1
|
Regulatory Effects of Curcumin on Platelets: An Update and Future Directions. Biomedicines 2022; 10:biomedicines10123180. [PMID: 36551934 PMCID: PMC9775400 DOI: 10.3390/biomedicines10123180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
The rhizomatous plant turmeric, which is frequently used as a spice and coloring ingredient, yields curcumin, a bioactive compound. Curcumin inhibits platelet activation and aggregation and improves platelet count. Platelets dysfunction results in several disorders, including inflammation, atherothrombosis, and thromboembolism. Several studies have proved the beneficial role of curcumin on platelets and hence proved it is an important candidate for the treatment of the aforementioned diseases. Moreover, curcumin is also frequently employed as an anti-inflammatory agent in conventional medicine. In arthritic patients, it has been shown to reduce the generation of pro-inflammatory eicosanoids and to reduce edema, morning stiffness, and other symptoms. Curcumin taken orally also reduced rats' acute inflammation brought on by carrageenan. Curcumin has also been proven to prevent atherosclerosis and platelet aggregation, as well as to reduce angiogenesis in adipose tissue. In the cerebral microcirculation, curcumin significantly lowered platelet and leukocyte adhesion. It largely modulated the endothelium to reduce platelet adhesion. Additionally, P-selectin expression and mice survival after cecal ligation and puncture were improved by curcumin, which also altered platelet and leukocyte adhesion and blood-brain barrier dysfunction. Through regulating many processes involved in platelet aggregation, curcuminoids collectively demonstrated detectable antiplatelet activity. Curcuminoids may therefore be able to prevent disorders linked to platelet activation as possible therapeutic agents. This review article proposes to highlight and discuss the regulatory effects of curcumin on platelets.
Collapse
|
2
|
Gogoi D, Ramani S, Bhartari S, Chattopadhyay P, Mukherjee AK. Characterization of active anticoagulant fraction and a fibrin(ogen)olytic serine protease from leaves of Clerodendrum colebrookianum, a traditional ethno-medicinal plant used to reduce hypertension. JOURNAL OF ETHNOPHARMACOLOGY 2019; 243:112099. [PMID: 31326559 DOI: 10.1016/j.jep.2019.112099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/21/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are the major cause of mortality and morbidity, causing over 17.9 million deaths a year worldwide. Currently used therapy is often having side effects and expensive, dietary interventions and alternative medicines are required. Clerodendrum colebrookianum has been used to treat cardiac hypertension but anticoagulant potency was not evaluated. AIM OF THE STUDY To characterize an active anticoagulant fraction (AAFCC) and a 30 kDa fibrin(ogen)olytic serine protease (clerofibrase) isolated from aqueous leave extract of C. colebrookianum. MATERIALS AND METHODS AAFCC/clerofibrase was subjected to extensive biochemical and pharmacological characterization including LC-MS/MS, amino acid compositional and GC-MS analyses. Interaction between clerofibrase with fibrinogen was studied by spectrofluorometric analysis. In vitro thrombolytic, antiplatelet and cytotoxicity assay were performed. In vivo toxicity, anticoagulant, defibrinogen and antithrombotic activities were determined on Swiss albino mice. RESULTS The in vitro anticoagulant activity of AAFCC was found to be superior to heparin and clerofibrase and comparable to Nattokinase and warfarin. The proteomics and amino acid composition analyses suggest that clerofibrase is a previously uncharacterized novel plant protease capable of degrading the -αβ chains of fibrinogen/fibrin. AAFCC/clerofibrase exerts their anticoagulant action via fibrinogenolytic activity and partially by antiplatelet activity albeit they have no effect on thrombin and FXa inhibition. The spectrofluorometric analysis revealed the binding of clerofibrase to fibrinogen but not to thrombin and FXa. The phytochemical constituents and bioactive components of AAFCC were characterized by biochemical, and GC-MS analyses. The AAFCC and clerofibrase inhibited collagen/ADP-induced mammalian platelet aggregation, showed in vitro thrombolytic activity, and non-cytotoxic to mammalian cells. The AAFCC showed and dose-dependent in vivo plasma defibrinogenating and anticoagulant activities and inhibited k-carrageen-induced thrombus formation in the tails of mice. CONCLUSION The potent in vivo anticoagulant and antithrombotic effects of AAFCC suggests its pharmacological significance as herbal anticoagulant drug for the prevention and/or treatment of hyperfibrinogenemia- and thrombosis associated cardiovascular disorders.
Collapse
Affiliation(s)
- Debananda Gogoi
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Sheetal Ramani
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Surbhi Bhartari
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defense Research Laboratory, Tezpur, 784501, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University, Tezpur, 784028, Assam, India.
| |
Collapse
|
3
|
|
4
|
Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol 2017; 233:4497-4511. [PMID: 29052850 DOI: 10.1002/jcp.26249] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 10/11/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Atherothrombotic cardiovascular disease is a major cause of mortality throughout the world. Platelet activation and aggregation play a central role in hemostasis and thrombosis. Herbal medicines have been traditionally used in the management of cardiovascular disease and can help in modifying its progression, particularly in hemostasis and the coagulation process, as well as altering platelet function tests and some coagulation parameters. Curcumin is a polyphenol derived from the Curcuma longa plant and has been used extensively in complementary and alternative medicine, as it is nontoxic and safe with various therapeutic properties. Modern scientific research has demonstrated its anti-inflammatory, antioxidant, anti-carcinogenic, antithrombotic, and cardiovascular protective effects. The present study reviewed previous studies in the literature, which support the positive activity of curcumin in hemostasis, anticoagulation, and fibrinolysis. We also presented molecular mechanisms associated with the antiplatelet and anticoagulant activities of curcumin and potential implications for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Faeze Keihanian
- Pharmaceutical Research Division, Booali Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Saeidinia
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Khameneh Bagheri
- Cardiology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Montagut-Romans A, Boulven M, Jacolot M, Moebs-Sanchez S, Hascoët C, Hammed A, Besse S, Lemaire M, Benoit E, Lattard V, Popowycz F. Synthesis and biological evaluation of C-3 aliphatic coumarins as vitamin K antagonists. Bioorg Med Chem Lett 2017; 27:1598-1601. [PMID: 28254487 DOI: 10.1016/j.bmcl.2017.02.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 11/30/2022]
Abstract
Since the discovery of Warfarin in the 1940s, the design of new warfarin-derived anticoagulants for rodent management has been challenging, with mainly structural modifications performed on the C3 position of the coumarin skeleton. In order to better understand the pharmacomodulation of such derivatives, we have synthesized a family of C3 (linear and branched) alkyl-4-hydroxycoumarins, which led to the identification of compounds 5e and 5f as potential short-term active anticoagulants.
Collapse
Affiliation(s)
- Adrien Montagut-Romans
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Catalyse, Synthèse et Environnement, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS-CNRS-UMR 5246, F-69622 Villeurbanne Cedex, France; USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Manon Boulven
- Univ Lyon, Institut National des Sciences Appliquées (INSA-Lyon), Laboratoire de Chimie Organique et Bioorganique, ICBMS-CNRS-UMR 5246, F-69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, Institut National des Sciences Appliquées (INSA-Lyon), Laboratoire de Chimie Organique et Bioorganique, ICBMS-CNRS-UMR 5246, F-69621 Villeurbanne Cedex, France
| | - Sylvie Moebs-Sanchez
- Univ Lyon, Institut National des Sciences Appliquées (INSA-Lyon), Laboratoire de Chimie Organique et Bioorganique, ICBMS-CNRS-UMR 5246, F-69621 Villeurbanne Cedex, France
| | - Claire Hascoët
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Abdessalem Hammed
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Stéphane Besse
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Marc Lemaire
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire de Catalyse, Synthèse et Environnement, Institut de Chimie et de Biochimie Moléculaires et Supramoléculaires, ICBMS-CNRS-UMR 5246, F-69622 Villeurbanne Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRA, Univ Lyon, F-69280 Marcy l'Etoile, France
| | - Florence Popowycz
- Univ Lyon, Institut National des Sciences Appliquées (INSA-Lyon), Laboratoire de Chimie Organique et Bioorganique, ICBMS-CNRS-UMR 5246, F-69621 Villeurbanne Cedex, France.
| |
Collapse
|
6
|
Chen C, Yang FQ, Zhang Q, Wang FQ, Hu YJ, Xia ZN. Natural Products for Antithrombosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:876426. [PMID: 26075003 PMCID: PMC4449941 DOI: 10.1155/2015/876426] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 03/22/2015] [Accepted: 03/24/2015] [Indexed: 12/25/2022]
Abstract
Thrombosis is considered to be closely related to several diseases such as atherosclerosis, ischemic heart disease and stroke, as well as rheumatoid arthritis, hyperuricemia, and various inflammatory conditions. More and more studies have been focused on understanding the mechanism of molecular and cellular basis of thrombus formation as well as preventing thrombosis for the treatment of thrombotic diseases. In reality, there is considerable interest in the role of natural products and their bioactive components in the prevention and treatment of thrombosis related disorders. This paper briefly describes the mechanisms of thrombus formation on three aspects, including coagulation system, platelet activation, and aggregation, and change of blood flow conditions. Furthermore, the natural products for antithrombosis by anticoagulation, antiplatelet aggregation, and fibrinolysis were summarized, respectively.
Collapse
Affiliation(s)
- Cen Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Feng-Qin Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Yuan-Jia Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Zhi-Ning Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
7
|
Giri RR, Lad HB, Bhila VG, Patel CV, Brahmbhatt DI. Modified Pyridine-Substituted Coumarins: A New Class of Antimicrobial and Antitubercular Agents. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.963875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Stanković N, Mladenović M, Mihailović M, Arambašić J, Uskoković A, Stanković V, Mihailović V, Katanić J, Matić S, Solujić S, Vuković N, Sukdolak S. Synthesis and toxicological studies of in vivo anticoagulant activity of novel 3-(1-aminoethylidene)chroman-2,4-diones and 4-hydroxy-3-(1-iminoethyl)-2H-chromen-2-ones combined with a structure-based 3-D pharmacophore model. Eur J Pharm Sci 2014; 55:20-35. [PMID: 24468630 DOI: 10.1016/j.ejps.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 11/16/2022]
Abstract
Eight synthesized 3-(1-aminoethylidene)chroman-2,4-diones and 4-hydroxy-3-(1-iminoethyl)-2H-chromen-2-ones were evaluated as in vivo anticoagulants by intraperitoneal application to adult male Wistar rats in order to examine their pharmacological potential, evaluate ther toxicity and propose the mechanism of action. Two of them, 2f and 2a, in concentration of 2mg/kg of body weight, presented remarkable activity (PT=130s; PT=90s) upon seven days of continuous application. The results of rat serum and liver biochemical screening, as well those of histopathological studies, proved the compounds to be non-toxic. Activity of the compounds was further examined on the molecular level. Here, molecular docking studies were performed to position the compounds in relation to the active site of VKORC1 and determine the bioactive conformations. Docking results suggested a non-covalent mode of action during which the proton transfer occurs from Cys135 SH towards 4-carbonyl group of anticoagulant. All crucial interactions for anticoagulant activity were confirmed in generated structure-based 3-D pharmacophore model, consisted of hydrogen bond acceptor and hydrophobic aromatic features, and quantified by a best correlation coefficient of 0.97.
Collapse
Affiliation(s)
- Nevena Stanković
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia.
| | - Milan Mladenović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Mirjana Mihailović
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Jelena Arambašić
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Aleksandra Uskoković
- Department of Molecular Biology, Institute for Biological Research, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Vesna Stanković
- Institute of Pathology, Faculty of Medical Sciences, Svetozara Markovića 69, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Vladimir Mihailović
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Jelena Katanić
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Sanja Matić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Slavica Solujić
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Nenad Vuković
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| | - Slobodan Sukdolak
- Kragujevac Center for Computational Biochemistry, Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000 Kragujevac, Serbia
| |
Collapse
|
9
|
Synthesis of a new series of 2-(2-oxo-2H-chromen-3-yl)-5H-chromeno[4,3-b]pyridin-5-ones by two facile methods and evaluation of their antimicrobial activity. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0489-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|