1
|
Altıntop MD, Sever B, Akalın Çiftçi G, Ertorun İ, Alataş Ö, Özdemir A. A new series of thiosemicarbazone-based anti-inflammatory agents exerting their action through cyclooxygenase inhibition. Arch Pharm (Weinheim) 2022; 355:e2200136. [PMID: 35606682 DOI: 10.1002/ardp.202200136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/09/2022]
Abstract
In an endeavor to identify potent anti-inflammatory agents, new thiosemicarbazones (TSCs) incorporated into a diaryl ether framework (2a-2l) were prepared and screened for their in vitro inhibitory effects on cyclooxygenases (COXs). 4-[4-(Piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-cyanophenoxy)benzylidene]thiosemicarbazide (2c) was the most potent and selective COX-1 inhibitor in this series, with an IC50 value of 1.89 ± 0.04 µM. On the other hand, 4-[4-(piperidin-1-ylsulfonyl)phenyl]-1-[4-(4-nitrophenoxy)benzylidene]thiosemicarbazide (2b) was identified as a nonselective COX inhibitor (COX-1 IC50 = 13.44 ± 0.65 µM, COX-2 IC50 = 12.60 ± 0.78 µM). Based on molecular docking studies, the diaryl ether and the TSC groups serve as crucial moieties for interactions with pivotal amino acid residues in the active sites of COXs. According to MTT test, compounds 2b and 2c showed low cytotoxic activity toward NIH/3T3 cells. Their in vivo anti-inflammatory and antioxidant potencies were also assessed using the lipopolysaccharide-induced sepsis model. Compounds 2b and 2c diminished high-sensitivity C-reactive protein, myeloperoxidase, nitric oxide, and malondialdehyde levels. Both compounds also caused a significant decrease in aspartate aminotransferase levels as well as alanine aminotransferase levels. In silico pharmacokinetic studies suggest that compounds 2b and 2c possess favorable drug-likeness and oral bioavailability. It can be concluded that these compounds may act as orally bioavailable anti-inflammatory and antioxidant agents.
Collapse
Affiliation(s)
- Mehlika D Altıntop
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Gülşen Akalın Çiftçi
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - İpek Ertorun
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Özkan Alataş
- Department of Medical Biochemistry, Faculty of Medicine, Eskisehir Osmangazi University, Eskişehir, Turkey
| | - Ahmet Özdemir
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
2
|
Coaviche-Yoval A, Trujillo-Ferrara JG, Soriano-Ursúa MA, Andrade-Jorge E, Sánchez-Labastida LA, Luna H, Tovar-Miranda R. In silico and in vivo neuropharmacological evaluation of two γ-amino acid isomers derived from 2,3-disubstituted benzofurans, as ligands of GluN1-GluN2A NMDA receptor. Amino Acids 2022; 54:215-228. [PMID: 34854957 DOI: 10.1007/s00726-021-03108-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Abstract
The GABAergic and glutamatergic neurotransmission systems are involved in seizures and other disorders of the central nervous system (CNS). Benzofuran derivatives often serve as the core in drugs used to treat such neurological disorders. The aim of this study was to synthesize new γ-amino acids structurally related to GABA and derived from 2,3-disubstituted benzofurans, analyze in silico their potential toxicity, ADME properties, and affinity for the GluN1-GluN2A NMDA receptor, and evaluate their potential activity and neuronal mechanisms in a murine model of pentylenetetrazol (PTZ)- and 4-aminopyridine (4-AP)-induced seizures. The in silico analysis evidenced a low risk of toxicity for the test compounds as well as the probability that they can cross the blood-brain barrier (BBB) to reach their targets in the CNS. According to docking simulations, these compounds bind at the active site of the NMDA glutamate receptor with high affinity. The in vivo assays demonstrated that 4 protects against 4-AP-induced seizure episodes, suggesting negative allosteric modulation (NAMs) at the glutamatergic NMDA receptor. Contrarily, 3 (the regioisomer of 4) and its racemic derivatives (cis-2,3-dihydrobenzofurans) were previously described to exacerbate such episodes, pointing to their positive allosteric modulation (PAMs) of the same receptor.
Collapse
Affiliation(s)
- Arturo Coaviche-Yoval
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, 04960, Coyoacán, CDMX, Mexico
- Instituto de Ciencias Básicas Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Animas, Xalapa, 91190, Veracruz, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Marvin A Soriano-Ursúa
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Erik Andrade-Jorge
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
- Facultad de Estudios Superiores-Iztacala-UNAM, Unidad de Investigación en Biomedicina, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, Mexico
| | - Luis A Sánchez-Labastida
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Héctor Luna
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, 04960, Coyoacán, CDMX, Mexico.
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Básicas Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Animas, Xalapa, 91190, Veracruz, Mexico.
| |
Collapse
|
3
|
Coaviche-Yoval A, Trujillo-Ferrara JG, Soriano-Ursúa MA, Andrade-Jorge E, Sánchez-Labastida LA, Luna H, Tovar-Miranda R. In silico and in vivo neuropharmacological evaluation of two γ-amino acid isomers derived from 2,3-disubstituted benzofurans, as ligands of GluN1-GluN2A NMDA receptor. Amino Acids 2021. [PMID: 34854957 DOI: 10.1007/s00726-021-03108-2.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GABAergic and glutamatergic neurotransmission systems are involved in seizures and other disorders of the central nervous system (CNS). Benzofuran derivatives often serve as the core in drugs used to treat such neurological disorders. The aim of this study was to synthesize new γ-amino acids structurally related to GABA and derived from 2,3-disubstituted benzofurans, analyze in silico their potential toxicity, ADME properties, and affinity for the GluN1-GluN2A NMDA receptor, and evaluate their potential activity and neuronal mechanisms in a murine model of pentylenetetrazol (PTZ)- and 4-aminopyridine (4-AP)-induced seizures. The in silico analysis evidenced a low risk of toxicity for the test compounds as well as the probability that they can cross the blood-brain barrier (BBB) to reach their targets in the CNS. According to docking simulations, these compounds bind at the active site of the NMDA glutamate receptor with high affinity. The in vivo assays demonstrated that 4 protects against 4-AP-induced seizure episodes, suggesting negative allosteric modulation (NAMs) at the glutamatergic NMDA receptor. Contrarily, 3 (the regioisomer of 4) and its racemic derivatives (cis-2,3-dihydrobenzofurans) were previously described to exacerbate such episodes, pointing to their positive allosteric modulation (PAMs) of the same receptor.
Collapse
Affiliation(s)
- Arturo Coaviche-Yoval
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, 04960, Coyoacán, CDMX, Mexico.,Instituto de Ciencias Básicas Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Animas, Xalapa, 91190, Veracruz, Mexico
| | - José G Trujillo-Ferrara
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Marvin A Soriano-Ursúa
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Erik Andrade-Jorge
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico.,Facultad de Estudios Superiores-Iztacala-UNAM, Unidad de Investigación en Biomedicina, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo. De México, Mexico
| | - Luis A Sánchez-Labastida
- Departamentos de Bioquímica y Fisiología, Escuela Superior de Medicina-Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, 11340, Miguel Hidalgo, CDMX, Mexico
| | - Héctor Luna
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Unidad Xochimilco Calzada del Hueso 1100, Col. Villa Quietud, 04960, Coyoacán, CDMX, Mexico.
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Básicas Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Animas, Xalapa, 91190, Veracruz, Mexico.
| |
Collapse
|
4
|
Morales JF, Chuguransky S, Alberca LN, Alice JI, Goicoechea S, Ruiz ME, Bellera CL, Talevi A. Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods. Mini Rev Med Chem 2021; 20:1447-1460. [PMID: 32072906 DOI: 10.2174/1871525718666200219130229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Since their introduction in the virtual screening field, Receiver Operating Characteristic (ROC) curve-derived metrics have been widely used for benchmarking of computational methods and algorithms intended for virtual screening applications. Whereas in classification problems, the ratio between sensitivity and specificity for a given score value is very informative, a practical concern in virtual screening campaigns is to predict the actual probability that a predicted hit will prove truly active when submitted to experimental testing (in other words, the Positive Predictive Value - PPV). Estimation of such probability is however, obstructed due to its dependency on the yield of actives of the screened library, which cannot be known a priori. OBJECTIVE To explore the use of PPV surfaces derived from simulated ranking experiments (retrospective virtual screening) as a complementary tool to ROC curves, for both benchmarking and optimization of score cutoff values. METHODS The utility of the proposed approach is assessed in retrospective virtual screening experiments with four datasets used to infer QSAR classifiers: inhibitors of Trypanosoma cruzi trypanothione synthetase; inhibitors of Trypanosoma brucei N-myristoyltransferase; inhibitors of GABA transaminase and anticonvulsant activity in the 6 Hz seizure model. RESULTS Besides illustrating the utility of PPV surfaces to compare the performance of machine learning models for virtual screening applications and to select an adequate score threshold, our results also suggest that ensemble learning provides models with better predictivity and more robust behavior. CONCLUSION PPV surfaces are valuable tools to assess virtual screening tools and choose score thresholds to be applied in prospective in silico screens. Ensemble learning approaches seem to consistently lead to improved predictivity and robustness.
Collapse
Affiliation(s)
- Juan F Morales
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sara Chuguransky
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Lucas N Alberca
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Juan I Alice
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Sofía Goicoechea
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - María E Ruiz
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Carolina L Bellera
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| | - Alan Talevi
- Laboratory of Bioactive Research and Development (LIDeB), Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata (UNLP) - 47 & 115, La Plata (1900), Buenos Aires, Argentina
| |
Collapse
|
5
|
Anand SAA, George K, Thomas NS, Kabilan S. Synthesis, characterization and antitumor activities of some novel thiazinones and thiosemicarbazones derivatives. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1757672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Kiran George
- Department of Biomedical Engineering, Chennai Institute of Technology, Chennai, Tamilnadu, India
| | - Nisha Susan Thomas
- Department of Bio-Chemistry and Bio-Technology, Annamalai University, Annamalainagar, Tamilnadu, India
| | | |
Collapse
|
6
|
Chen T, Xiong H, Yang JF, Zhu XL, Qu RY, Yang GF. Diaryl Ether: A Privileged Scaffold for Drug and Agrochemical Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9839-9877. [PMID: 32786826 DOI: 10.1021/acs.jafc.0c03369] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Diaryl ether (DE) is a functional scaffold existing widely both in natural products (NPs) and synthetic organic compounds. Statistically, DE is the second most popular and enduring scaffold within the numerous medicinal chemistry and agrochemical reports. Given its unique physicochemical properties and potential biological activities, DE nucleus is recognized as a fundamental element of medicinal and agrochemical agents aimed at different biological targets. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antibacterial, antimalarial, herbicidal, fungicidal, insecticidal, and so on. In this review, we highlight the medicinal and agrochemical versatility of the DE motif according to the published information in the past decade and comprehensively give a summary of the target recognition, structure-activity relationship (SAR), and mechanism of action of its analogues. It is expected that this profile may provide valuable guidance for the discovery of new active ingredients both in drug and pesticide research.
Collapse
Affiliation(s)
- Tao Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hao Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xiao-Lei Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Jia X, Liu Q, Wang S, Zeng B, Du G, Zhang C, Li Y. Synthesis, cytotoxicity, and in vivo antitumor activity study of parthenolide semicarbazones and thiosemicarbazones. Bioorg Med Chem 2020; 28:115557. [DOI: 10.1016/j.bmc.2020.115557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 12/23/2022]
|
8
|
Khare SV, Choudhari SP, Phalle SP, Kumbhar SS, Choudhari PB, Masal SR, Patil AK, Dhavale RP, Bhagwat DA, Kadam AM. Optimization of Thiazolidone Scaffolds Using Pocket Modeling for Development of Potential Secretory System Inhibitors of Mycobacterium tuberculosis. Turk J Pharm Sci 2020; 16:196-205. [PMID: 32454714 DOI: 10.4274/tjps.galenos.2018.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/22/2018] [Indexed: 12/01/2022]
Abstract
Objectives Mycobacterium tuberculosis is the causative organism of tuberculosis, which is the most lethal disease after cancer in the current decade. The development of multidrug and broadly drug-resistant strains is making the problem of tuberculosis more and more critical. In the last 40 years, only one molecule has been added to the treatment regimen. Generally, drug design and development programs target proteins whose function is known to be essential to the bacterial cell. M. tuberculosis possesses specialized protein export systems like the SecA2 export pathway and ESX pathways. Materials and Methods In the present communication, rational development of an antimycobacterial agent's targeting protein export system was carried out by integrating pocket modeling and virtual analysis. Results The 23 identified potential lead compounds were synthesized, characterized by physicochemical and spectroscopic methods like infrared and nuclear magnetic resonance spectroscopy, and further screened for antimycobacterial activity using isoniazid as standard. All the designed compounds showed profound antimycobacterial activity. Conclusion We found that Q30, M9, M26, U8, and R26 molecules had significant desirable biological activity and specific interactions with Sec of mycobacteria. Further optimization of these leads is necessary for the development of potential antimycobacterial drug candidates with fewer side effects.
Collapse
Affiliation(s)
- Shivratna V Khare
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Sujata P Choudhari
- Sarojini College of Pharmacy, Department of Pharmaceutical Analysis, Kolhapur, India
| | - Siddharth P Phalle
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Santosh S Kumbhar
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Prafulla B Choudhari
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Sambhaji R Masal
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Aakash K Patil
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutical Chemistry, Computational Chemistry Research Lab, Kolhapur, India
| | - Rakesh P Dhavale
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutics, Kolhapur, India
| | - Durgacharan A Bhagwat
- Bharati Vidyapeeth College of Pharmacy, Department of Pharmaceutics, Kolhapur, India
| | - Atul M Kadam
- Shree Santkrupa College of Pharmacy, Department of Pharmaceutics, Ghogaon, India
| |
Collapse
|
9
|
Choppara P, Prasad Y, Rao C, Hari Krishna K, Trimoorthulu G, Maheswara Rao G, Venkateswara Rao J, Bethu M, Murthy Y. Design, synthesis of novel N prenylated indole-3-carbazones and evaluation of in vitro cytotoxicity and 5-LOX inhibition activities. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2015.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Bessega T, Chaves OA, Martins FM, Acunha TV, Back DF, Iglesias BA, de Oliveira GM. Coordination of Zn(II), Pd(II) and Pt(II) with ligands derived from diformylpyridine and thiosemicarbazide: Synthesis, structural characterization, DNA/BSA binding properties and molecular docking analysis. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119049] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Prajapati NP, Patel HD. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1649432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Neelam P. Prajapati
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| | - Hitesh D. Patel
- Department of Chemistry, School of Sciences, Gujarat University, Ahmedabad, India
| |
Collapse
|
12
|
Coaviche-Yoval A, Luna H, Tovar-Miranda R, Soriano-Ursúa MA, Trujillo-Ferrara JG. Synthesis and Biological Evaluation of Novel 2,3-disubstituted Benzofuran Analogues of GABA as Neurotropic Agents. Med Chem 2019; 15:77-86. [PMID: 29792150 DOI: 10.2174/1573406414666180524091745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 04/17/2018] [Accepted: 04/30/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Benzofurans are heterocyclic compounds with neurotropic activity. Some have been developed for the treatment of acute and degenerative neuronal injuries. OBJECTIVE The study aimed to evaluate the in silico binding of some promising benzofurans on the GABA receptors, and the in vivo neurotropic activity of benzofuran analogues (BZF 6-10) of gamma-aminobutyric acid (GABA) on a seizure model. METHODS The ligands with the best physicochemical attributes were docked on two GABA receptors (the alpha-1 subunit of GABAA-R and GBR1 subunit of GABAB-R). Selected benzofuran derivatives were synthesized by a multistep procedure and characterized. To examine the neurotropic effects, mice were pretreated with different concentrations of the compounds prior to PTZ- or 4- AP-induced seizures. We assessed acute toxicity, motor behavior, and the effects on seizures. RESULTS The tested ligands that complied with Lipinski's rule of five were tested in silico with GABAA-R (ΔG = -5.51 to -5.84 kcal/mol) at the allosteric site for benzodiazepines. They bound to a similar cluster of residues as the reference compound (gaboxadol, ΔG = -5.51 kcal/mol). Synthesis was achieved with good overall yields (42-9.7%). Two compounds were selected for biological tests (BZF-7 and rac-BZF-10) on a mouse model of seizures, induced by pentylenetetrazol (PTZ) or 4-aminopyridine (4-AP). PTZ-induced seizures are associated with GABA receptors, and those 4-AP-induced with the blockage of the delayed rectifier-type potassium channel, which promotes the release of the NMDA-sensitive glutamatergic ionotropic receptor and other neurotransmitters. The biological assays demonstrated that BZF-7 and rac-BZF-10 do not protect against seizures. Indeed, BZF-7 increased the number of PTZ-induced seizures and decreased latency time. The 4-AP model apparently showed a potentiation of seizure effects after administration of the BZF-analogues, evidenced by the incidence and severity of the seizures and reduced latency time. CONCLUSION The results suggest that the test compounds are GABAergic antagonists with stimulatory activity on the CNS.
Collapse
Affiliation(s)
- Arturo Coaviche-Yoval
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana - Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico City, Mexico
| | - Héctor Luna
- Departamento de Sistemas Biologicos, Universidad Autonoma Metropolitana - Campus Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Coyoacan, C.P. 04960, Mexico City, Mexico
| | - Ricardo Tovar-Miranda
- Instituto de Ciencias Basicas, Universidad Veracruzana, Av. Dr. Luis Castelazo Ayala s/n Col. Industrial Animas, 91190 Xalapa, Veracruz, Mexico
| | - Marvin A Soriano-Ursúa
- Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| | - José G Trujillo-Ferrara
- Escuela Superior de Medicina, Instituto Politecnico Nacional, Plan de San Luis y Díaz Mirón s/n Col. Casco de Santo Tomas, Del. Miguel Hidalgo, 11340, Mexico City, Mexico
| |
Collapse
|
13
|
Żesławska E, Nitek W, Marona H, Gunia-Krzyżak A. Cinnamamide pharmacophore for anticonvulsant activity: evidence from crystallographic studies. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2018; 74:782-788. [PMID: 29973417 DOI: 10.1107/s2053229618007660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
A number of cinnamamide derivatives possess anticonvulsant activity due to the presence of a number of important pharmacophore elements in their structures. In order to study the correlations between anticonvulsant activity and molecular structure, the crystal structures of three new cinnamamide derivatives with proven anticonvulsant activity were determined by X-ray diffraction, namely (R,S)-(2E)-N-(2-hydroxybutyl)-3-phenylprop-2-enamide-water (3/1), C13H17NO2·0.33H2O, (1), (2E)-N-(1-hydroxy-2-methylpropan-2-yl)-3-phenylprop-2-enamide, C13H17NO2, (2), and (R,S)-(2E)-N-(1-hydroxy-3-methyl-butan-2-yl)-3-phenylprop-2-enamide, C14H19NO2, (3). Compound (1) crystallizes in the space group P-1 with three molecules in the asymmetric unit, whereas compounds (2) and (3) crystallize in the space group P21/c with one and two molecules, respectively, in their asymmetric units. The carbonyl group of (2) is engaged in an intramolecular hydrogen bond with the hydroxy group. This type of interaction is observed for the first time in these kinds of derivatives. A disorder of the substituent at the N atom occurs in the crystal structures of (2) and (3). The crystal packing of all three structures is dominated by a network of O-H...O and N-H...O hydrogen bonds, and leads to the formation of chains and/or rings. Furthermore, the crystal structures are stabilized by numerous C-H...O contacts. We analyzed the molecular structures and intermolecular interactions in order to propose a pharmacophore model for cinnamamide derivatives.
Collapse
Affiliation(s)
- Ewa Żesławska
- Pedagogical University, Department of Chemistry, Podchorążych 2, 30-084 Kraków, Poland
| | - Wojciech Nitek
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Henryk Marona
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Agnieszka Gunia-Krzyżak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|
14
|
El-Saied FA, Salem TA, Shakdofa MM, Al-Hakimi AN. Anti-neurotoxic evaluation of synthetic and characterized metal complexes of thiosemicarbazone derivatives. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Fathy A. El-Saied
- Department of Chemistry, College of Science; Qassim University; KSA
- Department of Chemistry, Faculty of Science; El-Menoufia University; Shebin El-Kom Egypt
| | - Tarek A. Salem
- Department of Biochemistry, College of Medicine; Qassim University; Saudia Arabia
| | - Mohamad M.E. Shakdofa
- Department of Chemistry, Faculty of Sciences and Arts, Khulais; University of Jeddah; Saudi Arabia
- Inorganic Chemistry Department; National Research Centre; P.O. 12622, Elbehothe st., Dokki Cairo Egypt
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Science; Qassim University; KSA
- Department of Chemistry, Faculty of Science; Ibb University; Ibb Yemen
| |
Collapse
|
15
|
Sahu M, Siddiqui N, Sharma V, Wakode S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg Chem 2018; 77:56-67. [PMID: 29331765 DOI: 10.1016/j.bioorg.2017.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 μM. The docking study also favored the animal studies.
Collapse
Affiliation(s)
- Meeta Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India.
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| |
Collapse
|
16
|
Shakdofa MM, Mousa HA, Elseidy AM, Labib AA, Ali MM, Abd-El-All AS. Anti-proliferative activity of newly synthesized Cd(II), Cu(II), Zn(II),Ni(II), Co(II), VO(II), and Mn(II) complexes of 2-((4,9-dimethoxy-5-oxo-5H-furo[3,2-g]chromen-6-yl)methylene) hydrazinecarbothioamide on three human cancer cells. Appl Organomet Chem 2017. [DOI: 10.1002/aoc.3936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Mohamad M.E. Shakdofa
- Department of Chemistry, Faculty of Science and Arts, Khulais; University of Jeddah; Saudi Arabia
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Hanan A. Mousa
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Ahmed M.A. Elseidy
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
- Chemistry Department, Faculty of Science; Al Imam Mohammad Ibn Saud Islamic University (IMSIU); PO Box 5701 Riyadh 11432 Saudi Arabia
| | - Ammar A. Labib
- Inorganic Chemistry Department; National Research Centre; El-bohouth St., P.O. 12622, Dokki Cairo Egypt
| | - Mamdouh M. Ali
- Biochemistry Department, Division of Genetic Engineering and Biotechnology; National Research Center; Cairo Egypt
| | - Amira S. Abd-El-All
- Division of Pharmaceutical and Drug Industries, Department Chemistry of Natural and Microbial products; National Research Centre; Dokki Cairo 12622 Egypt
| |
Collapse
|
17
|
Synthesis of novel coumarin substituted amide derivatives and their antibacterial activities. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0149-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
QSAR model development for studying carbonic anhydrase inhibitors as anticonvulsant agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1617-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Potential Anticonvulsant Agents. Molecules 2016; 21:164. [PMID: 26938519 PMCID: PMC6274423 DOI: 10.3390/molecules21030164] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/25/2016] [Indexed: 02/01/2023] Open
Abstract
New benztriazoles with a mercapto-triazole and other heterocycle substituents were synthesized and evaluated for their anticonvulsant activity and neurotoxicity by using the maximal electroshock (MES), subcutaneous pentylenetetrazole (scPTZ), and rotarod neurotoxicity (TOX) tests. Among the compounds studied, compound 2-((1H-1,2,4-triazol-3-yl)thio)-N-(6-((3-fluorobenzyl)oxy)benzo[d]thiazol-2-yl)acetamide (5i) and 2-((1H-1,2,4-triazol-3-yl)thio)-N-(6-((4-fluorobenzyl)oxy)benzo[d] thiazol-2-yl)acetmide (5j) were the most potent, with an ED50 value of 50.8 mg/kg and 54.8 mg/kg in the MES test and 76.0 mg/kg and 52.8 mg/kg in the scPTZ seizures test, respectively. They also showed lower neurotoxicity and, therefore a higher protective index. In particular, compound 5j showed high protective index (PI) values of 8.96 in the MES test and 9.30 in the scPTZ test, which were better than those of the standard drugs used as positive controls in this study.
Collapse
|
20
|
Synthesis and Biological Evaluation of Novel Benzothiazole Derivatives as Potential Anticonvulsant Agents. Molecules 2016. [DOI: 10.3390/molecules21020164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
21
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
22
|
Design, synthesis and biological evaluation of novel thiosemicarbazide analogues as potent anticonvulsant agents. Bioorg Chem 2014; 54:68-72. [DOI: 10.1016/j.bioorg.2014.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 11/21/2022]
|
23
|
Jung ME, Chamberlain BT, Ho CLC, Gillespie EJ, Bradley KA. Structure-Activity Relationship of Semicarbazone EGA Furnishes Photoaffinity Inhibitors of Anthrax Toxin Cellular Entry. ACS Med Chem Lett 2014; 5:363-7. [PMID: 24900841 DOI: 10.1021/ml400486k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/26/2013] [Indexed: 11/28/2022] Open
Abstract
EGA, 1, prevents the entry of multiple viruses and bacterial toxins into mammalian cells by inhibiting vesicular trafficking. The cellular target of 1 is unknown, and a structure-activity relationship study was conducted in order to develop a strategy for target identification. A compound with midnanomolar potency was identified (2), and three photoaffinity labels were synthesized (3-5). For this series, the expected photochemistry of the phenyl azide moiety is a more important factor than the IC50 of the photoprobe in obtaining a successful photolabeling event. While 3 was the most effective reversible inhibitor of the series, it provided no protection to cells against anthrax lethal toxin (LT) following UV irradiation. Conversely, 5, which possessed weak bioactivity in the standard assay, conferred robust irreversible protection vs LT to cells upon UV photolysis.
Collapse
Affiliation(s)
- Michael E. Jung
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Brian T. Chamberlain
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Chi-Lee C. Ho
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Eugene J. Gillespie
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| | - Kenneth A. Bradley
- California
NanoSystems Institute, ‡Department of Chemistry and Biochemistry, §Department of Microbiology,
Immunology and Molecular Genetics, University of California, Los Angeles, Los
Angeles, California 90095, United States
| |
Collapse
|
24
|
Siddiqui N, Ahuja P, Malik S, Arya SK. Design of Benzothiazole-1,3,4-thiadiazole Conjugates: Synthesis and Anticonvulsant Evaluation. Arch Pharm (Weinheim) 2013; 346:819-31. [DOI: 10.1002/ardp.201300083] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Nadeem Siddiqui
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Priya Ahuja
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Sachin Malik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| | - Satish K. Arya
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Jamia Hamdard; Hamdard Nagar New Delhi India
| |
Collapse
|
25
|
Tripathi L, Kumar P. Augmentation of GABAergic neurotransmission by novel N-(substituted)-2-[4-(substituted)benzylidene]hydrazinecarbothioamides—A potential anticonvulsant approach. Eur J Med Chem 2013; 64:477-87. [DOI: 10.1016/j.ejmech.2013.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 11/15/2022]
|
26
|
Bansal M, Goel B, Shukla S, Srivastava RS. Synthesis, characterization & anticonvulsant activity of amide derivatives of 4-amino-1,2-naphthoquinone. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0531-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Idhayadhulla A, Surendra Kumar R, Jamal Abdul Nasser A, Kavimani S, Indumathy S. Synthesis and anticonvulsant activity of some new series of pyrrole derivatives. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9919-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|