1
|
Cai C, Yang D, Cao Y, Peng Z, Wang Y, Xi J, Yan C, Li X. Anticancer potential of active alkaloids and synthetic analogs derived from marine invertebrates. Eur J Med Chem 2024; 279:116850. [PMID: 39270448 DOI: 10.1016/j.ejmech.2024.116850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
In recent years, the number of cancers has soared, becoming one of the leading causes of human death. At the same time, marine anticancer substances have been the focus of marine drug research. Marine alkaloids derived from marine invertebrates like sponges are an important class of secondary metabolites, which have good bioactivities of blocking the cancer cell cycle, inducing autophagy and apoptosis of cancer cells, inhibiting cancer cell invasion and proliferation. They show potential as anticancer drug candidates. Therefore, in this review, we focus on the detailed introduction of bioactive alkaloids and their synthetic analogs from marine invertebrates, such as 4-chloro fascapysin and other 41 kinds of marine alkaloids or marine alkaloid synthetic analogs. They have significant anticancer activities on breast cancer, cervical cancer, colorectal cancer, prostate cancer, lung cancer, liver cancer, and so on. It provides new candidate compounds for anticancer drug research and provides a reference basis for marine drug resources research.
Collapse
Affiliation(s)
- Chunyan Cai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dejun Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zhaolei Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yulin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jingjing Xi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chunmei Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Panggabean JA, Adiguna SP, Murniasih T, Rahmawati SI, Bayu A, Putra MY. Structure-Activity Relationship of Cytotoxic Natural Products from Indonesian Marine Sponges. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 32:12-38. [PMID: 35034994 PMCID: PMC8740879 DOI: 10.1007/s43450-021-00195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Indonesian marine natural products have been one of the most promising sources in the race to obtain potential drugs for cancer treatment. One of the primary producers of cytotoxic compounds is sponges. However, there are still limited sources of comprehensive reviews related to the relationship between the structure of isolated compounds and their cytotoxic activity. This review remarks the attempt to provide a preliminary guidance from the perspective of structure-activity relationship and its participation on marine natural products research. This guidance is segregated by the compound's classes and their cytotoxic targets to obtain and organized a reliable summary of inter-study of the isolated compounds and their cytotoxicity. Structure-activity relationship is well-known for its ability to tune the bioactivity of a specific compound, especially on synthetic organic chemistry and in silico study but rarely used on natural product chemistry. The present review is intended to narrow down the endless possibilities of cytotoxicity by giving a predictable structure-activity relationship for active compounds. In addition, bioactive framework leads were selected by uncovering a noticeable structure-activity relationship with the intervention of cytotoxic agents from natural sources, especially Indonesian marine sponge. Graphical abstract
Collapse
Affiliation(s)
- Jonathan A. Panggabean
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Sya’ban P. Adiguna
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Tutik Murniasih
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Siti I. Rahmawati
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Asep Bayu
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| | - Masteria Y. Putra
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Jalan Raya Jakarta-Bogor KM. 46, Cibinong, Jawa Barat 16911 Bogor, Indonesia
| |
Collapse
|
3
|
Design and Synthesis of Anti-Cancer Chimera Molecules Based on Marine Natural Products. Mar Drugs 2019; 17:md17090500. [PMID: 31461968 PMCID: PMC6780274 DOI: 10.3390/md17090500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022] Open
Abstract
In this paper, the chemical conjugation of marine natural products with other bioactive molecules for developing an advanced anti-cancer agent is described. Structural complexity and the extraordinary biological features of marine natural products have led to tremendous research in isolation, structural elucidation, synthesis, and pharmacological evaluation. In addition, this basic scientific achievement has made it possible to hybridize two or more biologically important skeletons into a single compound. The hybridization strategy has been used to identify further opportunities to overcome certain limitations, such as structural complexity, scarcity problems, poor solubility, severe toxicity, and weak potency of marine natural products for advanced development in drug discovery. Further, well-designed marine chimera molecules can function as a platform for target discovery or degradation. In this review, the design, synthesis, and biological evaluation of recent marine chimera molecules are presented.
Collapse
|
4
|
Akhila VR, Priya MR, Sherin DR, Krishnapriya GK, Keerthi SV, Manojkumar TK, Rajasekharan KN. Mechanochemical Synthesis, in vitro Evaluation and Molecular Docking Studies of 4-Amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles as Antidiabetic Agents. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180815124425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of
2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and
computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano
chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase
and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50
value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose
were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α-
glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5-
(benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and
-8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.
Collapse
Affiliation(s)
- Vijayan R. Akhila
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Maheswari R. Priya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Daisy R. Sherin
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Girija K. Krishnapriya
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Sreerekha V. Keerthi
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| | - Thanathu K. Manojkumar
- Centre for Computational Modeling and Data Engineering, Indian Institute of Information Technology and Management- Kerala, Thiruvananthapuram 695 581, Kerala, India
| | - Kallikat N. Rajasekharan
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695 581, Kerala, India
| |
Collapse
|
5
|
Wang Y, Wu C, Zhang Q, Shan Y, Gu W, Wang S. Design, synthesis and biological evaluation of novel β-pinene-based thiazole derivatives as potential anticancer agents via mitochondrial-mediated apoptosis pathway. Bioorg Chem 2018; 84:468-477. [PMID: 30576910 DOI: 10.1016/j.bioorg.2018.12.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/27/2018] [Accepted: 12/08/2018] [Indexed: 11/25/2022]
Abstract
A series of novel β-pinene-based thiazole derivatives were synthesized and characterized by HRMS, 1H NMR, and 13C NMR analyses as potential antineoplastic agents. Derivatives were evaluated for their anticancer activities in vitro, and the data manifested that most target compounds showed potent anti-proliferative activities against three human cancer cell lines. Especially, compound 5g displayed excellent cytotoxic activity against Hela, CT-26, and SMMC-7721 cell lines with IC50 values of 3.48 ± 0.14, 8.84 ± 0.16, and 6.69 ± 0.15 µM, respectively. To determine the underlying mechanism of compound 5g on cell viability, DAPI staining, Annexin-V/PI staining, JC-1 staining, DCFDA staining, and Western blot analysis were performed. Our data showed that compound 5g inhibited cell proliferation by inducing apoptosis and cell cycle arrest of Hela cells at the G0/G1 phase in a dose dependent manner. Further studies revealed that compound 5g enhanced levels of reactive oxygen species (ROS), caused a decrease in mitochondrial membrane potential, increased the release of mitochondrial cytochrome C, and affected the expression of Bax, Bcl-2, caspase-3 and caspase-9. Thus, our findings indicated that compound 5g induced apoptosis in Hela through ROS-mediated mitochondrial dysfunction signaling pathways.
Collapse
Affiliation(s)
- Yunyun Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Chenliang Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Qiangjian Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yu Shan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, PR China
| | - Wen Gu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shifa Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
6
|
Choudhary S, Singh PK, Verma H, Singh H, Silakari O. Success stories of natural product-based hybrid molecules for multi-factorial diseases. Eur J Med Chem 2018; 151:62-97. [PMID: 29605809 DOI: 10.1016/j.ejmech.2018.03.057] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
Complex diseases comprises of highly complicated etiology resulting in limited applicability of conventional targeted therapies. Consequently, conventional medicinal compounds suffer major failure when used for such disease conditions. Additionally, development of multidrug resistance (MDR), adverse drug reactions and clinical specificity of single targeted drug therapy has increased thrust for novel drug therapy. In this rapidly evolving era, natural product-based discovery of hybrid molecules or multi-targeted drug therapies have shown promising results and are trending now a days. Historically, nature has blessed human with different sources viz. plant, animal, microbial, marine and ethnopharmaceutical sources which has given a wide variety of medicinally active compounds. These compounds from natural origin are always choice of interest of medicinal chemists because of their minimum side effects. Hybrid molecules synthesized by fusing or conjugating different active molecules obtained from these sources are reported to synergistically block different pathways which contribute in the pathogenesis of complex diseases. This review strives to encompass all natural product-derived hybrid molecules which act as multi-targeting agents striking various targets involved in different pathways of complex diseased conditions reported in literature.
Collapse
Affiliation(s)
- Shalki Choudhary
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Pankaj Kumar Singh
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | - Himanshu Verma
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India
| | | | - Om Silakari
- Molecular Modelling Lab (MML), Department of Pharmaceutical Sciences and Drug research, Punjabi University, Patiala, Punjab, 147002, India.
| |
Collapse
|
7
|
Wu X, Chen J, Cao Y, Xie B, Li H, Zhou P, Qiu Y, Pang J. Antitumor effect of COOH-terminal polypeptide of human TERT is associated with the declined expression of hTERT and NF-κB p65 in HeLa cells. Oncol Rep 2015; 34:2909-16. [PMID: 26398300 DOI: 10.3892/or.2015.4298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 07/03/2015] [Indexed: 11/06/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) plays an important role in the development of tumors and has been investigated as a potent target for anticancer therapy. In the present study, we constructed a recombinant adenovirus, Ad-EGFP-C197 which was capable of expressing COOH‑terminal polypeptide of hTERT (amino acid 936-1,132, termed as C197 for the reason that it contains 197 amino acids). Infection of HeLa cells with Ad-EGFP-C197 suppressed the activity of telomerase, decreased the expression of hTERT and NF-κB p65, and induced rapid growth delay and apoptosis of HeLa cells in vitro. In nude mice xenografted with HeLa tumors, injection of Ad-EGFP-C197 into the tumor nodule significantly slowed tumor growth and promoted tumor cell apoptosis, as well as reduced the expression of NF-κB p65 in tumor tissues. In the present study, we suggest that the antitumor effect of C197 is associated with the declined expression of hTERT and NF-κB p65. Our results highlight the potential of C197 in tumor therapy.
Collapse
Affiliation(s)
- Xian Wu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jiasheng Chen
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Cao
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Baoping Xie
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Hongwei Li
- School of Biotechnology, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Pingzheng Zhou
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Yuchang Qiu
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| | - Jianxin Pang
- Center for Drug Evaluation and Research, School of Pharmaceutical Sciences, Southern Medical University, Baiyun, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Raghavan S, Manogaran P, Gadepalli Narasimha KK, Kalpattu Kuppusami B, Mariyappan P, Gopalakrishnan A, Venkatraman G. Synthesis and anticancer activity of novel curcumin-quinolone hybrids. Bioorg Med Chem Lett 2015; 25:3601-5. [PMID: 26174555 DOI: 10.1016/j.bmcl.2015.06.068] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 06/04/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
A number of new curcumin-quinolone hybrids were synthesised from differently substituted 3-formyl-2-quinolones and vanillin and their in vitro cytotoxicity was determined on a panel of representative cell lines (A549, MCF7, SKOV3 and H460) using MTT assay. The most potent compound 14, was analysed for its mode of action using various cell biology experiments. SKOV3 cells treated with compound 14 showed distorted cell morphology under phase contrast imaging and induction of apoptosis was confirmed by Annexin V/PE assay. Further experiments on generation of reactive oxygen species (ROS) and cell cycle analysis revealed that these hybrids induce apoptosis by ROS generation and arrest cell cycle progression in S and G2/M phase.
Collapse
Affiliation(s)
- Saiharish Raghavan
- Department of Medicinal Chemistry, Sri Ramachandra University, Chennai 600 116, India
| | - Prasath Manogaran
- Department of Human Genetics, Sri Ramachandra University, Chennai 600 116, India
| | | | | | - Palanivelu Mariyappan
- Department of Medicinal Chemistry, Sri Ramachandra University, Chennai 600 116, India
| | | | - Ganesh Venkatraman
- Department of Human Genetics, Sri Ramachandra University, Chennai 600 116, India.
| |
Collapse
|
9
|
Teiten MH, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules 2014; 19:20839-63. [PMID: 25514225 PMCID: PMC6271749 DOI: 10.3390/molecules191220839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 01/09/2023] Open
Abstract
Cancer is a multifactorial disease that requires treatments able to target multiple intracellular components and signaling pathways. The natural compound, curcumin, was already described as a promising anticancer agent due to its multipotent properties and huge amount of molecular targets in vitro. Its translation to the clinic is, however, limited by its reduced solubility and bioavailability in patients. In order to overcome these pharmacokinetic deficits of curcumin, several strategies, such as the design of synthetic analogs, the combination with specific adjuvants or nano-formulations, have been developed. By taking into account the risk-benefit profile of drug combinations, as well as the knowledge about curcumin's structure-activity relationship, a new concept for the combination of curcumin with scaffolds from different natural products or components has emerged. The concept of a hybrid curcumin molecule is based on the incorporation or combination of curcumin with specific antibodies, adjuvants or other natural products already used or not in conventional chemotherapy, in one single molecule. The high diversity of such conjugations enhances the selectivity and inherent biological activities and properties, as well as the efficacy of the parental compound, with particular emphasis on improving the efficacy of curcumin for future clinical treatments.
Collapse
Affiliation(s)
- Marie-Hélène Teiten
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Mario Dicato
- Laboratory of Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, 9, Rue Edward Steichen, Luxembourg L-2540, Luxembourg.
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
10
|
Gupta SC, Tyagi AK, Deshmukh-Taskar P, Hinojosa M, Prasad S, Aggarwal BB. Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 2014; 559:91-9. [DOI: 10.1016/j.abb.2014.06.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 06/03/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023]
|
11
|
A ruthenium(II) complex capable of inducing and stabilizing bcl-2 G-quadruplex formation as a potential cancer inhibitor. J Inorg Biochem 2014; 134:1-11. [DOI: 10.1016/j.jinorgbio.2013.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 12/12/2013] [Accepted: 12/13/2013] [Indexed: 11/24/2022]
|
12
|
Luo L, Meng L, Sun Q, Ge Z, Li R. NBS-mediated sequential one-pot synthesis of multifunctionalized thiazoles and thiophenes from 1,3-dicarbonyl compounds and mercaptonitrile salts. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2013.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|