1
|
Zhang X, Lin Z, Feng Y, Kang F, Wang J, Lan X. Melanin-Targeting Radiotracers and Their Preclinical, Translational, and Clinical Status: From Past to Future. J Nucl Med 2024; 65:19S-28S. [PMID: 38719238 DOI: 10.2967/jnumed.123.266945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Melanin is one of the representative biomarkers of malignant melanoma and a potential target for diagnosis and therapy. With advancements in chemistry and radiolabeling technologies, promising strides have been made to synthesize radiolabeled melanin-binding molecules for various applications. We present an overview of melanin-targeted radiolabeled molecules and compare their features reported in preclinical studies. Clinical practice and trials are also discussed to elaborate on the safety and validity of the probes, and expanded applications beyond melanoma are reviewed. Melanin-targeted imaging holds potential value in the diagnosis, staging, and prognostic assessment of melanoma and other applications. Melanin-targeted radionuclide therapy possesses immense potential but requires more clinical validation. Furthermore, an intriguing avenue for future research involves expanding the application scope of melanin-targeted probes and exploring their value.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Zhaoguo Lin
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Yuan Feng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| | - Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China;
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, Ministry of Education, Wuhan, China; and
| |
Collapse
|
2
|
Rouanet J, Quintana M, Auzeloux P, Cachin F, Degoul F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: Preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021; 224:107829. [PMID: 33662452 DOI: 10.1016/j.pharmthera.2021.107829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 12/16/2022]
Abstract
Cutaneous melanoma arises from proliferating melanocytes, cells specialized in the production of melanin. This property means melanin can be considered as a target for monitoring melanoma patients using nuclear imaging or targeted radionuclide therapy (TRT). Since the 1970s, many researchers have shown that specific molecules can interfere with melanin. This paper reviews some such molecules: benzamide structures improved to increase their pharmacokinetics for imaging or TRT. We first describe the characteristics and biosynthesis of melanin, and the main features of melanin tracers. The second part summarizes the preclinical and corresponding clinical studies on imaging. The last section presents TRT results from ongoing protocols and discusses combinations with other therapies as an opportunity for melanoma non-responders or patients resistant to treatments.
Collapse
Affiliation(s)
- Jacques Rouanet
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Department of Dermatology and Oncodermatology, CHU Estaing, 1 place Lucie et Raymond Aubrac, 63000 Clermont-Ferrand, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Mercedes Quintana
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Philippe Auzeloux
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| | - Florent Cachin
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France; Centre Jean Perrin, Clermont-Ferrand F-63011, France.
| | - Françoise Degoul
- Université Clermont Auvergne, INSERM, Imagerie Moléculaire et Stratégies Théranostiques, UMR1240, 58 Rue Montalembert, 63005 Clermont-Ferrand, Cedex, France.
| |
Collapse
|
3
|
Silva F, Fernandes C, Campello MPC, Paulo A. Metal complexes of tridentate tripod ligands in medical imaging and therapy. Polyhedron 2017. [DOI: 10.1016/j.poly.2016.11.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Yang D, Comeau A, Bowen WD, Mach RH, Ross BD, Hong H, Van Dort ME. Design and Investigation of a [ 18F]-Labeled Benzamide Derivative as a High Affinity Dual Sigma Receptor Subtype Radioligand for Prostate Tumor Imaging. Mol Pharm 2017; 14:770-780. [PMID: 28135101 DOI: 10.1021/acs.molpharmaceut.6b01020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
High overexpression of sigma (σ) receptors (σ1 and σ2 subtypes) in a variety of human solid tumors has prompted the development of σ receptor-targeting radioligands, as imaging agents for tumor detection. A majority of these radioligands to date target the σ2 receptor, a potential marker of tumor proliferative status. The identification of approximately equal proportions of both σ receptor subtypes in prostate tumors suggests that a high affinity, dual σ receptor-targeting radioligand could potentially provide enhanced tumor targeting efficacy in prostate cancer. To accomplish this goal, we designed a series of ligands which bind to both σ receptor subtypes with high affinity. Ligand 3a in this series, displaying optimal dual σ receptor subtype affinity (σ1, 6.3 nM; σ2, 10.2 nM) was radiolabeled with fluorine-18 (18F) to give [18F]3a and evaluated as a σ receptor-targeting radioligand in the mouse PC-3 prostate tumor model. Cellular assays with PC-3 cells demonstrated that a major proportion of [18F]3a was localized to cell surface σ receptors, while ∼10% of [18F]3a was internalized within cells after incubation for 3.5 h. Serial PET imaging in mice bearing PC-3 tumors revealed that uptake of [18F]3a was 1.6 ± 0.8, 4.4 ± 0.3, and 3.6 ± 0.6% ID/g (% injection dose per gram) in σ receptor-positive prostate tumors at 15 min, 1.5 h, and 3.5 h postinjection, respectively (n = 3) resulting in clear tumor visualization. Blocking studies conducted with haloperidol (a nonselective inhibitor for both σ receptor subtypes) confirmed that the uptake of [18F]3a was σ receptor-mediated. Histology analysis confirmed similar expression of σ1 and σ2 in PC-3 tumors which was significantly greater than its expression in normal organs/tissues such as liver, kidney, and muscle. Metabolite studies revealed that >50% of radioactivity in PC-3 tumors at 30 min postinjection represented intact [18F]3a. Prominent σ receptor-specific uptake of [18F]3a in prostate tumors and its subsequent clear visualization with PET imaging indicate potential utility for the diagnosis of prostate carcinoma.
Collapse
Affiliation(s)
- Dongzhi Yang
- Center for Molecular Imaging, Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109-2200, United States.,Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University , Xuzhou, Jiangsu 221004, China
| | - Anthony Comeau
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University , Providence, Rhode Island 02912, United States
| | - Wayne D Bowen
- Department of Molecular Pharmacology, Physiology & Biotechnology, Brown University , Providence, Rhode Island 02912, United States
| | - Robert H Mach
- Department of Radiology, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Brian D Ross
- Center for Molecular Imaging, Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109-2200, United States
| | - Hao Hong
- Center for Molecular Imaging, Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109-2200, United States
| | - Marcian E Van Dort
- Center for Molecular Imaging, Department of Radiology, University of Michigan , Ann Arbor, Michigan 48109-2200, United States
| |
Collapse
|
5
|
Senthilkumar N, Ravichandran YD, Kumar KM, Ramaiah S. Synthesis of a new series of pyrimidine derivatives: exploration of anti-proliferative activity on EAT cells and molecular docking. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2086-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA. Noble metals in medicine: Latest advances. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.08.002] [Citation(s) in RCA: 373] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Nunes P, Morais GR, Palma E, Silva F, Oliveira MC, Ferreira VFC, Mendes F, Gano L, Miranda HV, Outeiro TF, Santos I, Paulo A. Isostructural Re(i)/99mTc(i) tricarbonyl complexes for cancer theranostics. Org Biomol Chem 2015; 13:5182-94. [DOI: 10.1039/c5ob00124b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel cysteamine-based (N,S,O)-chelators were successfully applied in the synthesis of isostructural M(i) (M = Re, 99mTc) tricarbonyl complexes for cancer theranostics.
Collapse
|
8
|
Kasten BB, Ma X, Liu H, Hayes TR, Barnes CL, Qi S, Cheng K, Bottorff SC, Slocumb WS, Wang J, Cheng Z, Benny PD. Clickable, hydrophilic ligand for fac-[M(I)(CO)3](+) (M = Re/(99m)Tc) applied in an S-functionalized α-MSH peptide. Bioconjug Chem 2014; 25:579-92. [PMID: 24568284 PMCID: PMC3983144 DOI: 10.1021/bc5000115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The copper(I)-catalyzed azide–alkyne
cycloaddition (CuAAC)
click reaction was used to incorporate alkyne-functionalized dipicolylamine
(DPA) ligands (1 and 3) for fac-[MI(CO)3]+ (M = Re/99mTc) complexation into an α-melanocyte stimulating hormone (α-MSH)
peptide analogue. A novel DPA ligand with carboxylate substitutions
on the pyridyl rings (3) was designed to increase the
hydrophilicity and to decrease in vivo hepatobiliary retention of fac-[99mTcI(CO)3]+ complexes used in single photon emission computed tomography (SPECT)
imaging studies with targeting biomolecules. The fac-[ReI(CO)3(3)] complex (4) was used for chemical characterization and X-ray crystal
analysis prior to radiolabeling studies between 3 and fac-[99mTcI(OH2)3(CO)3]+. The corresponding 99mTc
complex (4a) was obtained in high radiochemical yields,
was stable in vitro for 24 h during amino acid challenge and serum
stability assays, and showed increased hydrophilicity by log P analysis compared to an analogous complex with nonfunctionalized
pyridine rings (2a). An α-MSH peptide functionalized
with an azide was labeled with fac-[MI(CO)3]+ using both click, then chelate (CuAAC reaction with 1 or 3 followed by
metal complexation) and chelate, then click (metal
complexation of 1 and 3 followed by CuAAC
with the peptide) strategies to assess the effects of CuAAC conditions
on fac-[MI(CO)3]+ complexation within a peptide framework. The peptides from the click, then chelate strategy had different HPLC tR’s and in vitro stabilities compared
to those from the chelate, then click strategy, suggesting
nonspecific coordination of fac-[MI(CO)3]+ using this synthetic route. The fac-[MI(CO)3]+-complexed peptides from
the chelate, then click strategy showed >90% stability
during in vitro challenge conditions for 6 h, demonstrated high affinity
and specificity for the melanocortin 1 receptor (MC1R) in IC50 analyses, and led to moderately high uptake in B16F10 melanoma cells.
Log P analysis of the 99mTc-labeled peptides
confirmed the enhanced hydrophilicity of the peptide bearing the novel,
carboxylate-functionalized DPA chelate (10a′)
compared to the peptide with the unmodified DPA chelate (9a′). In vivo biodistribution analysis of 9a′ and 10a′ showed moderate tumor uptake in a B16F10 melanoma
xenograft mouse model with enhanced renal uptake and surprising intestinal
uptake for 10a′ compared to predominantly hepatic
accumulation for 9a′. These results, coupled with
the versatility of CuAAC, suggests this novel, hydrophilic chelate
can be incorporated into numerous biomolecules containing azides for
generating targeted fac-[MI(CO)3]+ complexes in future studies.
Collapse
Affiliation(s)
- Benjamin B Kasten
- Department of Chemistry, Washington State University , Pullman, Washington 99164, United States
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Morais M, Paulo A, Gano L, Santos I, Correia JD. Target-specific Tc(CO)3-complexes for in vivo imaging. J Organomet Chem 2013. [DOI: 10.1016/j.jorganchem.2013.05.050] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Jiang H, Kasten BB, Liu H, Qi S, Liu Y, Tian M, Barnes CL, Zhang H, Cheng Z, Benny PD. Novel, cysteine-modified chelation strategy for the incorporation of [M(I)(CO)(3)](+) (M = Re, (99m)Tc) in an α-MSH peptide. Bioconjug Chem 2012; 23:2300-12. [PMID: 23110503 DOI: 10.1021/bc300509k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineering peptide-based targeting agents with residues for site-specific and stable complexation of radionuclides is a highly desirable strategy for producing diagnostic and therapeutic agents for cancer and other diseases. In this report, a model N-S-N(Py) ligand (3) and a cysteine-derived α-melanocyte stimulating hormone (α-MSH) peptide (6) were used as novel demonstrations of a widely applicable chelation strategy for incorporation of the [M(I)(CO)(3)](+) (M = Re, (99m)Tc) core into peptide-based molecules for radiopharmaceutical applications. The structural details of the core ligand-metal complexes as model systems were demonstrated by full chemical characterization of fac-[Re(I)(CO)(3)(N,S,N(Py)-3)](+) (4) and comparative high-performance liquid chromatography (HPLC) analysis between 4 and [(99m)Tc(I)(CO)(3)(N,S,N(Py)-3)](+) (4a). The α-MSH analogue bearing the N-S-N(Py) chelate on a modified cysteine residue (6) was generated and complexed with [M(I)(CO)(3)](+) to confirm the chelation strategy's utility when applied in a peptide-based targeting agent. Characterization of the Re(I)(CO)(3)-6 peptide conjugate (7) confirmed the efficient incorporation of the metal center, and the (99m)Tc(I)(CO)(3)-6 analogue (7a) was explored as a potential single photon emission computed tomography (SPECT) compound for imaging the melanocortin 1 receptor (MC1R) in melanoma. Peptide 7a showed excellent radiolabeling yields and in vitro stability during amino acid challenge and serum stability assays. In vitro B16F10 melanoma cell uptake of 7a reached a modest value of 2.3 ± 0.08% of applied activity at 2 h at 37 °C, while this uptake was significantly reduced by coincubation with a nonlabeled α-MSH analogue, NAPamide (3.2 μM) (P < 0.05). In vivo SPECT/X-ray computed tomography (SPECT/CT) imaging and biodistribution of 7a were evaluated in a B16F10 melanoma xenografted mouse model. SPECT/CT imaging clearly visualized the tumor at 1 h post injection (p.i.) with high tumor-to-background contrast. Blocking studies with coinjected NAPamide (10 mg per kg of mouse body weight) confirmed the in vivo specificity of 7a for MC1R-positive tumors. Biodistribution results with 7a yielded a moderate tumor uptake of 1.20 ± 0.09 percentage of the injected radioactive dose per gram of tissue (% ID/g) at 1 h p.i. Relatively high uptake of 7a was also seen in the kidneys and liver at 1 h p.i. (6.55 ± 0.36% ID/g and 4.44 ± 0.17% ID/g, respectively), although reduced kidney uptake was seen at 4 h p.i. (3.20 ± 0.48% ID/g). These results demonstrate the utility of the novel [M(I)(CO)(3)](+) chelation strategy when applied in a targeting peptide.
Collapse
Affiliation(s)
- Han Jiang
- Department of Nuclear Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Center of Excellence in Medical Molecular Imaging of Zhejiang State, Hangzhou, 310009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Morais GR, Paulo A, Santos I. Organometallic Complexes for SPECT Imaging and/or Radionuclide Therapy. Organometallics 2012. [DOI: 10.1021/om300501d] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Goreti Ribeiro Morais
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - António Paulo
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| | - Isabel Santos
- Unidade de Ciências
Quı́micas e Radiofarmacêuticas, Instituto
Tecnológico e Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, Estrada Nacional
10, 2686-953, Sacavém, Portugal
| |
Collapse
|
12
|
El-Zaria ME, Janzen N, Valliant JF. Room-Temperature Synthesis of Re(I) and Tc(I) Metallocarboranes. Organometallics 2012. [DOI: 10.1021/om300521j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed E. El-Zaria
- Department of Chemistry and Chemical
Biology, McMaster University, 1280 Main
Street W., Hamilton,
Ontario, L8S 4M1, Canada
| | - Nancy Janzen
- Department of Chemistry and Chemical
Biology, McMaster University, 1280 Main
Street W., Hamilton,
Ontario, L8S 4M1, Canada
| | - John F. Valliant
- Department of Chemistry and Chemical
Biology, McMaster University, 1280 Main
Street W., Hamilton,
Ontario, L8S 4M1, Canada
| |
Collapse
|