1
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
2
|
Santos T, Salgado GF, Cabrita EJ, Cruz C. G-Quadruplexes and Their Ligands: Biophysical Methods to Unravel G-Quadruplex/Ligand Interactions. Pharmaceuticals (Basel) 2021; 14:769. [PMID: 34451866 PMCID: PMC8401999 DOI: 10.3390/ph14080769] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Progress in the design of G-quadruplex (G4) binding ligands relies on the availability of approaches that assess the binding mode and nature of the interactions between G4 forming sequences and their putative ligands. The experimental approaches used to characterize G4/ligand interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and microarrays. Each method has unique advantages and drawbacks, which makes it essential to select the ideal strategies for the biological question being addressed. The structural- and affinity and apparent affinity-based methods are in several cases complex and/or time-consuming and can be combined with fast and cheap high-throughput approaches to improve the design and development of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this review article highlights in detail the most commonly used approaches to characterize the G4/ligand interactions, as well as the applications and types of information that can be obtained from the use of each technique.
Collapse
Affiliation(s)
- Tiago Santos
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Gilmar F. Salgado
- ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR 5320, IECB, 33607 Pessac, France;
| | - Eurico J. Cabrita
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
3
|
Kosiol N, Juranek S, Brossart P, Heine A, Paeschke K. G-quadruplexes: a promising target for cancer therapy. Mol Cancer 2021; 20:40. [PMID: 33632214 PMCID: PMC7905668 DOI: 10.1186/s12943-021-01328-4] [Citation(s) in RCA: 240] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA and RNA can fold into a variety of alternative conformations. In recent years, a particular nucleic acid structure was discussed to play a role in malignant transformation and cancer development. This structure is called a G-quadruplex (G4). G4 structure formation can drive genome instability by creating mutations, deletions and stimulating recombination events. The importance of G4 structures in the characterization of malignant cells was currently demonstrated in breast cancer samples. In this analysis a correlation between G4 structure formation and an increased intratumor heterogeneity was identified. This suggests that G4 structures might allow breast cancer stratification and supports the identification of new personalized treatment options. Because of the stability of G4 structures and their presence within most human oncogenic promoters and at telomeres, G4 structures are currently tested as a therapeutic target to downregulate transcription or to block telomere elongation in cancer cells. To date, different chemical molecules (G4 ligands) have been developed that aim to target G4 structures. In this review we discuss and compare G4 function and relevance for therapeutic approaches and their impact on cancer development for three cancer entities, which differ significantly in their amount and type of mutations: pancreatic cancer, leukemia and malignant melanoma. G4 structures might present a promising new strategy to individually target tumor cells and could support personalized treatment approaches in the future.
Collapse
Affiliation(s)
- Nils Kosiol
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Stefan Juranek
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Peter Brossart
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Annkristin Heine
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Katrin Paeschke
- Department of Oncology, Hematology, Rheumatology and Immune-Oncology, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
4
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2020; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
5
|
Affiliation(s)
- Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kazumitsu Onizuka
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
6
|
O'Hagan MP, Morales JC, Galan MC. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? European J Org Chem 2019. [DOI: 10.1002/ejoc.201900692] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Juan C. Morales
- Instituto de Parasitología y Biomedicina “López Neyra”; Consejo Superior de Investigaciones Científicas (CSIC); PTS Granada; Avenida del Conocimiento 17 18016 Armilla, Granada Spain
| | - M. Carmen Galan
- School of Chemistry; University of Bristol; Cantock's Close BS8 1TS UK
| |
Collapse
|
7
|
Suganthi S, Sivaraj R, Enoch IVMV. Molecular encapsulation of berberine by a modified β-cyclodextrin and binding of host: guest complex to G-quadruplex DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:858-873. [PMID: 31148522 DOI: 10.1080/15257770.2019.1618469] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The capacity to control quadruplex formation, especially in cancer cells, is captivating and entails a reasonable comprehension of the ligand-G-quadruplex binding. Herein, we report an iminopyrenyl-β-cyclodextrin conjugate interacting with duplex and G-quadrulex DNAs. In addition, the host: guest association of the established G-quadruplex binder, berberine, with the β-cyclodextrin derivative is studied employing 2-D ROESY. NMR, UV-visible, and fluorescence spectroscopic techniques are utilized to explore the β-cyclodextrin conjugate's interaction with the quadruplexes. The Binding constants are accounted for the association of the ligands to each of the DNAs viz., calf thymus DNA (duplex), kit22, telo24, and myc22 (quadruplexes). The modulation of the iminopyrenyl-β-cyclodextrin binding to the DNAs are observed when berberine is loaded in the host molecule. A vivid distinction between the interactions of the ligands with duplex and quadruplex structures is inferred. Berberine-loaded iminopyrenyl-β-cyclodextrin shows a higher affinity for binding to kit22.
Collapse
Affiliation(s)
- Soundrapandian Suganthi
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University) , Coimbatore , Tamil Nadu , India
| | - Ramasamy Sivaraj
- Nanotoxicology Research Lab, Department of Nanoscience, Karunya Institute of Technology and Sciences (Deemed-to-be University) , Coimbatore , Tamil Nadu , India
| | - Israel V M V Enoch
- Department of Chemistry, Karunya Institute of Technology and Sciences (Deemed-to-be University) , Coimbatore , Tamil Nadu , India.,Nanotoxicology Research Lab, Department of Nanoscience, Karunya Institute of Technology and Sciences (Deemed-to-be University) , Coimbatore , Tamil Nadu , India
| |
Collapse
|
8
|
Sayyad N, Cele Z, Aleti RR, Bera M, Cherukupalli S, Chandrasekaran B, Kushwaha ND, Karpoormath R. Copper-Catalyzed Self-Condensation of Benzamide: Domino Reactions towards Quinazolinones. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Nisar Sayyad
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Zamani Cele
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Rajeshwar Reddy Aleti
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Milan Bera
- Department of Chemistry; College of Health Sciences; Indian Institute of Technology Bombay Powai; 400 076 Mumbai India
| | - Srinivasulu Cherukupalli
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Balakumar Chandrasekaran
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry; College of Health Sciences; University of KwaZulu-Natal (Westville Campus); Private Bag X54001 4000 Durban South Africa
| |
Collapse
|
9
|
Abstract
Guanine-rich nucleic acid sequences able to form four-stranded structures (G-quadruplexes, G4) play key cellular regulatory roles and are considered as promising drug targets for anticancer therapy. On the basis of the organization of their structural elements, G4 ligands can be divided into three major families: one, fused heteroaromatic polycyclic systems; two, macrocycles; three, modular aromatic compounds. The design of modular G4 ligands emerged as the answer to achieve not only more drug-like compounds but also more selective ligands by targeting the diversity of the G4 loops and grooves. The rationale behind the design of a very comprehensive set of ligands, with particular focus on the structural features required for binding to G4, is discussed and combined with the corresponding biochemical/biological data to highlight key structure-G4 interaction relationships. Analysis of the data suggests that the shape of the ligand is the major factor behind the G4 stabilizing effect of the ligands. The information here critically reviewed will certainly contribute to the development of new and better G4 ligands with application either as therapeutics or probes.
Collapse
Affiliation(s)
- Ana Rita Duarte
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Enrico Cadoni
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana S Ressurreição
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Moreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Alexandra Paulo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Che T, Wang YQ, Huang ZL, Tan JH, Huang ZS, Chen SB. Natural Alkaloids and Heterocycles as G-Quadruplex Ligands and Potential Anticancer Agents. Molecules 2018; 23:molecules23020493. [PMID: 29473874 PMCID: PMC6017894 DOI: 10.3390/molecules23020493] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/04/2018] [Accepted: 02/20/2018] [Indexed: 12/23/2022] Open
Abstract
G-quadruplexes are four-stranded nucleic acid secondary structures that are formed in guanine-rich sequences. G-quadruplexes are widely distributed in functional regions of the human genome and transcriptome, such as human telomeres, oncogene promoter regions, replication initiation sites, and untranslated regions. Many G-quadruplex-forming sequences are found to be associated with cancer, and thus, these non-canonical nucleic acid structures are considered to be attractive molecular targets for cancer therapeutics with novel mechanisms of action. In this mini review, we summarize recent advances made by our lab in the study of G-quadruplex-targeted natural alkaloids and their derivatives toward the development of potential anticancer agents.
Collapse
Affiliation(s)
- Tong Che
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yu-Qing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhou-Li Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
11
|
Chen SB, Liu GC, Gu LQ, Huang ZS, Tan JH. Identification of small molecules capable of regulating conformational changes of telomeric G-quadruplex. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.09.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li Z, Liu C, Huang C, Meng X, Zhang L, He J, Li J. Quinazoline derivative QPB-15e stabilizes the c-myc promoter G-quadruplex and inhibits tumor growth in vivo. Oncotarget 2018; 7:34266-76. [PMID: 27144522 PMCID: PMC5085154 DOI: 10.18632/oncotarget.9088] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 04/16/2016] [Indexed: 12/30/2022] Open
Abstract
The ribozyme-sensitive element NHE-III1 in the P1 promoter region of the important proto-oncogene c-myc contains many guanine (G)-rich sequences. Induction and stabilization of the G-quadruplex formed by NHE-III1 can downregulate c-myc expression. In the present study, we found that QPB-15e, a quinazoline derivative designed and synthesized by our laboratory, binds to and stabilizes the c-myc G-quadruplex in vitro, thereby inhibiting double-stranded DNA replication, downregulating c-myc gene expression and arresting cancer cell proliferation. PCR termination experiments showed that QPB-15e blocked double-stranded DNA replication by inducing or stabilizing the c-myc G-quadruplex. FRET-melting further confirmed that QPB-15e improved the stability of the G-quadruplex, and CD spectroscopy indicated that the compound interacted directly with the G-rich sequence. In competitive dialysis experiments, QPB-15e bound preferentially to quadruplex DNA in various structures, especially the G-quadruplex within the c-myc promoter region. Moreover, QPB-15e reduced the weights and volumes of tumors transplanted into nude mice. These findings strongly suggest that QPB-15e is a c-myc G-quadruplex ligand with anti-tumor properties, and may be efficacious for treating cancer in humans.
Collapse
Affiliation(s)
- Zeng Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chen Liu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiaoming Meng
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lei Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jinhui He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou 510006, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
13
|
Wang SK, Wu Y, Wang XQ, Kuang GT, Zhang Q, Lin SL, Liu HY, Tan JH, Huang ZS, Ou TM. Discovery of Small Molecules for Repressing Cap-Independent Translation of Human Vascular Endothelial Growth Factor (hVEGF) as Novel Antitumor Agents. J Med Chem 2017; 60:5306-5319. [PMID: 28530833 DOI: 10.1021/acs.jmedchem.6b01444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Angiogenesis is important in tumorigenesis and tumor progression. Human vascular endothelial growth factor (hVEGF) is an angiogenic growth factor that plays a crucial role in tumor progression. The G-rich region within the 5'-untranslated regions (5'-UTR) of hVEGF-A mRNA can form a "switchable" RNA G-quadruplex structure that is essential for a cap-independent translation initiation. We screened our small-molecule library for binders of this G-tract. One novel quinazoline derivative, compound 1, showed a significant specific interaction with the G-tract and destabilized the G-quadruplex structure. The results of cellular experiments revealed that compound 1 down-regulated hVEGF-A translation and significantly impeded tumor cells migration. We also found that compound 1 exhibited tumor-inhibiting activity in MCF-7 xenograft tumors, which might be related to its ability to reduce hVEGF expression. These findings present a new strategy of hVEGF-A translational control in which small molecules interact with G-quadruplex structure in the 5'UTR.
Collapse
Affiliation(s)
- Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Yue Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Xiao-Qin Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China.,School of Pharmacy, Guangdong Medical College , 1 Xincheng Avenue, Dongguan 523808, People's Republic of China
| | - Guo-Tao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Shu-Ling Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Hui-Yun Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University , 132 Waihuan East Road, Guangzhou University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Kiran KG, Thandeeswaran M, Ayub Nawaz KA, Easwaran M, Jayagopi KK, Ebrahimi L, Palaniswamy M, Mahendran R, Angayarkanni J. Quinazoline derivative from indigenous isolate, Nocardiopsis alba inhibits human telomerase enzyme. J Appl Microbiol 2016; 121:1637-1652. [PMID: 27567126 DOI: 10.1111/jam.13281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 07/06/2016] [Accepted: 08/08/2016] [Indexed: 01/30/2023]
Abstract
AIM Aim of this study was isolation and screening of various secondary metabolites produced by indigenous isolates of soil Actinomycetes for human telomerase inhibitory activity. METHODS AND RESULTS Extracellular extract from culture suspension of various soil Actinomycetes species were tested for telomerase inhibitory activity. The organism which produced telomerase inhibitor was identified by 16S rRNA gene sequencing. The active fraction was purified by HPLC and analysed by GC-MS to identify the compound. In GC-MS analysis, the active principle was identified as 3-[4'-(2″-chlorophenyl)-2'-thiazolyl]-2,4-dioxo-1,2,3,4-tetrahydro quinazoline. The G-quadruplex stabilizing ability of the compound was checked by molecular docking and simulation experiments with G-quadruplex model (PDB ID-1L1H). The selective binding ability of the compound with G-quadruplex over Dickerson-Drew dodecamer DNA structures showed that the compound possess high selectivity towards G-quadruplex. CONCLUSIONS Quinazoline derivative isolated from an indigenous strain of Nocardiopsis alba inhibited telomerase. Molecular docking and simulation studies predicted that this compound is a strong stabilizer of G-quadruplex conformation. It also showed a preferable binding to G-quadruplex DNA over normal DNA duplex. SIGNIFICANCE AND IMPACT OF THE STUDY This particular compound can be suggested as a suitable compound for developing a future anticancer drug. The selectivity towards G-quadruplex over normal DNA duplex gives a clue that it is likely to show lower cytotoxicity in normal cells.
Collapse
Affiliation(s)
- K G Kiran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Thandeeswaran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - K A Ayub Nawaz
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Easwaran
- Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - K K Jayagopi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - L Ebrahimi
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - M Palaniswamy
- School of Life Science, Karpagam University, Coimbatore, India
| | - R Mahendran
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| | - J Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|
15
|
Conformation Selective Antibody Enables Genome Profiling and Leads to Discovery of Parallel G-Quadruplex in Human Telomeres. Cell Chem Biol 2016; 23:1261-1270. [DOI: 10.1016/j.chembiol.2016.08.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/14/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
|
16
|
Jiang Y, Chen AC, Kuang GT, Wang SK, Ou TM, Tan JH, Li D, Huang ZS. Design, synthesis and biological evaluation of 4-anilinoquinazoline derivatives as new c-myc G-quadruplex ligands. Eur J Med Chem 2016; 122:264-279. [PMID: 27372288 DOI: 10.1016/j.ejmech.2016.06.040] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/18/2022]
Abstract
A series of 4-anilinoquinazoline derivatives were designed and synthesized as novel c-myc promoter G-quadruplex binding ligands. Subsequent biophysical and biochemical evaluation demonstrated that the introduction of aniline group at 4-position of quinazoline ring and two side chains with terminal amino group improved their binding affinity and stabilizing ability to G-quadruplex DNA. RT-PCR assay and Western blot showed that compound 7a could down-regulate transcription and expression of c-myc gene in Hela cells, which was consistent with the behavior of an effective G-quadruplex ligand targeting c-myc oncogene. More importantly, RTCA and colony formation assays indicated that 7a obviously inhibited Hela cells proliferation, without influence on normal primary cultured mouse mesangial cells. Flow cytometric assays suggested that 7a induced Hela cells to arrest in G0/G1 phase both in a time-dependent and dose-dependent manner.
Collapse
Affiliation(s)
- Yin Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ai-Chun Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Guo-Tao Kuang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Shi-Ke Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Tian-Miao Ou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
17
|
Interaction of metallacrown complexes with G-quadruplex DNA. J Inorg Biochem 2016; 155:105-14. [DOI: 10.1016/j.jinorgbio.2015.11.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/06/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022]
|
18
|
Shen R, Chen Y, Li Z, Qi H, Wang Y. Synthesis and biological evaluation of disubstituted amidoxanthones as potential telomeric G-quadruplex DNA-binding and apoptosis-inducing agents. Bioorg Med Chem 2016; 24:619-26. [DOI: 10.1016/j.bmc.2015.12.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/26/2022]
|
19
|
Targeting G-quadruplex nucleic acids with heterocyclic alkaloids and their derivatives. Eur J Med Chem 2014; 97:538-51. [PMID: 25466923 DOI: 10.1016/j.ejmech.2014.11.021] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/05/2014] [Accepted: 11/11/2014] [Indexed: 01/25/2023]
Abstract
G-Quadruplex nucleic acids or G-quadruplexes (G4s) are four-stranded DNA or RNA secondary structures that are formed in guanine-rich sequences. They are widely distributed in functional regions of the human genome, such as telomeres, ribosomal DNA (rDNA), transcription start sites, promoter regions and untranslated regions of mRNA, suggesting that G-quadruplex structures may play a pivotal role in the control of a variety of cellular processes. G-Quadruplexes are viewed as valid therapeutic targets in human cancer diseases. Small molecules, from naturally occurring to synthetic, are exploited to specifically target G-quadruplexes and have proven to be a new class of anticancer agents. Notably, alkaloids are an important source of G-quadruplex ligands and have significant bioactivities in anticancer therapy. In this review, the authors provide a brief, up-to-date summary of heterocyclic alkaloids and their derivatives targeting G-quadruplexes.
Collapse
|
20
|
Ezaki K, Kobayashi K. A Novel Synthesis of Quinazolines by Cyclization of 1-(2-Isocyanophenyl)alkylideneamines Generated by the Treatment of 2-(1-Azidoalkyl)phenyl Isocyanides with NaH. Helv Chim Acta 2014. [DOI: 10.1002/hlca.201300431] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|