cells (a human TNBC cell line) following combined YCW1 and IR treatment. Flow cytometry was used to determine apoptosis and autophagy. The expression levels of BNIP3, endoplasmic reticulum (ER) stress- and autophagic-related proteins were measured using western blot analysis. An orthotopic mouse model was used to investigate the in vivo effects of YCW1 and IR alone and in combination. Tumor volumes were monitored using a bioluminescence-based IVIS Imaging System 200. Results We found that YCW1 significantly enhanced toxicity in 4 T1 cells compared with suberoylanilide hydroxamic acid (SAHA), which was the first HDACi approved by the Food and Drug Administration for clinical use in cancer patients. The combined treatment of YCW1 and IR enhanced cytotoxicity by inducing ER stress and increasing autophagy induction. Additionally, the combined treatment caused autophagic flux and autophagic cell death. Furthermore, the expression level of BNIP3 was significantly decreased in cells following combined treatment. The downregulation of BNIP3 led to a significant increase in autophagy and cytotoxicity. The combined anti-tumor effects of YCW1 and IR were also observed in an orthotopic mouse model; combination therapy resulted in a significant increase in autophagy and decreased tumor tissue expression of BNIP3 in the tumor tissue. Conclusions These data support the possibility of using a combination of HDACi and IR in the treatment of TNBC. Moreover, BNIP3 may be a potential target protein for TNBC treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12943-016-0531-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Wen Chiu
- Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yow Ho
- Department of Radiation Oncology, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Chang Jung Christian University, Tainan, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, No. 35 Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, Tainan, Taiwan, 704. .,Department of Biomedical Informatics, Asia University, Taichung, Taiwan. .,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
19
|
Roche J, Bertrand P. Inside HDACs with more selective HDAC inhibitors. Eur J Med Chem 2016; 121:451-483. [PMID: 27318122 DOI: 10.1016/j.ejmech.2016.05.047] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 01/08/2023]
Abstract
Inhibitors of histone deacetylases (HDACs) are nowadays part of the therapeutic arsenal mainly against cancers, with four compounds approved by the Food and Drug Administration. During the last five years, several groups have made continuous efforts to improve this class of compounds, designing more selective compounds or compounds with multiple capacities. After a survey of the HDAC biology and structures, this review summarizes the results of the chemists working in this field, and highlights when possible the behavior of the molecules inside their targets.
Collapse
Affiliation(s)
- Joëlle Roche
- Laboratoire Ecologie et Biologie des Interactions, Equipe « SEVE Sucres & Echanges Végétaux-Environnement », Université de Poitiers, UMR CNRS 7267, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France
| | - Philippe Bertrand
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, 4 rue Michel Brunet, TSA 51106, B28, F-86073 Poitiers Cedex 09, France; Réseau Epigénétique du Cancéropôle Grand Ouest, France.
| |
Collapse
|
20
|
Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:919616. [PMID: 26246843 PMCID: PMC4515521 DOI: 10.1155/2015/919616] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 06/28/2015] [Indexed: 12/17/2022]
Abstract
This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine.
Collapse
|
21
|
Lee WH, Wu HH, Huang WJ, Li YN, Lin RJ, Lin SY, Liang YC. N-hydroxycinnamide derivatives of osthole ameliorate hyperglycemia through activation of AMPK and p38 MAPK. Molecules 2015; 20:4516-29. [PMID: 25768846 PMCID: PMC6272315 DOI: 10.3390/molecules20034516] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/04/2015] [Accepted: 03/05/2015] [Indexed: 01/19/2023] Open
Abstract
Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes. Our previous studies found that osthole markedly reduced blood glucose levels in both db/db and ob/ob mice. To improve the antidiabetic activity of osthole, a series of N-hydroxycinnamide derivatives of osthole were synthesized, and their hypoglycemia activities were examined in vitro and in vivo. Both N-hydroxycinnamide derivatives of osthole, OHC-4p and OHC-2m, had the greatest potential for activating AMPK and increasing glucose uptake by L6 skeletal muscle cells. In addition, OHC-4p and OHC-2m time- and dose-dependently increased phosphorylation levels of AMPK and p38 MAPK. The AMPK inhibitor, compound C, and the p38 MAPK inhibitor, SB203580, significantly reversed activation of AMPK and p38 MAPK, respectively, in OHC-4p- and OHC-2m-treated cells. Compound C and SB203580 also inhibited glucose uptake induced by OHC-4p and OHC-2m. Next, we found that OHC-4p and OHC-2m significantly increased glucose transporter 4 (GLUT4) translocation to plasma membranes and counteracted hyperglycemia in mice with streptozotocin-induced diabetes. These results suggest that activation of AMPK and p38 MAPK by OHC-4p and OHC-2m is associated with increased glucose uptake and GLUT4 translocation and subsequently led to amelioration of hyperglycemia. Therefore, OHC-4p and OHC-2m might have potential as antidiabetic agents for treating type 2 diabetes.
Collapse
Affiliation(s)
- Wei-Hwa Lee
- Department of Pathology, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Rd., New Taipei City 23561, Taiwan.
| | - Hsueh-Hsia Wu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Wei-Jan Huang
- Graduate Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Yi-Ning Li
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Ren-Jye Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, 252 Wuxing St., Taipei 11031, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, 252 Wuxing St., Taipei 11031, Taiwan.
- Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, 252 Wuxing St., Taipei 11031, Taiwan.
| |
Collapse
|
22
|
Zhou N, Xu W, Zhang Y. Histone deacetylase inhibitors merged with protein tyrosine kinase inhibitors. Drug Discov Ther 2015; 9:147-55. [PMID: 26193935 DOI: 10.5582/ddt.2015.01001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Nan Zhou
- College of Pharmacy, Shandong University
| | - Wenfang Xu
- College of Pharmacy, Shandong University
| | | |
Collapse
|
23
|
A histone deacetylase inhibitor YCW1 with antitumor and antimetastasis properties enhances cisplatin activity against non-small cell lung cancer in preclinical studies. Cancer Lett 2014; 346:84-93. [DOI: 10.1016/j.canlet.2013.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 12/04/2013] [Accepted: 12/09/2013] [Indexed: 01/20/2023]
|
24
|
Li XH, Huang ML, Wang SM, Wang Q. Selective Inhibition of Bicyclic Tetrapeptide Histone Deacetylase Inhibitor on HDAC4 and K562 Leukemia Cell. Asian Pac J Cancer Prev 2013; 14:7095-100. [DOI: 10.7314/apjcp.2013.14.12.7095] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
25
|
Wang L, Yuan W, Zhang J, Tong L, Luo Y, Chen Y, Lu W, Huang Q. Synthesis of 7-Triazole-substituted Camptothecin via Click Chemistry and Evaluation of in vitro Antitumor Activity. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Liu LY, Huang WJ, Lin RJ, Lin SY, Liang YC. N-Hydroxycinnamide Derivatives of Osthole Presenting Genotoxicity and Cytotoxicity against Human Colon Adenocarcinoma Cells in Vitro and in Vivo. Chem Res Toxicol 2013; 26:1683-91. [DOI: 10.1021/tx400271n] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ling-Yu Liu
- Graduate
Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Jan Huang
- Graduate
Institute of Pharmacognosy Science, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jye Lin
- Department
of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department
of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Department
of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chih Liang
- School
of Medical Laboratory Science and Biotechnology, College of Medical
Science and Technology, Taipei Medical University, Taipei, Taiwan
- Traditional
Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
27
|
Gryder BE, Rood MK, Johnson KA, Patil V, Raftery ED, Yao LPD, Rice M, Azizi B, Doyle DF, Oyelere AK. Histone deacetylase inhibitors equipped with estrogen receptor modulation activity. J Med Chem 2013; 56:5782-96. [PMID: 23786452 DOI: 10.1021/jm400467w] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe a set of novel histone deacetylase inhibitors (HDACi) equipped with either an antagonist or an agonist of the estrogen receptor (ER) to confer selective activity against breast cancers. These bifunctional compounds potently inhibit HDAC at nanomolar concentrations and either agonize or antagonize ERα and ERβ. The ER antagonist activities of tamoxifen-HDACi conjugates (Tam-HDACi) are nearly identical to those of tamoxifen. Conversely, ethynyl-estradiol-HDACi conjugates (EED-HDACi) have attenuated ER agonist activities relative to the parent ethynyl-estradiol. In silico docking analysis provides structural basis for the trends of ER agonism/antagonism and ER subtype selectivity. Excitingly, lead Tam-HDACi conjugates show anticancer activity that is selectively more potent against MCF-7 (ERα positive breast cancer) compared to MDA-MB-231 (triple negative breast cancer), DU145 (prostate cancer), or Vero (noncancerous cell line). This dual-targeting approach illustrates the utility of designing small molecules with an emphasis on cell-type selectivity, not merely improved potency, working toward a higher therapeutic index at the earliest stages of drug development.
Collapse
Affiliation(s)
- Berkley E Gryder
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology , Atlanta, Georgia, 30332-0400, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|