1
|
Zhang J, Jiang P, Wang S, Li M, Hao Z, Guan W, Pan J, Wu J, Zhang Y, Li H, Chen L, Yang B, Liu Y. Recent advances in the natural product analogues for the treatment of neurodegenerative diseases. Bioorg Chem 2024; 153:107819. [PMID: 39276492 DOI: 10.1016/j.bioorg.2024.107819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/30/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
Neurodegenerative diseases (NDs) represent a hallmark of numerous incapacitating and untreatable conditions, the incidence of which is escalating swiftly, exemplified by Alzheimer's disease and Parkinson's disease. There is an urgent necessity to create pharmaceuticals that exhibit high efficacy and minimal toxicity in order to address these debilitating diseases. The structural complexity and diversity of natural products confer upon them a broad spectrum of biological activities, thereby significantly contributing to the history of drug discovery. Nevertheless, natural products present challenges in drug discovery, including time-consuming separation processes, low content, low bioavailability, and other related issues. To address these challenges, numerous analogs of natural products have been synthesized. This methodology enables the rapid synthesis of analogs of natural products with the potential to serve as lead compounds for drug development, thereby paving the way for the discovery of novel pharmaceuticals. This paper provides a summary of 127 synthetic analogues featuring various natural product structures, including flavonoids, alkaloids, coumarins, phenylpropanoids, terpenoids, polyphenols, and amides. The compounds are categorized based on their efficacy in treating various diseases. Furthermore, this article delves into the structure-activity relationship (SAR) of certain analogues, offering a thorough point of reference for the systematic development of pharmaceuticals aimed at addressing neurodegenerative conditions.
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China; Research Institute of Medicine & Pharmacy, Qiqihar Medical University, Qiqihar 161006, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Jiatong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Yiqiang Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China
| | - Hua Li
- Institute of Structural Pharmacology & TCM Chemical Biology, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin 150040, China.
| |
Collapse
|
2
|
Olmo ED, Barboza B, Delgado-Esteban M, Escala N, Jiménez-Blasco D, Lopez-Pérez JL, Cillero de la Fuente L, Quezada E, Munín J, Viña D, Bolaños JP, Feliciano AS. Potent, selective and reversible hMAO-B inhibition by benzalphthalides: Synthesis, enzymatic and cellular evaluations and virtual docking and predictive studies. Bioorg Chem 2024; 146:107255. [PMID: 38457955 DOI: 10.1016/j.bioorg.2024.107255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to μM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.
Collapse
Affiliation(s)
- Esther Del Olmo
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica. Facultad de Farmacia. Universidad de Salamanca, CIETUS, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain.
| | - Bianca Barboza
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica. Facultad de Farmacia. Universidad de Salamanca, CIETUS, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain
| | - Maria Delgado-Esteban
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Nerea Escala
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica. Facultad de Farmacia. Universidad de Salamanca, CIETUS, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain
| | - Daniel Jiménez-Blasco
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - José L Lopez-Pérez
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica. Facultad de Farmacia. Universidad de Salamanca, CIETUS, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain; Facultad de Medicina, Universidad de Panamá, Panamá, R. de Panamá
| | - Laura Cillero de la Fuente
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Elías Quezada
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela. Spain
| | - Javier Munín
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela. Spain
| | - Dolores Viña
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela. Spain.
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas: Química Farmacéutica. Facultad de Farmacia. Universidad de Salamanca, CIETUS, IBSAL. Campus Miguel de Unamuno s/n. 37007 Salamanca, Spain; Programa de Pós-graduação em Ciências Farmacéuticas, Universidade do Vale do Itajaí, UNIVALI. Itajaí, SC, Brazil
| |
Collapse
|
3
|
Kaur P, Rangra NK. Recent Advancements and SAR Studies of Synthetic Coumarins as MAO-B Inhibitors: An Updated Review. Mini Rev Med Chem 2024; 24:1834-1846. [PMID: 38778598 DOI: 10.2174/0113895575290599240503080025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The oxidative deamination of a wide range of endogenous and exogenous amines is catalyzed by a family of enzymes known as monoamine oxidases (MAOs), which are reliant on flavin-adenine dinucleotides. Numerous neurological conditions, such as Parkinson's disease (PD) and Alzheimer's disease (AD), are significantly correlated with changes in the amounts of biogenic amines in the brain caused by MAO. Hydrogen peroxide, reactive oxygen species, and ammonia, among other toxic consequences of this oxidative breakdown, can harm brain cells' mitochondria and cause oxidative damage. OBJECTIVE The prime objective of this review article was to highlight and conclude the recent advancements in structure-activity relationships of synthetic derivatives of coumarins for MAO-B inhibition, published in the last five years' research articles. METHODS The literature (between 2019 and 2023) was searched from platforms like Science Direct, Google Scholar, PubMed, etc. After going through the literature, we have found a number of coumarin derivatives being synthesized by researchers for the inhibition of MAO-B for the management of diseases associated with the enzyme such as Alzheimer's Disease and Parkinson's Disease. The effect of these coumarin derivatives on the enzyme depends on the substitutions associated with the structure. The structure-activity relationships of the synthetic coumarin derivatives that are popular nowadays have been described and summarized in the current study. RESULTS The results revealed the updated review on SAR studies of synthetic coumarins as MAO-B inhibitors, specifically for Alzheimer's Disease and Parkinson's Disease. The patents reported on coumarin derivatives as MAO-B inhibitors were also highlighted. CONCLUSION Recently, coumarins, a large class of chemicals with both natural and synthetic sources, have drawn a lot of attention because of the vast range of biological actions they have that are linked to neurological problems. Numerous studies have demonstrated that chemically produced and naturally occurring coumarin analogs both exhibited strong MAO-B inhibitory action. Coumarins bind to MAO-B reversibly thereby preventing the breakdown of neurotransmitters like dopamine leading to the inhibition of the enzyme A number of MAO-B blockers have been proven to be efficient therapies for treating neurological diseases like Alzheimer's Disease and Parkinson's Disease. To combat these illnesses, there is still an urgent need to find effective treatment compounds.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Naresh Kumar Rangra
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, 142001, India
- Chitkara School of Pharmacy, Chitkara University, Baddi, Himachal Pradesh, 174103, India
| |
Collapse
|
4
|
Krishna A, Kumar S, Sudevan ST, Singh AK, Pappachen LK, Rangarajan TM, Abdelgawad MA, Mathew B. A Comprehensive Review of the Docking Studies of Chalcone for the Development of Selective MAO-B Inhibitors. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:697-714. [PMID: 37190818 DOI: 10.2174/1871527322666230515155000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 05/17/2023]
Abstract
Monoamine oxidase B is a crucial therapeutic target for neurodegenerative disorders like Alzheimer's and Parkinson's since they assist in disintegrating neurotransmitters such as dopamine in the brain. Pursuing efficacious monoamine oxidase B inhibitors is a hot topic, as contemporary therapeutic interventions have many shortcomings. Currently available FDA-approved monoamine oxidase inhibitors like safinamide, selegiline and rasagiline also have a variety of side effects like depression and insomnia. In the quest for a potent monoamine oxidase B inhibitor, sizeable, diverse chemical entities have been uncovered, including chalcones. Chalcone is a renowned structural framework that has been intensively explored for its monoamine oxidase B inhibitory activity.The structural resemblance of chalcone (1,3-diphenyl-2-propen-1-one) based compounds and 1,4-diphenyl- 2-butene, a recognized MAO-B inhibitor, accounts for their MAO-B inhibitory activity. Therefore, multiple revisions to the chalcone scaffold have been attempted by the researchers to scrutinize the implications of substitutions onthe molecule's potency. In this work, we outline the docking investigation results of various chalcone analogues with monoamine oxidase B available in the literature until now to understand the interaction modes and influence of substituents. Here we focused on the interactions between reported chalcone derivatives and the active site of monoamine oxidase B and the influence of substitutions on those interactions. Detailed images illustrating the interactions and impact of the substituents or structural modifications on these interactions were used to support the docking results.
Collapse
Affiliation(s)
- Athulya Krishna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Ashutosh Kumar Singh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi-110021, India
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Al Jouf 72341, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi-682 041, India
| |
Collapse
|
5
|
Gaio P, Cramer A, de Melo Oliveira NF, Porto S, Kramer L, Nonato Rabelo RA, Pereira RDD, de Oliveira Santos LL, Nascimento Barbosa CL, Silva Oliveira FM, Martins Teixeira M, Castro Russo R, Matos MJ, Simão Machado F. N-(coumarin-3-yl)cinnamamide Promotes Immunomodulatory, Neuroprotective, and Lung Function-Preserving Effects during Severe Malaria. Pharmaceuticals (Basel) 2023; 17:46. [PMID: 38256880 PMCID: PMC10821074 DOI: 10.3390/ph17010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Plasmodium berghei ANKA (PbA) infection in mice resembles several aspects of severe malaria in humans, such as cerebral malaria and acute respiratory distress syndrome. Herein, the effects of N-(coumarin-3-yl)cinnamamide (M220) against severe experimental malaria have been investigated. Treatment with M220 proved to protect cognitive abilities and lung function in PbA-infected mice, observed by an object recognition test and spirometry, respectively. In addition, treated mice demonstrated decreased levels of brain and lung inflammation. The production and accumulation of microglia, and immune cells that produce the inflammatory cytokines TNF and IFN-γ, decreased, while the production of the anti-inflammatory cytokine IL-10 by innate and adaptive immune cells was enhanced. Treatment with M220 promotes immunomodulatory, neuroprotective, and lung function-preserving effects during experimental severe malaria. Therefore, it may be an interesting therapeutic candidate to treat severe malaria effects.
Collapse
Affiliation(s)
- Paulo Gaio
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Allysson Cramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Natália Fernanda de Melo Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Samuel Porto
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Lucas Kramer
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rayane Aparecida Nonato Rabelo
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Rafaela das Dores Pereira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - Laura Lis de Oliveira Santos
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
| | - César Luís Nascimento Barbosa
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Fabrício Marcus Silva Oliveira
- Cellular and Molecular Immunology Group, René Rachou Institute, Oswald o Cruz Foundation—FIOCRUZ, Belo Horizonte 30190-002, MG, Brazil;
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| | - Remo Castro Russo
- Laboratory of Pulmonary Immunology and Mechanics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Maria João Matos
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Fabiana Simão Machado
- Department of Biochemistry and Immunology, Institute of Biological Science, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (P.G.); (A.C.); (N.F.d.M.O.); (S.P.); (L.K.); (R.A.N.R.); (R.d.D.P.); (L.L.d.O.S.); (M.M.T.)
- Program in Health Sciences, Infectious Diseases and Tropical Medicine/Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte 30130-100, MG, Brazil;
| |
Collapse
|
6
|
Lv Y, Zheng Z, Liu R, Guo J, Zhang C, Xie Y. Monoamine oxidase B inhibitors based on natural privileged scaffolds: A review of systematically structural modification. Int J Biol Macromol 2023; 251:126158. [PMID: 37549764 DOI: 10.1016/j.ijbiomac.2023.126158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Monoamine oxidase is a flavin enzyme that catalyzes the oxidation of monoamine neurotransmitters in the brain. Various toxic by-products, aldehydes and hydrogen peroxide produced during the catalytic process, can cause oxidative stress and neuronal cell death. Overexpression of MAO-B and insufficient dopamine concentration are recognized as pathological factors in neurodegenerative diseases (NDs) including Parkinson's disease (PD) and Alzheimer's disease (AD). Therefore, the inhibition of MAO-B is an attractive target for the treatment of NDs. Despite significant efforts, few selective and reversible MAO-B inhibitors have been clinically approved. Natural products have emerged as valuable sources of lead compounds in drug discovery. Compounds such as chromone, coumarin, chalcone, caffeine, and aurone, present in natural structures, are considered as privileged scaffolds in the synthesis of MAO-B inhibitors. In this review, we summarized the structure-activity relationship (SAR) of MAO-B inhibitors based on the naturally privileged scaffolds over the past 20 years. Additionally, we proposed a balanced discussion on the advantages and limitations of natural scaffold-based MAO-B inhibitors with providing a future perspective in drug development.
Collapse
Affiliation(s)
- Yangjing Lv
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Zhiyuan Zheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Renzheng Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jianan Guo
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Changjun Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China.
| | - Yuanyuan Xie
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceutical, Zhejiang University of Technology, Hangzhou, China; Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, China; Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, China.
| |
Collapse
|
7
|
8-Amide and 8-carbamate substitution patterns as modulators of 7-hydroxy-4-methylcoumarin's antidepressant profile: Synthesis, biological evaluation and docking studies. Eur J Med Chem 2023; 248:115091. [PMID: 36638711 DOI: 10.1016/j.ejmech.2023.115091] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Psychiatric and neurological disorders affect millions of people worldwide. Currently available treatments may help to improve symptoms, but they cannot cure the diseases. Therefore, there is an urgent need for potent and safe therapeutic solutions. 8-Amide and 8-carbamatecoumarins were synthetized and evaluated as human monoamine oxidase A and B (hMAO-A and hMAO-B) inhibitors. Comparison between both scaffolds has been established, and we hypothesized that the introduction of different substituents can modulate hMAO activity and selectivity. N-(7-Hydroxy-4-methylcoumarin-8-yl)-4-methylbenzamide (9) and ethyl N-(7-hydroxy-4-methylcoumarin-8-yl)carbamate (20) proved to be the most active and selective hMAO-A inhibitors (IC50 = 15.0 nM and IC50 = 22.0 nM, respectively), being compound 9 an irreversible hMAO-A inhibitor twenty-four times more active in vitro than moclobemide, a drug used in the treatment of depression and anxiety. Based on PAMPA assay results, both compounds proved to be good candidates to cross the blood-brain barrier. In addition, these compounds showed non-significant cytotoxicity on neuronal viability assays. Also, the best compound proved to have a t1/2 of 6.84 min, an intrinsic clearance of 195.63 μL min-1 mg-1 protein, and to be chemically stable at pH 3.0, 7.4 and 10.0. Docking studies were performed to better understand the binding affinities and selectivity profiles for both hMAO isoforms. Finally, theoretical drug-like properties calculations corroborate the potential of both scaffolds on the search for new therapeutic solutions for psychiatric disorders as depression.
Collapse
|
8
|
The synthesis, biological evaluation, and fluorescence study of 3-aminocoumarin and their derivatives: a brief review. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-022-03010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Abstract
Proper elucidation of drug-target interaction is one of the most significant steps at the early stages of the drug development research. Computer-aided drug design tools have substantial contribution to this stage. In this chapter, we specifically concentrate on the computational methods widely used to develop reversible inhibitors for monoamine oxidase (MAO) isozymes. In this context, current computational techniques in identifying the best drug candidates showing high potency are discussed. The protocols of structure-based drug design methodologies, namely, molecular docking, in silico screening, and molecular dynamics simulations, are presented. Employing case studies of safinamide binding to MAO B, we demonstrate how to use AutoDock 4.2.6 and NAMD software packages.
Collapse
Affiliation(s)
- Kemal Yelekçi
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| | - Safiye Sağ Erdem
- Department of Chemistry, Faculty of Arts and Sciences, Marmara University, Istanbul, Turkey
| |
Collapse
|
10
|
In vitro and in silico investigation of inhibitory activities of 3-arylcoumarins and 3-phenylazo-4-hydroxycoumarin on MAO isoenzymes. Struct Chem 2022. [DOI: 10.1007/s11224-022-02092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Bhawna, Kumar A, Bhatia M, Kapoor A, Kumar P, Kumar S. Monoamine oxidase inhibitors: A concise review with special emphasis on structure activity relationship studies. Eur J Med Chem 2022; 242:114655. [PMID: 36037788 DOI: 10.1016/j.ejmech.2022.114655] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022]
Abstract
Monoamine oxidase enzyme is necessary for the management of brain functions. It oxidatively metabolizes monoamines and produces ammonia, aldehyde and hydrogen peroxide as by-products. Excessive production of by-products of monoamine metabolism generates free radicals which cause cellular apoptosis and several neurodegenerative disorders for example Alzheimer's disease, Parkinson's disease, depression and autism. The inhibition of MAOs is an attractive target for the treatment of neurological disorders. Clinically approved MAO inhibitors for example selegiline, rasagiline, clorgyline, pargyline etc. are irreversible in nature and cause some adverse effects while recently studied reversible MAO inhibitors are devoid of harmful effects of old monoamine oxidase inhibitors. In this review article we have listed various synthesized molecules containing different moieties like coumarin, chalcone, thiazole, thiourea, caffeine, pyrazole, chromone etc. along with their activity, mode of action, structure activity relationship and molecular docking studies.
Collapse
Affiliation(s)
- Bhawna
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Ashwani Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Meenakshi Bhatia
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Archana Kapoor
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119, Haryana, India
| | - Sunil Kumar
- Department of Pharmaceutical Sciences,Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India.
| |
Collapse
|
12
|
Zhong Z, He X, Ge J, Zhu J, Yao C, Cai H, Ye XY, Xie T, Bai R. Discovery of small-molecule compounds and natural products against Parkinson's disease: Pathological mechanism and structural modification. Eur J Med Chem 2022; 237:114378. [DOI: 10.1016/j.ejmech.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 04/09/2022] [Indexed: 11/24/2022]
|
13
|
Coumarin-Resveratrol-Inspired Hybrids as Monoamine Oxidase B Inhibitors: 3-Phenylcoumarin versus trans-6-Styrylcoumarin. Molecules 2022; 27:molecules27030928. [PMID: 35164192 PMCID: PMC8838197 DOI: 10.3390/molecules27030928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Monoamine oxidases (MAOs) are attractive targets in drug design. The inhibition of one of the isoforms (A or B) is responsible for modulating the levels of different neurotransmitters in the central nervous system, as well as the production of reactive oxygen species. Molecules that act selectively on one of the MAO isoforms have been studied deeply, and coumarin has been described as a promising scaffold. In the current manuscript we describe a comparative study between 3-phenylcoumarin (endo coumarin-resveratrol-inspired hybrid) and trans-6-styrylcoumarin (exo coumarin-resveratrol-inspired hybrid). Crystallographic structures of both compounds were obtained and analyzed. 3D-QSAR models, in particular CoMFA and CoMSIA, docking simulations and molecular dynamics simulations have been performed to support and better understand the interaction of these molecules with both MAO isoforms. Both molecules proved to inhibit MAO-B, with trans-6-styrylcoumarin being 107 times more active than 3-phenylcoumarin, and 267 times more active than trans-resveratrol.
Collapse
|
14
|
Harfouche A, Alata W, Leblanc K, Heslaut G, Figadère B, Maciuk A. Label-free LC/HRMS-based enzymatic activity assay for the detection of DDC, MAO and COMT inhibitors. J Pharm Biomed Anal 2022; 212:114598. [DOI: 10.1016/j.jpba.2022.114598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 01/12/2022] [Accepted: 01/16/2022] [Indexed: 10/19/2022]
|
15
|
Sharifi-Rad J, Cruz-Martins N, López-Jornet P, Lopez EPF, Harun N, Yeskaliyeva B, Beyatli A, Sytar O, Shaheen S, Sharopov F, Taheri Y, Docea AO, Calina D, Cho WC. Natural Coumarins: Exploring the Pharmacological Complexity and Underlying Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6492346. [PMID: 34531939 PMCID: PMC8440074 DOI: 10.1155/2021/6492346] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/31/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022]
Abstract
Coumarins belong to the benzopyrone family commonly found in many medicinal plants. Natural coumarins demonstrated a wide spectrum of pharmacological activities, including anti-inflammatory, anticoagulant, anticancer, antibacterial, antimalarial, casein kinase-2 (CK2) inhibitory, antifungal, antiviral, Alzheimer's disease inhibition, neuroprotective, anticonvulsant, phytoalexins, ulcerogenic, and antihypertensive. There are very few studies on the bioavailability of coumarins; therefore, further investigations are necessitated to study the bioavailability of different coumarins which already showed good biological activities in previous studies. On the evidence of varied pharmacological properties, the present work presents an overall review of the derivation, availability, and biological capacities of coumarins with further consideration of the essential mode of their therapeutic actions. In conclusion, a wide variety of coumarins are available, and their pharmacological activities are of current interest thanks to their synthetic accessibility and riches in medicinal plants. Coumarins perform the valuable function as therapeutic agents in a range of medical fields.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116, Gandra, PRD, Portugal
| | - Pía López-Jornet
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Eduardo Pons-Fuster Lopez
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca-UMU), Clínica Odontológica Universitaria Hospital Morales Meseguer, Adv. Marques de los Velez s/n, 30008 Murcia, Spain
| | - Nidaa Harun
- Lahore College for Women University, Lahore, Pakistan
| | - Balakyz Yeskaliyeva
- Al-Farabi Kazakh National University, Faculty of Chemistry and Chemical Technology, Almaty 050040, Kazakhstan
| | - Ahmet Beyatli
- University of Health Sciences, Department of Medicinal and Aromatic Plants, Istanbul 34668, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Taras Shevchenko National University of Kyiv, Institute of Biology, Volodymyrska Str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, A. Hlinku 2, 94976 Nitra, Slovakia
| | | | - Farukh Sharopov
- Research Institution “Chinese-Tajik Innovation Center for Natural Products”, Academy of Sciences of the Republic of Tajikistan, Ayni 299/2, Dushanbe 734063, Tajikistan
| | - Yasaman Taheri
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
16
|
Quezada E, Rodríguez-Enríquez F, Laguna R, Cutrín E, Otero F, Uriarte E, Viña D. Curcumin-Coumarin Hybrid Analogues as Multitarget Agents in Neurodegenerative Disorders. Molecules 2021; 26:molecules26154550. [PMID: 34361702 PMCID: PMC8348017 DOI: 10.3390/molecules26154550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Neurodegenerative diseases have a complex nature which highlights the need for multitarget ligands to address the complementary pathways involved in these diseases. Over the last decade, many innovative curcumin-based compounds have been designed and synthesized, searching for new derivatives having anti-amyloidogenic, inhibitory of tau formation, as well as anti-neuroinflammation, antioxidative, and AChE inhibitory activities. Regarding our experience studying 3-substituted coumarins with interesting properties for neurodegenerative diseases, our aim was to synthesize a new series of curcumin–coumarin hybrid analogues and evaluate their activity. Most of the 3-(7-phenyl-3,5-dioxohepta-1,6-dien-1-yl)coumarin derivatives 11–18 resulted in moderated inhibitors of hMAO isoforms and AChE and BuChE activity. Some of them are also capable of scavenger the free radical DPPH. Furthermore, compounds 14 and 16 showed neuroprotective activity against H2O2 in SH-SY5Y cell line. Nanoparticles formulation of these derivatives improved this property increasing the neuroprotective activity to the nanomolar range. Results suggest that by modulating the substitution pattern on both coumarin moiety and phenyl ring, ChE and MAO-targeted derivatives or derivatives with activity in cell-based phenotypic assays can be obtained.
Collapse
Affiliation(s)
- Elías Quezada
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (E.U.)
| | - Fernanda Rodríguez-Enríquez
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
| | - Reyes Laguna
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
| | - Elena Cutrín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.C.); (F.O.)
| | - Francisco Otero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.C.); (F.O.)
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (E.Q.); (E.U.)
- Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; (F.R.-E.); (R.L.)
- Correspondence: ; Tel.: +34-881-815-424
| |
Collapse
|
17
|
Koyiparambath VP, Prayaga Rajappan K, Rangarajan TM, Al-Sehemi AG, Pannipara M, Bhaskar V, Nair AS, Sudevan ST, Kumar S, Mathew B. Deciphering the detailed structure-activity relationship of coumarins as Monoamine oxidase enzyme inhibitors-An updated review. Chem Biol Drug Des 2021; 98:655-673. [PMID: 34233082 DOI: 10.1111/cbdd.13919] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022]
Abstract
In the last few years, Monoamine oxidase (MAO) have emerged as a target for the treatment of many neurodegenerative diseases including anxiety, depression, Alzheimer's, and Parkinson's diseases. The MAO inhibitors especially selective and reversible inhibitors of either of the isoenzymes (MAO-A & MAO-B) have been given more attention as both the form have different therapeutic properties and hence can be used for different neurological disorders. The lack of selective and reversible inhibitors available for both the enzymes and severity of the neuronal disorder in society have opened a new door to the researchers to carry out large and dedicated researches in this field. Among the several classes of the molecule as the inhibitors, coumarins hold a rank as a potent scaffold with its ease of synthesis, high therapeutic potential, and reversibility in inhibiting MAOs. The current review is an update of the research in the field that covers the works during the last six years (2014-2020) with a major focus on the SAR of the coumarin derivatives including synthetic, natural, and hybrids of coumarins with FDA-approved drugs.
Collapse
Affiliation(s)
- Vishal Payyalot Koyiparambath
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Krishnendu Prayaga Rajappan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - T M Rangarajan
- Department of Chemistry, Sri Venketeswara College, University of Delhi, New Delhi, India
| | - Abdullah G Al-Sehemi
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Mehboobali Pannipara
- Research center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Vaishnav Bhaskar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sachithra Thazhathuveedu Sudevan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Sunil Kumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| |
Collapse
|
18
|
Gamma-decanolactone: Preliminary evaluation as potential antiparkinsonian drug. Eur J Pharmacol 2021; 906:174276. [PMID: 34174267 DOI: 10.1016/j.ejphar.2021.174276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/14/2022]
Abstract
Treatment of Parkinson's disease (PD) includes the use of monoamine oxidase-B (MAO-B) inhibitor drugs. In this work we have evaluated the possible gamma-decanolactone (GD) effect in vitro to inhibit the A and B isoforms of human monoamine oxidase (hMAO) enzyme and their citotoxicity in human hepatoma cell line (HepG2). Also, binding studies to A1, A2A A2B and A3 adenosine receptors were performed. A docking study of gamma-decanolactone has been carried out with the molecular targets of MAO-A and MAO-B isoforms. The physicochemical properties and ability to cross physiological barriers, as the blood brain barrier (BBB), was elucidated by computational studies. The in vivo assays, the rota-rod test, body temperature assessment and open field test were performed in reserpinized mice (1.5 mg/kg, i.p.; 18:00 before) to evaluate the effect of gamma-decanolactone (300 mg/kg), alone or associated with Levodopa plus Benserazide (LD + BZ, 100:25 mg/kg, i.p.). Gamma-decanolactone inhibited preferentially the MAO-B in a reversible manner, with an inhibitory concentration of 50% (IC50) 55.95 ± 9.06 μM. It was shown to be a safe drug since only at the highest concentration decreased the viability of HepG2 cells. It also does not bind to adenosine receptors investigated in this study. The molecular docking study show that the gamma-decanolactone ligand adopts a relatively compact conformation in the active site of hMAO-B, while we note an extended conformation of gamma-decanolactone ligand in the hMAO-A isoform. The physicochemical properties obtained, and the theoretical models utilized for the evaluation of ability to cross the BBB, predict a good gamma-decanolactone bioavailability and access to the central nervous system (CNS). In the in vivo studies, gamma-decanolactone partially reversed the ataxia of the reserpinized mice at 01:00 h and 01:30 h post-administration. Concomitant treatment of gamma-decanolactone with LD + BZ, at 01:30 h showed a potentiation of the reversibility of ataxia and facilitated the reversal of hypothermia caused by reserpine for all measured times (P <0.01 vs vehicle), except at 24:00 h, but not reversed the hypokinesia in the open field test. In summary, the results herein obtained and in conjunction with previous studies, suggest that gamma-decanolactone could be a drug with potential utility as antiparkinsonian drug.
Collapse
|
19
|
Kong Z, Sun D, Jiang Y, Hu Y. Design, synthesis, and evaluation of 1, 4-benzodioxan-substituted chalcones as selective and reversible inhibitors of human monoamine oxidase B. J Enzyme Inhib Med Chem 2021; 35:1513-1523. [PMID: 32705910 PMCID: PMC7470127 DOI: 10.1080/14756366.2020.1797711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The inhibition of monoamine oxidase B (MAO-B) could be an effective approach for the treatment of various neurological disorders. In this study, a series of 1, 4-benzodioxan-substituted chalcone derivatives were designed, synthesised and evaluated for their inhibitory activity against human MAO-B (hMAO-B). The majority of these compounds showed inhibitory activity and high selectivity. The most potent compound, (E)-1-(3-bromo-4-fluorophenyl)-3-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)prop-2-en-1-one (22), exhibited an IC50 of 0.026 µM with a selectivity index greater than 1538. Kinetics and reversibility studies confirmed that the representative active compounds acted as competitive and reversible inhibitors of hMAO-B. The enzyme-inhibitor interactions were investigated by molecular docking studies and the rationale was provided. As these potent hMAO-B inhibitors exhibited low neurotoxicity and possessed promising drug-like properties, we believe that these active compounds could be further investigated as potential drug candidates for future in vivo studies.
Collapse
Affiliation(s)
- Zhuo Kong
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Demeng Sun
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yanmei Jiang
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yun Hu
- Department of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
20
|
Musa MA, Badisa VLD, Aghimien MO, Eyunni SVK, Latinwo LM. Identification of 7,8-dihydroxy-3-phenylcoumarin as a reversible monoamine oxidase enzyme inhibitor. J Biochem Mol Toxicol 2020; 35:e22651. [PMID: 33085988 DOI: 10.1002/jbt.22651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/18/2020] [Accepted: 09/29/2020] [Indexed: 01/20/2023]
Abstract
We herein report the biological evaluation of 3-arylcoumarin derivatives (3a-l) as potential human monoamine oxidase-A and -B (hMAO-A and hMAO-B) inhibitors. The result indicated that 7,8-dihydroxy-3-(4-nitrophenyl)coumarin (3j) was most effective against MAO-A (inhibition concentration [IC50 ] = 6.46 ± 0.02 µM) and MAO-B (IC50 = 3.8 ± 0.3 µM) enzymes than other synthesized compounds and reference compounds (pargyline and moclobemide). Furthermore, compound (3j) showed (a) nonselectivity against hMAO enzymes, (b) reversible hMAO enzymes inhibition, and (c) neuroprotection against H2 O2 -treated human neuroblastoma (N2a) cells. Finally, a molecular modeling study revealed that the hMAO enzymes inhibitory activity of the compound (3j) may be due to the orientation where the nitro (NO2 ) group lies deep into the receptor and the phenyl ring directed toward flavin adenosine dinucleotide via hydrogen bond interaction, and possible π-π interaction with various important residues. Thus, the results of the present study demonstrate that compound (3j) can be considered as a promising scaffold for the development of hMAO-A and hMAO-B inhibitors.
Collapse
Affiliation(s)
- Musiliyu A Musa
- Department of Chemistry, Florida A&M University, Tallahassee, Florida
| | - Veera L D Badisa
- School of the Environment, Florida A&M University, Tallahassee, Florida
| | - Monica O Aghimien
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| | - Suresh V K Eyunni
- Department of Chemistry, Florida A&M University, Tallahassee, Florida.,College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida
| | - Lekan M Latinwo
- Department of Biological Sciences, Florida A&M University, Tallahassee, Florida
| |
Collapse
|
21
|
Rodríguez-Enríquez F, Costas-Lago MC, Besada P, Alonso-Pena M, Torres-Terán I, Viña D, Fontenla JÁ, Sturlese M, Moro S, Quezada E, Terán C. Novel coumarin-pyridazine hybrids as selective MAO-B inhibitors for the Parkinson's disease therapy. Bioorg Chem 2020; 104:104203. [PMID: 32932120 DOI: 10.1016/j.bioorg.2020.104203] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
The 3-pyridazinylcoumarin scaffold was previously reported as an efficient core for the discovery of reversible and selective inhibitors of MAO-B, a validated drug target for PD therapy which also plays an important role in the AD progress. Looking for its structural optimization, novel compounds of hybrid structure coumarin-pyridazine, differing in polarizability and lipophilicity properties, were synthesized and tested against the two MAO isoforms, MAO-A and MAO-B (compounds 17a-f and 18a-f). All the designed compounds selectively inhibited the MAO-B isoenzyme, exhibiting many of them IC50 values ranging from sub-micromolar to nanomolar grade and lacking neuronal toxicity. The 7-bromo-3-(6-bromopyridazin-3-yl)coumarin (18c), the most potent compound of these series (IC50 = 60 nM), was subjected to further in vivo studies in a reserpine-induced mouse PD model. The obtained results suggest a promising potential for 18c as antiparkinsonian agent. Molecular modeling studies also provided valuable information about the enzyme-drug interactions and the potential pharmacokinetic profile of the novel compounds.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - María Carmen Costas-Lago
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Miguel Alonso-Pena
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Iria Torres-Terán
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Ángel Fontenla
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mattia Sturlese
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, 35131 Padova, Italy
| | - Elias Quezada
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Terán
- Departamento de Química Orgánica e Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
22
|
Rodríguez-Enríquez F, Viña D, Uriarte E, Laguna R, Matos MJ. 7-Amidocoumarins as Multitarget Agents against Neurodegenerative Diseases: Substitution Pattern Modulation. ChemMedChem 2020; 16:179-186. [PMID: 32700464 DOI: 10.1002/cmdc.202000454] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Indexed: 02/06/2023]
Abstract
This study explores the potential of 7-amidocoumarins as multitarget agents against Parkinson's and Alzheimer's diseases, by modulating the substitution patterns within the scaffold. Sixteen compounds were synthesized via 7-amino-4-methylcoumarin acylation, and in vitro evaluation of the molecules against hMAO-A, hMAO-B, hAChE, hBuChE and hBACE1 was performed. Five compounds turned out to be potent and selective hMAO-B inhibitors in the nanomolar range, six displayed inhibitory activity of hMAO-A in the low micromolar range, one showed hAChE inhibitory activity and another one hBACE1 inhibitory activity. MAO-B reversibility profile of 7-(4'-chlorobenzamido)-4-methylcoumarin (10) was investigated, with this compound being a reversible inhibitor. Neurotoxicity on motor cortex neurons and neuroprotection against H2 O2 were also studied, corroborating the safety profile of these molecules. Finally, theoretical ADME properties were also calculated, showing these molecules as good candidates for the optimization of a lead compound. Results suggest that by modulating the substitution pattern at position 7 of the scaffold, selective or multitarget molecules can be achieved.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Enríquez
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Chronic Diseases Pharmacology Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912, Santiago, Chile
| | - Reyes Laguna
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Maria J Matos
- Departamento de Química Orgánica, Facultade de Farmacia, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain.,CIQUP/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| |
Collapse
|
23
|
Recent advances in dopaminergic strategies for the treatment of Parkinson's disease. Acta Pharmacol Sin 2020; 41:471-482. [PMID: 32112042 PMCID: PMC7471472 DOI: 10.1038/s41401-020-0365-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is the second most common progressive neurodegenerative disease worldwide. However, there is no available therapy reversing the neurodegenerative process of PD. Based on the loss of dopamine or dopaminergic dysfunction in PD patients, most of the current therapies focus on symptomatic relief to improve patient quality of life. As dopamine replacement treatment remains the most effective symptomatic pharmacotherapy for PD, herein we provide an overview of the current pharmacotherapies, summarize the clinical development status of novel dopaminergic agents, and highlight the challenge and opportunity of emerging preclinical dopaminergic approaches aimed at managing the features and progression of PD.
Collapse
|
24
|
Olaya MDP, Vergel NE, López JL, Viña D, Guerrero MF. 8-Propyl-6H-[1,3]dioxolo[4,5-g]chromen-6-one: A new coumarin with monoamine oxidase B inhibitory activity and possible anti-parkinsonian effects. BRAZ J PHARM SCI 2020. [DOI: 10.1590/s2175-97902019000317609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
25
|
Sang Z, Wang K, Zhang P, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone derivatives as multi-function agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 180:238-252. [DOI: 10.1016/j.ejmech.2019.07.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/03/2019] [Accepted: 07/06/2019] [Indexed: 12/12/2022]
|
26
|
Sang Z, Wang K, Shi J, Liu W, Tan Z. Design, synthesis, in-silico and biological evaluation of novel chalcone-O-carbamate derivatives as multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2019; 178:726-739. [DOI: 10.1016/j.ejmech.2019.06.026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/25/2019] [Accepted: 06/09/2019] [Indexed: 01/04/2023]
|
27
|
Coumarin analogue 3-methyl-7H-furo[3,2-g] chromen-7-one as a possible antiparkinsonian agent. ACTA ACUST UNITED AC 2019; 39:491-501. [PMID: 31584763 PMCID: PMC7357371 DOI: 10.7705/biomedica.4299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Indexed: 11/30/2022]
Abstract
Introduction: Parkinson’s disease is the second most common neurodegenerative disease. Monoamine oxidase B inhibitors are used in the treatment of this disease concomitantly with levodopa or as monotherapy. Several substituted coumarins have shown activity as inhibitors of monoamine oxidase B. Objective: To evaluate the possible antiparkinsonian effects of the coumarin analogue FCS005 (3-methyl-7H-furo[3,2-g]chromen-7-one) in mouse models, as well as its inhibitory activity towards monoamine oxidases (MAO) and its antioxidant activity. Materials and methods: FCS005 was synthesized and the reversal of hypokinesia was evaluated in the reserpine and levodopa models. Moreover, in the haloperidol model, its anticataleptic effects were evaluated. Additionally, the monoamine oxidase inhibitory activity and antioxidant activity of FCS005 were evaluated using in vitro and ex vivo studies, respectively. Results: FCS005 (100 mg/kg) caused the reversal of hypokinesia in the reserpine and levodopa models. This furocoumarin also presented anti-cataleptic effects at the same dose. Besides, it showed selective inhibitory activity towards the MAO-B isoform and antioxidant activity. Conclusion: These results attribute interesting properties to the compound FCS005. It is important to continue research on this molecule considering that it could be a potential antiparkinsonian agent.
Collapse
|
28
|
Multifunctional indanone–chalcone hybrid compounds with anti-β-amyloid (Aβ) aggregation, monoamine oxidase B (MAO-B) inhibition and neuroprotective properties against Alzheimer’s disease. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02423-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Yusufzai SK, Khan MS, Sulaiman O, Osman H, Lamjin DN. Molecular docking studies of coumarin hybrids as potential acetylcholinesterase, butyrylcholinesterase, monoamine oxidase A/B and β-amyloid inhibitors for Alzheimer's disease. Chem Cent J 2018; 12:128. [PMID: 30515636 PMCID: PMC6768047 DOI: 10.1186/s13065-018-0497-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/21/2018] [Indexed: 01/11/2023] Open
Abstract
Coumarins are the phytochemicals, which belong to the family of benzopyrone, that display interesting pharmacological properties. Several natural, synthetic and semisynthetic coumarin derivatives have been discovered in decades for their applicability as lead structures as drugs. Coumarin based conjugates have been described as potential AChE, BuChE, MAO and β-amyloid inhibitors. Therefore, the objective of this review is to focus on the construction of these pharmacologically important coumarin analogues with anti-Alzheimer’s activities, highlight their docking studies and structure–activity relationships based on their substitution pattern with respect to the selected positions on the chromen ring by emphasising on the research reports conducted in between year 1968 to 2017.![]()
Collapse
Affiliation(s)
- Samina Khan Yusufzai
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Mohammad Shaheen Khan
- Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Othman Sulaiman
- School of Industrial Technology, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Dalily Nabilah Lamjin
- Industrial Chemistry Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
30
|
Stefanachi A, Leonetti F, Pisani L, Catto M, Carotti A. Coumarin: A Natural, Privileged and Versatile Scaffold for Bioactive Compounds. Molecules 2018; 23:E250. [PMID: 29382051 PMCID: PMC6017103 DOI: 10.3390/molecules23020250] [Citation(s) in RCA: 308] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/22/2018] [Accepted: 01/25/2018] [Indexed: 12/22/2022] Open
Abstract
Many naturally occurring substances, traditionally used in popular medicines around the world, contain the coumarin moiety. Coumarin represents a privileged scaffold for medicinal chemists, because of its peculiar physicochemical features, and the versatile and easy synthetic transformation into a large variety of functionalized coumarins. As a consequence, a huge number of coumarin derivatives have been designed, synthesized, and tested to address many pharmacological targets in a selective way, e.g., selective enzyme inhibitors, and more recently, a number of selected targets (multitarget ligands) involved in multifactorial diseases, such as Alzheimer's and Parkinson's diseases. In this review an overview of the most recent synthetic pathways leading to mono- and polyfunctionalized coumarins will be presented, along with the main biological pathways of their biosynthesis and metabolic transformations. The many existing and recent reviews in the field prompted us to make some drastic selections, and therefore, the review is focused on monoamine oxidase, cholinesterase, and aromatase inhibitors, and on multitarget coumarins acting on selected targets of neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Stefanachi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| | - Angelo Carotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", via E. Orabona 4, I-70125 Bari, Italy.
| |
Collapse
|
31
|
Costas-Lago MC, Besada P, Rodríguez-Enríquez F, Viña D, Vilar S, Uriarte E, Borges F, Terán C. Synthesis and structure-activity relationship study of novel 3-heteroarylcoumarins based on pyridazine scaffold as selective MAO-B inhibitors. Eur J Med Chem 2017; 139:1-11. [PMID: 28797881 DOI: 10.1016/j.ejmech.2017.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 10/19/2022]
Abstract
Compounds of hybrid structure pyridazine-coumarin were discovered as potent, selective and reversible inhibitors of monoamine oxidase B (MAO-B). These compounds were synthesized in good yield following a multistep approach based on Knoevenagel reaction and using as key intermediate pyridazinone 16, which was obtained from maleic anhydride and furan. Compounds 9b and 9d are the most active compounds of these series, with IC50 values in the sub-micromolar range, and lack of cytotoxic effects. Theoretical calculation of ADME properties also suggested a good pharmacokinetic profile for both compounds. Docking simulations provided insights into enzyme inhibitor interactions and allowed us to rationalize the observed structure-activity relationships (SARs).
Collapse
Affiliation(s)
- María Carmen Costas-Lago
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Pedro Besada
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain
| | - Fernanda Rodríguez-Enríquez
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Dolores Viña
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS) Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Santiago Vilar
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain; Instituto de Ciencias Químicas Aplicadas, Universidad Autónoma de Chile, 7500912 Santiago, Chile
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto, Portugal
| | - Carmen Terán
- Departamento de Química Orgánica and Instituto de Investigación Sanitaria Galicia Sur (IISGS), Universidade de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
32
|
Van der Walt MM, Terre’Blanche G, Petzer JP, Petzer A. Benzyloxynitrostyrene analogues – A novel class of selective and highly potent inhibitors of monoamine oxidase B. Eur J Med Chem 2017; 125:1193-1199. [DOI: 10.1016/j.ejmech.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/14/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
|
33
|
Vilar S, Quezada E, Uriarte E, Costanzi S, Borges F, Viña D, Hripcsak G. Computational Drug Target Screening through Protein Interaction Profiles. Sci Rep 2016; 6:36969. [PMID: 27845365 PMCID: PMC5109486 DOI: 10.1038/srep36969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/24/2016] [Indexed: 11/11/2022] Open
Abstract
The development of computational methods to discover novel drug-target interactions on a large scale is of great interest. We propose a new method for virtual screening based on protein interaction profile similarity to discover new targets for molecules, including existing drugs. We calculated Target Interaction Profile Fingerprints (TIPFs) based on ChEMBL database to evaluate drug similarity and generated new putative compound-target candidates from the non-intersecting targets in each pair of compounds. A set of drugs was further studied in monoamine oxidase B (MAO-B) and cyclooxygenase-1 (COX-1) enzyme through molecular docking and experimental assays. The drug ethoxzolamide and the natural compound piperlongumine, present in Piper longum L, showed hMAO-B activity with IC50 values of 25 and 65 μM respectively. Five candidates, including lapatinib, SB-202190, RO-316233, GW786460X and indirubin-3′-monoxime were tested against human COX-1. Compounds SB-202190 and RO-316233 showed a IC50 in hCOX-1 of 24 and 25 μM respectively (similar range as potent inhibitors such as diclofenac and indomethacin in the same experimental conditions). Lapatinib and indirubin-3′-monoxime showed moderate hCOX-1 activity (19.5% and 28% of enzyme inhibition at 25 μM respectively). Our modeling constitutes a multi-target predictor for large scale virtual screening with potential in lead discovery, repositioning and drug safety.
Collapse
Affiliation(s)
- Santiago Vilar
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA.,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Elías Quezada
- CIQUP, Department of Chemistry &Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Eugenio Uriarte
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Stefano Costanzi
- Department of Chemistry, American University, 20016 Washington, DC, USA
| | - Fernanda Borges
- CIQUP, Department of Chemistry &Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Dolores Viña
- Department of Pharmacology, CIMUS, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - George Hripcsak
- Department of Biomedical Informatics, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
34
|
Guo B, Zheng C, Cai W, Cheng J, Wang H, Li H, Sun Y, Cui W, Wang Y, Han Y, Lee SMY, Zhang Z. Multifunction of Chrysin in Parkinson's Model: Anti-Neuronal Apoptosis, Neuroprotection via Activation of MEF2D, and Inhibition of Monoamine Oxidase-B. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:5324-5333. [PMID: 27245668 DOI: 10.1021/acs.jafc.6b01707] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chrysin, a flavonoid compound existing in several plants, is applied as a dietary supplement because of its beneficial effects on general human health and alleviation of neurological disorders. However, mechanisms underlying neuroprotection of chrysin has not been fully elucidated, and the effects of chrysin on the Parkinson's disease (PD) model in vivo have not been investigated. It is here shown that chrysin protects primary granular neurons against 1-methyl-4-phenylpyridinium ion insult via antiapoptosis by reversing the dysregulated expression of Bcl-2, Bax, and caspase 3. The mechanisms also involved activating transcriptional factor myocyte enhancer factor 2D (MEF2D) via regulation of AKT-GSK3β signaling. In this in vivo model of PD, chrysin rescued the dopaminergic neurons loss and alleviated the decrease in dopamine level induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. Moreover, chrysin markedly inhibited monoamine oxidase-B activity in vitro and in vivo. In conclusion, chrysin exerts beneficial effects to PD, possibly through multitarget mechanisms including antineuronal apoptosis, activation of the AKT-GSK3β/MEF2D pathway, and inhibition of the MAO-B activity.
Collapse
Affiliation(s)
- Baojian Guo
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Chengyou Zheng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Wei Cai
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Jiehong Cheng
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Hongyu Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Haitao Li
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao, China
| | - Yewei Sun
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Wei Cui
- School of Medicine, Ningbo University , Zhejiang, 315211 China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| | - Yifan Han
- Department of Applied Biology and Chemical Technology, Institute of Modern Chinese Medicine, The Hong Kong Polytechnic University , Hung Hom, Hong Kong, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research of Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau , Taipa, Macao, China
| | - Zaijun Zhang
- Institute of New Drug Research and Guangzhou Key Laboratory of Innovative Chemical Drug Research in Cardio-cerebrovascular Diseases, Jinan University College of Pharmacy , Guangzhou, 510632 China
| |
Collapse
|
35
|
Amr AEGE, Omar MAA, Abdalla MM. Monoamino Oxidase Inhibitors Activities of Some Synthesized 2,6-bis (Tetracarboxamide)-pyridine and Macrocyclic Octacarboxamide Derivatives. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.66.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
36
|
Propargylamine as functional moiety in the design of multifunctional drugs for neurodegenerative disorders: MAO inhibition and beyond. Future Med Chem 2016; 7:609-29. [PMID: 25921401 DOI: 10.4155/fmc.15.12] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Much progress has been made in designing analogues that can potentially confer neuroprotection against debilitating neurodegenerative disorders, yet the multifactorial pathogenesis of this cluster of diseases remains a stumbling block for the successful design of an 'ultimate' drug. However, with the growing popularity of the "one drug, multiple targets" paradigm, many researchers have successfully synthesized and evaluated drug-like molecules incorporating a propargylamine function that shows potential to serve as multifunctional drugs or multitarget-directed ligands. It is the aim of this review to highlight the reported activities of these propargylamine derivatives and their prospect to serve as drug candidates for the treatment of neurodegenerative disorders.
Collapse
|
37
|
Kumar B, Sheetal S, Mantha AK, Kumar V. Recent developments on the structure–activity relationship studies of MAO inhibitors and their role in different neurological disorders. RSC Adv 2016. [DOI: 10.1039/c6ra00302h] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Development of MAO inhibitors as effective drug candidates for the management and/or treatment of different neurological disorders.
Collapse
Affiliation(s)
- Bhupinder Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Sheetal Sheetal
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| | - Anil K. Mantha
- Centre for Animal Sciences
- School of Basic and Applied Sciences
- Central University of Punjab
- Bathinda
- India
| | - Vinod Kumar
- Laboratory of Organic and Medicinal Chemistry
- Centre for Pharmaceutical Sciences and Natural Products
- Central University of Punjab
- Bathinda
- India-151001
| |
Collapse
|
38
|
Matos MJ, Rodríguez-Enríquez F, Borges F, Santana L, Uriarte E, Estrada M, Rodríguez-Franco MI, Laguna R, Viña D. 3-Amidocoumarins as Potential Multifunctional Agents against Neurodegenerative Diseases. ChemMedChem 2015; 10:2071-9. [PMID: 26493007 DOI: 10.1002/cmdc.201500408] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/13/2015] [Indexed: 01/23/2023]
Abstract
Monoamine oxidase (MAO) generates reactive oxygen species (ROS), which cause neuronal cell death, causing neurodegeneration. Agents that are able to concurrently inhibit MAO and scavenge free radicals represent promising multifunctional neuroprotective agents that could be used to delay or slow the progression of neurodegenerative diseases. In this work, variously substituted 3-amidocoumarins are described that exert neuroprotection in vitro against hydrogen peroxide in rat cortical neurons, as well as antioxidant activity in a 1,1-diphenyl-2-picrylhydrazyl (DPPH⋅) radical scavenging assay. Selective and reversible inhibitors of the MAO-B isoform were identified. Interestingly, in the case of the 3-benzamidocoumarins, substitution at position 4 with a hydroxy group abolishes MAO-B activity, but the compounds remain active in the neuroprotection model. Further evaluation of 3-heteroarylamide derivatives indicates that it is the nature of the heterocycle that determines the neuroprotective effects. Evaluation in a parallel artificial membrane permeability assay (PAMPA) highlighted the need to further improve the blood-brain barrier permeability of this compound class. However, the compounds described herein adhere to Lipinski's rule of five, suggesting that this novel scaffold has desirable properties for the development of potential drug candidates.
Collapse
Affiliation(s)
- Maria João Matos
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Fernanda Rodríguez-Enríquez
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernanda Borges
- CIQUP/Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.
| | - Lourdes Santana
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Eugenio Uriarte
- Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Estrada
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - María Isabel Rodríguez-Franco
- Instituto de Química Médica, Consejo Superior de Investigaciones Científicas (IQM-CSIC), C/Juan de la Cierva 3, 28006, Madrid, Spain
| | - Reyes Laguna
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Dolores Viña
- Departamento de Farmacología, CIMUS, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
39
|
Abstract
Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.
Collapse
Affiliation(s)
- Simone Carradori
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romano Silvestri
- Dipartimento Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma , Piazzale Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
40
|
Potent and selective MAO-B inhibitory activity: Amino- versus nitro-3-arylcoumarin derivatives. Bioorg Med Chem Lett 2015; 25:642-8. [DOI: 10.1016/j.bmcl.2014.12.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/01/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022]
|
41
|
Costa M, Rodrigues AI, Proença F. Synthesis of 3-aminochromenes: the Zincke reaction revisited. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.05.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Delogu GL, Serra S, Quezada E, Uriarte E, Vilar S, Tatonetti NP, Viña D. Monoamine Oxidase (MAO) Inhibitory Activity: 3-Phenylcoumarins versus 4-Hydroxy-3-phenylcoumarins. ChemMedChem 2014; 9:1672-6. [DOI: 10.1002/cmdc.201402010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Indexed: 01/14/2023]
|
43
|
Xiang H, Chen J, Miao Z, Yang C. Cascade synthesis of novel functionalized pyridine-fused coumarins in aqueous medium. RSC Adv 2014. [DOI: 10.1039/c4ra01848f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
44
|
Synthesis, pharmacological study and docking calculations of new benzo[f]coumarin derivatives as dual inhibitors of enzymatic systems involved in neurodegenerative diseases. Future Med Chem 2014; 6:371-83. [DOI: 10.4155/fmc.14.9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Due to the complex etiology of neurodegenerative diseases, there is growing interest in multitarget drugs. In this study we synthesized and evaluated a new series of compounds, with benzo[f]coumarin structure, as potential inhibitors of MAO-A, MAO-B, AChE and BuChE. Results: In vitro studies show that most of the studied compounds inhibited the activity of MAO-B in the nano- to micro-molar range. 3-(3´-methoxyphenyl)benzo[f]coumarin is the most active compound with an IC50 value against MAO-B of 2.44 nM. Most of the derivatives exhibited an important selectivity profile against the MAO-B isoform. Some of them also acted as in vitro inhibitors of BuChE, with 3-(2´-hydroxyphenyl)benzo[f]coumarin being the most active with an IC50 value of 1.13 µM. In addition, a theoretical study of the physicochemical properties of the new compounds, as well as a docking study in both MAO isoforms, were carried out. Important structure–activity relationships were obtained. Conclusion: Important preliminary structure–activity relationships were concluded from the experimental results. These results encourage us to further explore the potential of this chemical family as potential drug candidates for the treatment of Alzheimer‘s disease.
Collapse
|
45
|
Bonaiuto E, Milelli A, Cozza G, Tumiatti V, Marchetti C, Agostinelli E, Fimognari C, Hrelia P, Minarini A, Di Paolo ML. Novel polyamine analogues: From substrates towards potential inhibitors of monoamine oxidases. Eur J Med Chem 2013; 70:88-101. [DOI: 10.1016/j.ejmech.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 01/12/2023]
|
46
|
Ferino G, Cadoni E, Matos MJ, Quezada E, Uriarte E, Santana L, Vilar S, Tatonetti NP, Yáñez M, Viña D, Picciau C, Serra S, Delogu G. MAO Inhibitory Activity of 2-Arylbenzofurans versus 3-Arylcoumarins: Synthesis, in vitro Study, and Docking Calculations. ChemMedChem 2013; 8:956-66. [DOI: 10.1002/cmdc.201300048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/02/2013] [Indexed: 01/03/2023]
|