1
|
Wang FY, Yang LM, Wang SS, Lu H, Wang XS, Lu Y, Ni WX, Liang H, Huang KB. Cycloplatinated (II) Complex Based on Isoquinoline Alkaloid Elicits Ferritinophagy-Dependent Ferroptosis in Triple-Negative Breast Cancer Cells. J Med Chem 2024; 67:6738-6748. [PMID: 38526421 DOI: 10.1021/acs.jmedchem.4c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The development and optimization of metal-based anticancer drugs with novel cytotoxic mechanisms have emerged as key strategies to overcome chemotherapeutic resistance and side effects. Agents that simultaneously induce ferroptosis and autophagic death have received extensive attention as potential modalities for cancer therapy. However, only a limited set of drugs or treatment modalities can synergistically induce ferroptosis and autophagic tumor cell death. In this work, we designed and synthesized four new cycloplatinated (II) complexes harboring an isoquinoline alkaloid C∧N ligand. On screening the in vitro activity of these agents, we found that Pt-3 exhibited greater selectivity of cytotoxicity, decreased resistance factors, and improved anticancer activity compared to cisplatin. Furthermore, Pt-3, which we demonstrate can initiate potent ferritinophagy-dependent ferroptosis, exhibits less toxic and better therapeutic activity than cisplatin in vivo. Our results identify Pt-3 as a promising candidate or paradigm for further drug development in cancer treatment.
Collapse
Affiliation(s)
- Feng-Yang Wang
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Liang-Mei Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Shan-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Hui Lu
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Xu-Sheng Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Yuan Lu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy, Guangxi Normal University, Guilin, Guangxi 541004, P. R. China
| |
Collapse
|
2
|
Zhang SH, Wang ZF, Tan H. Novel zinc(II)−curcumin molecular probes bearing berberine and jatrorrhizine derivatives as potential mitochondria-targeting anti-neoplastic drugs. Eur J Med Chem 2022; 243:114736. [DOI: 10.1016/j.ejmech.2022.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/04/2022]
|
3
|
Thabit MG, Mostafa AS, Selim KB, Elsayed MAA, Nasr MNA. Insights into modulating the monastrol scaffold: Development of new pyrimidinones as Eg5 inhibitors with anticancer activity. Arch Pharm (Weinheim) 2022; 355:e2200029. [DOI: 10.1002/ardp.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Mohamed G. Thabit
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Amany S. Mostafa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Khalid B. Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| | - Magda A. A. Elsayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy Horus University New Dammeitta Egypt
| | - Magda N. A. Nasr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy Mansoura University Mansoura Egypt
| |
Collapse
|
4
|
Zandieh H, Mokhtari J, Larijani K. Synthesis of α-amino phosphonates catalyzed by copper-based metal organic frameworks. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Aita S, Badavath VN, Gundluru M, Sudileti M, Nemallapudi BR, Gundala S, Zyryanov GV, Chamarti NR, Cirandur SR. Novel α-Aminophosphonates of imatinib Intermediate: Synthesis, anticancer Activity, human Abl tyrosine kinase Inhibition, ADME and toxicity prediction. Bioorg Chem 2021; 109:104718. [PMID: 33618257 DOI: 10.1016/j.bioorg.2021.104718] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
An efficient method for the synthesis of a new class of α-aminophosphonates of imatinib derivative has been developed in one-pot Kabachnik-Fields reaction of N-(5-amino-2-methyl phenyl)-4-(3-pyridyl)-2-pyrimidine amine with various aldehydes and diethyl phosphite under microwave irradiation and neat conditions using NiO nanoparticles as an reusable and heterogeneous catalyst, with 96% yield at 450 W within 15 min. All the compounds were evaluated for their in vitro cytotoxicity with various cancer cell lines by MTT assay method. Compounds with halo (4f, -4Br, IC50 = 1.068 ± 0.88 µM to 2.033 ± 0.97 µM), nitro substitution (4 h, -3NO2, IC50 = 1.380 ± 0.94 µM to 2.213 ± 0.64 µM), (4 g, -4NO2, IC50 = 1.402 ± 0.79 µM to 2.335 ± 0.73 µM) and (4i, 4-Cl, 3-NO2, IC50 = 1.437 ± 0.92 µM to 2.558 ± 0.76 µM) were showed better anticancer activity when compared with standard drugs Doxorubicin and Imatinib using MTT assay method. Further in silico target hunting reveals the anticancer activity of the designed compounds by inhibiting human ABL tyrosine kinase and all the designed compounds have shown significant drug-like characteristics.
Collapse
Affiliation(s)
- Saikiran Aita
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | - Vishnu Nayak Badavath
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Mohan Gundluru
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India; DST-PURSE Centre, Sri Venkateswara University, Tirupati-517502, A.P., India.
| | - Murali Sudileti
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | | | - Sravya Gundala
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation.
| | - Grigoriy Vasilievich Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation; Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russian Federation.
| | - Naga Raju Chamarti
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | - Suresh Reddy Cirandur
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| |
Collapse
|
6
|
Thabit MG, Mostafa AS, Selim KB, Elsayed MA, Nasr MN. Design, synthesis and molecular modeling of phenyl dihydropyridazinone derivatives as B-Raf inhibitors with anticancer activity. Bioorg Chem 2020; 103:104148. [DOI: 10.1016/j.bioorg.2020.104148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/25/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022]
|
7
|
Liang GB, Yu YC, Wei JH, Kuang WB, Chen ZF, Zhang Y. Design, synthesis and biological evaluation of naphthalenebenzimidizole platinum (II) complexes as potential antitumor agents. Eur J Med Chem 2020; 188:112033. [DOI: 10.1016/j.ejmech.2019.112033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/31/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
|
8
|
Huang X, Wang M, You Q, Kong J, Zhang H, Yu C, Wang Y, Wang H, Huang R. Synthesis, mechanisms of action, and toxicity of novel aminophosphonates derivatives conjugated irinotecan in vitro and in vivo as potent antitumor agents. Eur J Med Chem 2020; 189:112067. [PMID: 31972391 DOI: 10.1016/j.ejmech.2020.112067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 01/17/2023]
Abstract
Twenty novel aminophosphonates derivatives (5a-5j and 6a-6j) conjugated irinotecan were synthesized through esterification reaction, and evaluated their anticancer activities using MTT assay. In vitro evaluation revealed that they displayed similar or superior cytotoxicity compared to the positive drug irinotecan against A549, MCF-7, SK-OV-3, MG-63, U2OS and multidrug-resistant (MDR) SK-OV-3/CDDP cancer cell lines. Among them, 9b displayed the most potent activity, with IC50 values of 0.92-3.23 μM against five human cancer cells, which exhibited a 5.4-19.1-fold increase in activity compared to the reference drug irinotecan, respectively. Moreover, cellular mechanism studies suggested that 9b arrested cell cycle at S stage and induced cell apoptosis along with the decrease of mitochondrial membrane potential (MMP). Interestingly, 9b significantly inhibited tumor growth in SK-OV-3 xenograft models in vivo without apparent toxicity, which was better than the positive drug irinotecan. Taken together, 9b possessed potent antitumor activity and may be a promising candidate for the potential treatment of human ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaochao Huang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China; College of Biotechnology, Guilin Medical University, Guilin, 541004, China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Meng Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Qinghong You
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Jing Kong
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Haijiang Zhang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Chunhao Yu
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Yanming Wang
- Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| | - Rizhen Huang
- College of Biotechnology, Guilin Medical University, Guilin, 541004, China.
| |
Collapse
|
9
|
Bondi R, Biver T, Dalla Via L, Guarra F, Hyeraci M, Sissi C, Labella L, Marchetti F, Samaritani S. DNA interaction of a fluorescent, cytotoxic pyridinimino platinum(II) complex. J Inorg Biochem 2020; 202:110874. [DOI: 10.1016/j.jinorgbio.2019.110874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/05/2019] [Accepted: 09/28/2019] [Indexed: 12/22/2022]
|
10
|
Synthesis and biological evaluation of novel millepachine derivative containing aminophosphonate ester species as novel anti-tubulin agents. Bioorg Chem 2020; 94:103486. [DOI: 10.1016/j.bioorg.2019.103486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/23/2019] [Accepted: 11/27/2019] [Indexed: 01/17/2023]
|
11
|
Ewies EF, El-Hussieny M, El-Sayed NF, Fouad MA. Design, synthesis and biological evaluation of novel α-aminophosphonate oxadiazoles via optimized iron triflate catalyzed reaction as apoptotic inducers. Eur J Med Chem 2019; 180:310-320. [PMID: 31323616 DOI: 10.1016/j.ejmech.2019.07.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 11/25/2022]
Abstract
α-aminophosphonate oxadiazoles (5a-m) were prepared in high yields by reacting of 1,3,4-oxadiazole acetohydrazide (3) with appropriate aldehydes and diethyl phosphite under Kabachnik-Fields conditions using Iron triflate as a catalyst. The reaction conditions were optimized using D-optimal experimental design. Possible reaction mechanisms were considered, and structures of the new products were based upon compatible elementary and spectroscopic evidence. In vitro antitumor activities of these compounds were evaluated against human cancer cell lines of colon (HCT116), breast (MCF7) and liver (HepG2) and compared with anticancer drug, Doxorubicin, employing standard MTT assay. Compounds 5i and 5l demonstrated good antiproliferative activities against HCT116 tumor cells comparable to doxorubicin with low cytotoxicity towards normal fetal colon cell (FHC). Additionally, their capacity to activate apoptosis cascade was studied in HCT116 cell line by investigating the activation of proteolytic caspases cascade, the levels of Cytochrome C, Bax and Bcl-2. Active caspase-3 level was enhanced by 6-8-folds in HCT116 cell line when stimulated with compounds 5i and 5l compared to the control. The level of Caspases 8 & 9 was also increased signifying that intrinsic and extrinsic pathways are both activated. They also induced Bax and down regulated Bcl-2 protein level in addition to over-expressing Cytochrome C level in HCT116 cell line. Also, HCT116 cell cycle was mainly arrested at the Pre-G1 and G2/M phases when treated with compounds 5i and 5l.
Collapse
Affiliation(s)
- Ewies F Ewies
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt.
| | - Marwa El-Hussieny
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt
| | - Naglaa F El-Sayed
- Organometallic and Organometalloid Chemistry Department, National Research Centre, 33 ElBohouth St., (Former El Tahrir) Dokki, 12622, Giza, Egypt
| | - Marwa A Fouad
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| |
Collapse
|
12
|
Wang FY, Liu R, Huang KB, Feng HW, Liu YN, Liang H. New platinum(II)-based DNA intercalator: Synthesis, characterization and anticancer activity. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Synthesis and structure of stereoisomers of 3,4-benzo-5,10-diphenyl-1,3-diaza-7-oxa-6-phosphabicyclo[4.3.1]decane-2,6-dione. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Huang KB, Wang FY, Feng HW, Luo H, Long Y, Zou T, Chan ASC, Liu R, Zou H, Chen ZF, Liu YC, Liu YN, Liang H. An aminophosphonate ester ligand-containing platinum(ii) complex induces potent immunogenic cell deathin vitroand elicits effective anti-tumour immune responsesin vivo. Chem Commun (Camb) 2019; 55:13066-13069. [DOI: 10.1039/c9cc06563f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A platinum(ii)-aminophosphonate complex (Pt1) induces potent anti-tumour immunogenic cell death (ICD)in vitroandin vivo.
Collapse
|
15
|
Wang FY, Huang KB, Feng HW, Chen ZF, Liu YN, Liang H. New Platinum(II) agent induces bimodal death of apoptosis and autophagy against A549 cancer cell. Free Radic Biol Med 2018; 129:418-429. [PMID: 30266678 DOI: 10.1016/j.freeradbiomed.2018.09.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands. In comparison to cisplatin, n-Mon-Pt-1 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that n-Mon-Pt-1 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition, ROS release and an ER stress response, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, n-Mon-Pt-1 exhibits lower acute toxicity and better anticancer activity in a murine tumor model.
Collapse
Affiliation(s)
- Feng-Yang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China.
| | - Hai-Wen Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Hong Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry & Pharmacy of Guangxi Normal University, Guilin 541004, PR China.
| |
Collapse
|
16
|
Dai G, Deng S, Guo W, Yu L, Yang J, Zhou S, Gao T. Notch pathway inhibition using DAPT, a γ-secretase inhibitor (GSI), enhances the antitumor effect of cisplatin in resistant osteosarcoma. Mol Carcinog 2018; 58:3-18. [PMID: 29964327 DOI: 10.1002/mc.22873] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/29/2018] [Indexed: 12/28/2022]
Abstract
Overcoming platinum drug resistance represents a major clinical challenge in osteosarcoma (OS) treatment. The high rates and patterns of therapeutic failure seen in patients are consistent with a steady accumulation of drug-resistant cancer stem cells (CSCs). Notch signaling is implicated in regulating CSCs and tumor resistance to platinum. Thus, we attempt to investigate whether inhibiting of Notch pathway could sensitize cisplatin (CDDP) to CDDP-resistant OS cells and the underlying molecular mechanisms. OS cell lines resistant to CDDP were treated with DAPT, CDDP or combination, we present evidences that DAPT enhances the cytotoxic effect of CDDP in resistant OS by inhibiting proliferation, resulting in G0/G1 cell-cycle arrest, inducing apoptosis, and reducing motility. In addition, DAPT targeting depletes OS stem cells (OSCs), thus increasing tumor sensitivity to platinum, which indicating that a dual combination targeting both OSCs and the bulk of tumor cells are needed for tumor eradication. We also found that the combination of CDDP and DAPT exhibit additive suppression on phosphorylated AKT and ERK, contributing to the anti-cancer effects. In animal model, this combination therapy inhibits the growth and metastasis of CDDP resistant tumor xenografts in nude mice to a greater extent than treatment with either reagent alone. Based on these results, we conclude that CDDP plus DAPT was able to sensitize CDDP-resistant human OS cells to CDDP by downregulation of Notch signaling. CDDP and DAPT combination treatment may be effective and promising for advanced OS.
Collapse
Affiliation(s)
- Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Shuang Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Laboratory of Clinical Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Weichun Guo
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Ling Yu
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Jian Yang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Sheng Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China.,Department of Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, P.R. China
| | - Tian Gao
- Department of Orthopedic Oncology, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital and Institute, Beijing, P.R. China
| |
Collapse
|
17
|
Fayed EA, Eissa SI, Bayoumi AH, Gohar NA, Mehany ABM, Ammar YA. Design, synthesis, cytotoxicity and molecular modeling studies of some novel fluorinated pyrazole-based heterocycles as anticancer and apoptosis-inducing agents. Mol Divers 2018; 23:165-181. [DOI: 10.1007/s11030-018-9865-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
|
18
|
Li L, Huang X, Huang R, Gou S, Wang Z, Wang H. Pt(IV) prodrugs containing microtubule inhibitors displayed potent antitumor activity and ability to overcome cisplatin resistance. Eur J Med Chem 2018; 156:666-679. [PMID: 30031977 DOI: 10.1016/j.ejmech.2018.07.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
It is well-known that cisplatin exhibited a broad spectrum of anticancer activities against many solid tumors, but its severe toxicity and drug resistance have largely limited wider clinical applications. Various strategies have been tried to discover new Pt (II) drugs with at least equal activity as well as low toxicity compared to cisplatin, but the inherent problem remains unsolved. Here we report that Pt (IV) complexes comprising a CA-4 analogue, as dual-targeting Pt (IV) prodrug, were synthesized and evaluated for anti-proliferative activity using MTT assay. Among them, complex 19 displayed most potent activity against the tested cancer cell lines, and simultaneously exhibited better cell selectivity between cancer cells and normal cells than that of cisplatin. Mechanism studies revealed that complex 19 effectively induced cell cycle arrest at the G2/M phase and dramatically disrupted the microtubule organization. Moreover, complex 19 significantly induced cell apoptosis and decreased MMP. Importantly, complex 19 significantly inhibited tumor growth in SK-OV-3 xenograft model in vivo without apparent toxicity.
Collapse
Affiliation(s)
- Lingxue Li
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Xiaochao Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Rizhen Huang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Shaohua Gou
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China.
| | - Zhimei Wang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
19
|
Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur J Med Chem 2018; 155:639-650. [PMID: 29935437 DOI: 10.1016/j.ejmech.2018.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023]
Abstract
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL1Cl]Cl [L1 = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL2Cl]Cl [L2 = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells.
Collapse
|
20
|
Huang KB, Wang FY, Tang XM, Feng HW, Chen ZF, Liu YC, Liu YN, Liang H. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells. J Med Chem 2018; 61:3478-3490. [PMID: 29606001 DOI: 10.1021/acs.jmedchem.7b01694] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL1Cl2, L1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL2Cl2, L2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Feng-Yang Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Xiao-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Hai-Wen Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China.,College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| |
Collapse
|
21
|
Bai L, Gao C, Liu Q, Yu C, Zhang Z, Cai L, Yang B, Qian Y, Yang J, Liao X. Research progress in modern structure of platinum complexes. Eur J Med Chem 2017; 140:349-382. [PMID: 28985575 DOI: 10.1016/j.ejmech.2017.09.034] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/18/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Since the antitumor activity of cisplatin was discovered in 1967 by Rosenberg, platinum-based anticancer drugs have played an important role in chemotherapy in clinic. Nevertheless, platinum anticancer drugs also have caused severe side effects and cross drug resistance which limited their applications. Therefore, a significant amount of efforts have been devoted to developing new platinum-based anticancer agents with equal or higher antitumor activity but lower toxicity. Until now, a large number of platinum-based complexes have been prepared and extensively investigated in vitro and in vivo. Among them, some platinum-based complexes revealing excellent anticancer activity showed the potential to be developed as novel type of anticancer agents. In this account, we present such platinum-based anticancer complexes which owning various types of ligands, such as, amine carrier ligands, leaving groups, reactive molecule, steric hindrance groups, non-covalently binding platinum (II) complexes, Platinum(IV) complexes and polynuclear platinum complexes. Overall, platinum-based anticancer complexes reported recently years upon modern structure are emphasized.
Collapse
Affiliation(s)
- Linkui Bai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Qinghua Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Congtao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhuxin Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Linxiang Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Yunxu Qian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Jian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
22
|
Synthesis, characterization and biological evaluation of some new indomethacin analogs with a colon tumor cell growth inhibitory activity. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1932-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
23
|
Wang FY, Xi QY, Huang KB, Tang XM, Chen ZF, Liu YC, Liang H. Crystal structure, cytotoxicity and action mechanism of Zn(II)/Mn(II) complexes with isoquinoline ligands. J Inorg Biochem 2017; 169:23-31. [DOI: 10.1016/j.jinorgbio.2017.01.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 12/17/2016] [Accepted: 01/03/2017] [Indexed: 01/02/2023]
|
24
|
Huang X, Huang R, Gou S, Wang Z, Wang H. Anticancer Platinum(IV) Prodrugs Containing Monoaminophosphonate Ester as a Targeting Group Inhibit Matrix Metalloproteinases and Reverse Multidrug Resistance. Bioconjug Chem 2017; 28:1305-1323. [PMID: 28276682 DOI: 10.1021/acs.bioconjchem.7b00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel class of platinum(IV) complexes comprising a monoaminophosphonate ester moiety, which can not only act as a bone-targeting group but also inhibit matrix metalloproteinases (MMPs), were designed and synthesized. Biological assay of these compounds showed that they had potent antitumor activities against the tested cancer cell lines compared with cisplatin and oxaliplatin and indicated low cytotoxicity to human normal liver cells. Particularly, the platinum(IV) complexes were very sensitive to cisplatin resistant cancer cell lines. The corresponding structure-activity relationships were studied and discussed. Related mechanism study revealed that the typical complex 11 caused cell cycle arrest at S phase and induced apoptosis in Bel-7404 cells via a mitochondrial-dependent apoptosis pathway. Moreover, complex 11 had potent ability to inhibit the tumor growth in the NCI-H460 xenograft model comparable to cisplatin.
Collapse
Affiliation(s)
| | | | | | | | - Hengshan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University , Guilin 541004, China
| |
Collapse
|
25
|
Ramakrishna K, Thomas JM, Sivasankar C. A Green Approach to the Synthesis of α-Amino Phosphonate in Water Medium: Carbene Insertion into the N–H Bond by Cu(I) Catalyst. J Org Chem 2016; 81:9826-9835. [DOI: 10.1021/acs.joc.6b01940] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Kankanala Ramakrishna
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Jisha Mary Thomas
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| | - Chinnappan Sivasankar
- Catalysis and Energy Laboratory
(A Central University), Department of Chemistry Pondicherry University, Puducherry 605014, India
| |
Collapse
|
26
|
Alsalme A, Laeeq S, Dwivedi S, Khan MS, Al Farhan K, Musarrat J, Khan RA. Synthesis, characterization of α-amino acid Schiff base derived Ru/Pt complexes: Induces cytotoxicity in HepG2 cell via protein binding and ROS generation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 163:1-7. [PMID: 27002605 DOI: 10.1016/j.saa.2016.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 06/05/2023]
Abstract
We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, l-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, (1)H, (13)C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.
Collapse
Affiliation(s)
- Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sameen Laeeq
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Sourabh Dwivedi
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Science, King Saud University, Saudi Arabia
| | - Khalid Al Farhan
- Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh 202002, India
| | - Javed Musarrat
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Rais Ahmad Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
27
|
Fanelli M, Formica M, Fusi V, Giorgi L, Micheloni M, Paoli P. New trends in platinum and palladium complexes as antineoplastic agents. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2015.11.004] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Fukushima T, Taniguchi E, Yamada H, Kato K, Shimizu A, Nishiguchi Y, Onozato M, Ichiba H, Azuma Y. Anti-proliferative effect of Fe(III) complexed with 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone in HepG2 cells. Biometals 2015; 28:669-77. [PMID: 25850340 DOI: 10.1007/s10534-015-9852-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
We previously developed a chelating ligand, 1-(2-hydroxy-3-methoxybenzaldehyde)-4-aminosalicylhydrazone (HMB-ASH), which can chelate Fe(III) to form a complex. The HMB-ASH-Fe(III) complex exhibits a dose-dependent anti-proliferative effect in HepG2 cells, whereas the ligand, HMB-ASH, and Fe(III) alone had no considerable effect. The HMB-ASH-Fe(III) complex was composed of Fe(III):HMB-ASH (1:2), as determined by high-performance liquid chromatography with high-resolution mass spectrometry. The IC50 value was approximately 20 μM, which was comparable to those of the anti-cancer drugs oxaliplatin (OXP) and etoposide (ETP) under the same conditions. Similar to OXP and ETP, HMB-ASH-Fe(III) induced apoptosis in HepG2 cells, as revealed by terminal deoxynucleotidyl transferase fluorescein-12-dUTP nick end labeling assay.
Collapse
Affiliation(s)
- Takeshi Fukushima
- Department of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi-shi, Chiba, 274-8510, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Huang KB, Chen ZF, Liu YC, Xie XL, Liang H. Dihydroisoquinoline copper(ii) complexes: crystal structures, cytotoxicity, and action mechanism. RSC Adv 2015. [DOI: 10.1039/c5ra15789g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three new copper(ii) complexes with dihydroisoquinoline were synthesized. They exhibited considerable cytotoxicity, achieved through the induction of cell apoptosisviathe intrinsic pathways of caspase–mitochondria.
Collapse
Affiliation(s)
- Ke-Bin Huang
- Guangxi Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- School of Chemistry of Nankai University
| | - Zhen-Feng Chen
- Guangxi Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Yan-Cheng Liu
- Guangxi Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiao-Li Xie
- Guangxi Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hong Liang
- Guangxi Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmacy of Guangxi Normal University
- Guilin 541004
- P. R. China
- School of Chemistry of Nankai University
| |
Collapse
|
30
|
Fares M, Abou-Seri SM, Abdel-Aziz HA, Abbas SES, Youssef MM, Eladwy RA. Synthesis and antitumor activity of pyrido [2,3-d]pyrimidine and pyrido[2,3-d] [1,2,4]triazolo[4,3-a]pyrimidine derivatives that induce apoptosis through G1 cell-cycle arrest. Eur J Med Chem 2014; 83:155-66. [DOI: 10.1016/j.ejmech.2014.06.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 01/08/2023]
|
31
|
Huang Y, Shi M, Zhao L, Zhao S, Hu K, Chen ZF, Chen J, Liang H. Carbon nanotube signal amplification for ultrasensitive fluorescence polarization detection of DNA methyltransferase activity and inhibition. Biosens Bioelectron 2014; 54:285-91. [DOI: 10.1016/j.bios.2013.10.065] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/02/2013] [Accepted: 10/21/2013] [Indexed: 12/26/2022]
|
32
|
Huang KB, Chen ZF, Liu YC, Li ZQ, Wei JH, Wang M, Xie XL, Liang H. Platinum(II) complexes containing aminophosphonate esters: Synthesis, characterization, cytotoxicity and action mechanism. Eur J Med Chem 2013; 64:554-61. [DOI: 10.1016/j.ejmech.2013.04.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/06/2013] [Accepted: 04/09/2013] [Indexed: 10/26/2022]
|