1
|
Luo Y, Zhang Y, Liu M, Wang X, Wan Y, Cao S. Photoredox/Copper-Cocatalyzed Domino Annulation of Oxime Esters and NH 4SCN: Access to Fully Substituted 2-Aminothiazoles. J Org Chem 2024; 89:15187-15196. [PMID: 39370928 DOI: 10.1021/acs.joc.4c01951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domino cyclization of oxime esters and NH4SCN facilitated by photoredox and copper cocatalysis has been established. Various structurally diverse fully substituted 2-aminothiazoles have been obtained in good yields at room temperature. It is featured by mild conditions, favorable functional group tolerance, and wide substrate scope. The present reaction is amenable to gram-scale synthesis, which is expected to find potential applications in organic synthesis and drug discovery. A plausible reaction mechanism is proposed.
Collapse
Affiliation(s)
- Yongyan Luo
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yanyan Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mengting Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiaozhen Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Shujun Cao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
2
|
Tumakuru Nagarajappa L, Ravi Singh K, Kabuyaya Isamura B, Vinay Kumar KS, Mandayam Anandalwar S, Sadashiva MP. SARS-CoV-2 Mpro binding profile and drug-likeness of two novel thiazole derivatives: structural elucidation, DFT studies, ADME-T and molecular docking simulations. J Biomol Struct Dyn 2023; 41:11122-11136. [PMID: 36576177 DOI: 10.1080/07391102.2022.2159880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022]
Abstract
Two novel thiazole derivatives, ethyl 5-((4-fluorophenyl)carbamoyl)-thiazole-4-carboxylate (2b) and ethyl 5-(p-tolylcarbamoyl)thiazole-4-carboxylate (6b) have been synthesized, and their crystal structures determined by X-ray diffraction. To rationalize their structure, reactivity and druggability, we have performed a series of separate, but complementary studies. Hirshfeld surface and 2D-fingerprint plots were first scrutinized to qualitatively unveil all the intermolecular interactions that ensure their crystal packing. Moreover, topological electron density parameters established from the quantum theory of atoms-in-molecules (QTAIM) and Reduced Density Gradient (RDG) were later relied on to characterize the chemical bonding of these species, in terms of the nature and magnitude of noncovalent interactions developed within their monomeric and dimeric forms. In both structures, C-H…O hydrogen bonds are found to be stronger than other noncovalent interactions. Furthermore, H…H bonding contacts and non-conventional C-H…O hydrogen bonds both exhibit a closed shell nature, and play in crucial role in the stability of the novel thiazoles. The isosurfaces in the intermolecular region furnished by NCI molecular diagram signifies the existence of weak noncovalent interactions. Finally, the potential inhibitory activity of the titled compounds and their drug-likeness are demonstrated by molecular docking and ADME-T calculations respectively. Both compounds adhere to the Lipinski's rule of five and present encouraging pharmacokinetic properties and safety profiles.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Krishna Ravi Singh
- Department of Studies in Chemistry, University of Mysore, Mysuru, Karnataka, India
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, The University of Manchester, Manchester, United Kingdom
- Research Center for Theoretical Chemistry and Physics, Faculty of Science, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | | | | |
Collapse
|
3
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
4
|
Suresh RR, Gao ZG, Salmaso V, Chen E, Campbell RG, Poe RB, Liston TE, Jacobson KA. Selective A 3 Adenosine Receptor Antagonist Radioligand for Human and Rodent Species. ACS Med Chem Lett 2022; 13:623-631. [PMID: 35450351 PMCID: PMC9014498 DOI: 10.1021/acsmedchemlett.1c00685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
The A3 adenosine receptor (A3AR) is a target for pain, ischemia, and inflammatory disease therapy. Among the ligand tools available are selective agonists and antagonists, including radioligands, but most high-affinity non-nucleoside antagonists are limited in selectivity to primate species. We have explored the structure-activity relationship of a previously reported A3AR antagonist DPTN 9 (N-[4-(3,5-dimethylphenyl)-5-(4-pyridyl)-1,3-thiazol-2-yl]nicotinamide) for radiolabeling, including 3-halo derivatives (3-iodo, MRS7907), and characterized 9 as a high -affinity radioligand [3H]MRS7799. A3AR K d values were (nM): 0.55 (human), 3.74 (mouse), and 2.80 (rat). An extended methyl acrylate (MRS8074, 19) maintained higher affinity (18.9 nM) than a 3-((5-chlorothiophen-2-yl)ethynyl) derivative 20. Compound 9 had an excellent brain distribution in rats (brain/plasma ratio ∼1). Receptor docking predicted its orthosteric site binding by engaging residues that were previously found to be essential for AR binding. Thus the new radioligand promises to be a useful species-general antagonist tracer for receptor characterization and drug discovery.
Collapse
Affiliation(s)
- R. Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Eric Chen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Ryan G. Campbell
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Russell B. Poe
- Astrocyte Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Theodore E. Liston
- Astrocyte Pharmaceuticals, Cambridge, Massachusetts 02142, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| |
Collapse
|
5
|
RAVI SINGH K, Santhosh C, Swaroop TR, Sadashiva MP. Regioselective synthesis of 2,5- and 4,5-disubstituted thiazoles via cyclization of 2-oxo-2-(amino)ethanedithioates with isocyanides. Org Biomol Chem 2022; 20:5771-5778. [DOI: 10.1039/d2ob00837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective synthesis of 2-(methylthio)-N-aryl/alkylthiazole-5-carboxamides and ethyl-5-(aryl/alkyl carbamoyl)thiazole-4-carboxylates by base induced cyclization of methyl-2-oxo-2-(amino)ethanedithioates with TosMIC and ethylisocyanoacetate respectively in high yield. The regioisomeric product was confirmed by X-ray diffraction...
Collapse
|
6
|
Zhang Z, Shu B, Zhang Y, Deora GS, Li QS. 2,4,5-Trisubstituted Thiazole: A Privileged Scaffold in Drug Design and Activity Improvement. Curr Top Med Chem 2020; 20:2535-2577. [DOI: 10.2174/1568026620999200917153856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Thiazole is an important 5-membered heterocyclic compound containing nitrogen and sulfur
atoms with various pharmaceutical applications including anti-inflammatory, anti-cancer, anti-viral, hypoglycemic,
anti-bacterial and anti-fungal activities. Until now, the FDA-approved drugs containing thiazole
moiety have achieved great success such as dasatinib and dabrafenib. In recent years, considerable
research has been focused on thiazole derivatives, especially 2,4,5-trisubstituted thiazole derivatives,
due to their multiple medicinal applications. This review covers related literature in the past 20 years,
which reported the 2,4,5-trisubstituted thiazole as a privileged scaffold in drug design and activity improvement.
Moreover, this review aimed to provide greater insights into the rational design of more potent
pharmaceutical molecules based on 2,4,5-trisubstituted thiazole in the future.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| | - Bing Shu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450018, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| |
Collapse
|
7
|
Abdelrahman A, Yerande SG, Namasivayam V, Klapschinski TA, Alnouri MW, El-Tayeb A, Müller CE. Substituted 4-phenylthiazoles: Development of potent and selective A1, A3 and dual A1/A3 adenosine receptor antagonists. Eur J Med Chem 2020; 186:111879. [DOI: 10.1016/j.ejmech.2019.111879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022]
|
8
|
Abdel‐Latif E, Almatari AS, Abd‐ElGhani GE. Synthesis and Antibacterial Evaluation of Some New Thiazole‐Based Polyheterocyclic Ring Systems. J Heterocycl Chem 2019; 56:1978-1985. [DOI: 10.1002/jhet.3577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/24/2019] [Indexed: 09/02/2023]
Affiliation(s)
- Ehab Abdel‐Latif
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| | - Altaf S. Almatari
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| | - Ghada E. Abd‐ElGhani
- Department of Chemistry, Faculty of ScienceUniversity of Mansoura Mansoura 35516 Egypt
| |
Collapse
|
9
|
Tong W, Li WH, He Y, Mo ZY, Tang HT, Wang HS, Pan YM. Palladium-Metalated Porous Organic Polymers as Recyclable Catalysts for the Chemioselective Synthesis of Thiazoles from Thiobenzamides and Isonitriles. Org Lett 2018; 20:2494-2498. [PMID: 29620903 DOI: 10.1021/acs.orglett.8b00886] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two types of thiazole derivatives are synthesized through a multistep cascade sequence with Pd-metalated phosphorus-doped porous organic polymers (POPs) as heterogeneous catalysts. The POPs could be used as both ligands and catalyst supports. No obvious aggregation and loss of any catalytic activity of the catalysts were observed after 10 runs of the reaction. More importantly, imidazo[4,5- d]thiazoles, which are a new class of thiazole derivatives, could be obtained through K2CO3-promoted intramolecular cyclization of the synthesized polysubstituted thiazoles. Furthermore, the in vitro anticancer activity of these new compounds were tested with MTT assay, and compound 4b exhibited good antitumor activity toward T-24 and A549 cells with IC50 values of 10.3 ± 0.8 and 11.8 ± 0.5 μM, respectively. In addition, the action mechanism of 4b on tumor cells was determined.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Wen-Hao Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Yan He
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University , Guilin 541004 , People's Republic of China
| |
Collapse
|
10
|
Pandya AN, Baraiya AB, Jalani HB, Pandya D, Kaila JC, Kachler S, Salmaso V, Moro S, Klotz KN, Vasu KK. Discovery of 2-aminoimidazole and 2-amino imidazolyl-thiazoles as non-xanthine human adenosine A 3 receptor antagonists: SAR and molecular modeling studies. MEDCHEMCOMM 2018; 9:676-684. [PMID: 30108958 DOI: 10.1039/c7md00643h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/27/2018] [Indexed: 01/07/2023]
Abstract
A small-molecule combinatorial library of 24 compounds with 2-aminoimidazole and 2-aminoimidazolyl-thiazole derivatives was synthesized using a 2-chloro trityl resin. The generated compound library was tested against all the human adenosine receptors subtypes. The 2-aminoimidazole derivatives (6a-6l) showed weak to moderate affinity towards the human adenosine receptors. Further modification to 2-aminoimidazolyl-thiazole derivatives (12a-12l) resulted in an improvement of affinity at adenosine A1, A2A and A3 receptor subtypes. Compound 12b was the most potent and selective non-xanthine human adenosine A3 receptor antagonist of this series. A receptor-based modeling study was performed to explore the possible binding mode of these novel 2-aminoimidazole and 2-aminoimidazolyl-thiazole derivatives into human adenosine A1, A2A and A3 receptor subtypes.
Collapse
Affiliation(s)
- Amit N Pandya
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| | - Arshi B Baraiya
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| | - Hitesh B Jalani
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| | - Dhaivat Pandya
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| | - Jitendra C Kaila
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie , Julius-Maximilians-Universität Würzburg , Germany
| | - Veronica Salmaso
- Molecular Modeling Section (MMS) , Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo 5 , 35131 Padova , Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS) , Dipartimento di Scienze Farmaceutiche , Università degli Studi di Padova , via Marzolo 5 , 35131 Padova , Italy
| | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie , Julius-Maximilians-Universität Würzburg , Germany
| | - Kamala K Vasu
- Department of Medicinal Chemistry , B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre , Sarkej-Gandhinagar Highway, Thaltej , Ahmedabad 380e054 , Gujarat , India . ;
| |
Collapse
|
11
|
Lei WL, Wang T, Feng KW, Wu LZ, Liu Q. Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by In Situ Generated Copper Photocatalyst. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02818] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wen-Long Lei
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Tao Wang
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Kai-Wen Feng
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qiang Liu
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Shinde V, Mahulikar P, Mhaske PC, Nawale L, Sarkar D. Synthesis and biological evaluation of new 2-aryl-4-((4-aryl-1H-1,2,3-triazol-1-yl)methyl)thiazole derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3164-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Synthesis, antimycobacterial screening and molecular docking studies of 4-aryl-4′-methyl-2′-aryl-2,5′-bisthiazole derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1988-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Abhale YK, Shinde A, Deshmukh KK, Nawale L, Sarkar D, Mhaske PC. Synthesis, antitubercular and antimicrobial potential of some new thiazole substituted thiosemicarbazide derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1955-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Abhale YK, Sasane AV, Chavan AP, Shekh SH, Deshmukh KK, Bhansali S, Nawale L, Sarkar D, Mhaske PC. Synthesis and antimycobacterial screening of new thiazolyl-oxazole derivatives. Eur J Med Chem 2017; 132:333-340. [DOI: 10.1016/j.ejmech.2017.03.065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/24/2017] [Accepted: 03/25/2017] [Indexed: 12/27/2022]
|
16
|
Chen XB, Wang XQ, Song JN, Yang QL, Huang C, Liu W. Efficient construction of C–N and C–S bonds in 2-iminothiazoles via cascade reaction of enaminones with potassium thiocyanate. Org Biomol Chem 2017; 15:3611-3615. [DOI: 10.1039/c7ob00306d] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regioselective cascade reactions have been developed by using enaminones and potassium thiocyanate, offering a novel protocol for the synthesis of thiazoles from enaminones.
Collapse
Affiliation(s)
- Xue-Bing Chen
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Xue-Quan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Jia-Na Song
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Qing-Li Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| | - Chao Huang
- School of Chemistry and Environment
- Engineering Research Center of Biopolymer Functional Materials of Yunnan
- Yunnan Minzu University
- Kunming
- China
| | - Wei Liu
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province
- School of Science Honghe
- University Mengzi
- China
| |
Collapse
|
17
|
Zhao D, Guo S, Guo X, Zhang G, Yu Y. Facile, efficient synthesis of polysubstituted thiazoles via α-nitroepoxides and thioureas. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Rajaguru K, Mariappan A, Muthusubramanian S, Bhuvanesh N. The Annulation of Vinyl Azides with Potassium Ethyl Xanthogenate: A Straightforward Synthesis of Thiazole-2(3H)-thiones. ChemistrySelect 2016. [DOI: 10.1002/slct.201600328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kandasamy Rajaguru
- Department of organic chemistry, School of chemistry; Madurai Kamaraj University; Madurai-620 021 India
| | - Arumugam Mariappan
- Department of organic chemistry, School of chemistry; Madurai Kamaraj University; Madurai-620 021 India
| | | | - Nattamai Bhuvanesh
- X-ray Diffraction Laboratory, Department of Chemistry; Texas A & M University, College Station; Texas 77842 USA
| |
Collapse
|
19
|
Chen B, Guo S, Guo X, Zhang G, Yu Y. Selective Access to 4-Substituted 2-Aminothiazoles and 4-Substituted 5-Thiocyano-2-aminothiazoles from Vinyl Azides and Potassium Thiocyanate Switched by Palladium and Iron Catalysts. Org Lett 2016; 17:4698-701. [PMID: 26372853 DOI: 10.1021/acs.orglett.5b02152] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A highly selective construction of 4-substituted 2-aminothiazoles and 4-substituted 5-thiocyano-2-aminothiazoles, respectively, catalyzed by palladium(II) acetate and promoted by iron(III) bromide from vinyl azides and potassium thiocyanate has been developed. Use of readily available starting materials, high selectivity, as well as mild reaction conditions make this practical method particularly attractive.
Collapse
Affiliation(s)
- Binhui Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Shanshan Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Xiao Guo
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Guolin Zhang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| | - Yongping Yu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, P. R. China
| |
Collapse
|
20
|
Inhibitors of membranous adenylyl cyclases with affinity for adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:349-52. [PMID: 26660072 DOI: 10.1007/s00210-015-1197-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 10/22/2022]
Abstract
Membrane-bound adenylyl cyclases constitute an interesting therapeutic target for various diseases that affect a large number of patients including asthma or congestive heart failure. Many inhibitors of adenylyl cyclases are competitive inhibitors at the ATP binding site and may, therefore, also interact with one or several of numerous ATP-binding proteins other than adenylyl cyclases. Several such inhibitors also show structural similarity to adenosine receptor ligands, providing a risk for side effects mediated by an unwanted interaction with these receptors. We have investigated a potential specific binding of four representative adenylyl cyclase inhibitors and found binding with pharmacologically relevant affinity to A1 and A2A receptors for NKY80 (2-amino-7-(2-furanyl)-7,8-dihydro-5(6H)-quinazolinone) and SQ22,536 (9-(tetrahydro-2-furanyl)-9H-purin-6-amine). These results underscore the importance to consider potential side effects mediated via adenosine receptors in the development of potent and specific inhibitors of adenylyl cyclases.
Collapse
|
21
|
Pandya DH, Sharma JA, Jalani HB, Pandya AN, Sudarsanam V, Kachler S, Klotz KN, Vasu KK. Novel thiazole-thiophene conjugates as adenosine receptor antagonists: synthesis, biological evaluation and docking studies. Bioorg Med Chem Lett 2015; 25:1306-9. [PMID: 25686851 DOI: 10.1016/j.bmcl.2015.01.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 11/17/2022]
Abstract
Here we report novel thiazole-thiophene conjugates as adenosine receptor antagonists. All the molecules were evaluated for their binding affinity for adenosine receptors. Most of the molecules were found to interact with the A1, A2A and A3 adenosine receptor subtypes with good affinity values. The most potent and selective compound 8n showed an A3Ki value of 0.33μM with selectivity ratios of >90 versus the A1 and >30 versus the A2 subtypes. For compound 8n docking studies into the binding site of the A3 adenosine receptor are provided to visualize its binding mode.
Collapse
Affiliation(s)
- Dhaivat H Pandya
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India
| | - Jayesh A Sharma
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India
| | - Hitesh B Jalani
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India
| | - Amit N Pandya
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India
| | - V Sudarsanam
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India
| | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Karl Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Germany
| | - Kamala K Vasu
- Department of Medicinal Chemistry, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Sarkhej-Gandhinagar Highway, Thaltej, Ahmedabad 380 054, Gujarat, India.
| |
Collapse
|
22
|
Thiazole: a promising heterocycle for the development of potent CNS active agents. Eur J Med Chem 2014; 92:1-34. [PMID: 25544146 DOI: 10.1016/j.ejmech.2014.12.031] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/10/2014] [Accepted: 12/18/2014] [Indexed: 01/15/2023]
Abstract
Thiazole is a valuable scaffold in the field of medicinal chemistry and has accounted to display a variety of biological activities. Thiazole and its derivatives have attracted continuing interest to design various novel CNS active agents. In the past few decades, thiazoles have been widely used to develop a variety of therapeutic agents against numerous CNS targets. Thiazole containing drug molecules are currently being used in treatment of various CNS disorders and a number of thiazole derivatives are also presently in clinical trials. A lot of research has been carried out on thiazole and their analogues, which has proved their efficacy to overcome several CNS disorders in rodent as well as primate models. The aim of present review is to highlights diverse CNS activities displayed by thiazole and their derivatives. SAR of this nucleus has also been well discussed. This review covers the recent updates present in literature and will surely provide a greater insight for the designing and development of potent thiazole based CNS active agents in future.
Collapse
|
23
|
Sabbadin D, Ciancetta A, Moro S. Perturbation of fluid dynamics properties of water molecules during G protein-coupled receptor-ligand recognition: the human A2A adenosine receptor as a key study. J Chem Inf Model 2014; 54:2846-55. [PMID: 25245783 DOI: 10.1021/ci500397y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Recent advances in structural biology revealed that water molecules play a crucial structural role in the protein architecture and ligand binding of G protein-coupled receptors. In this work, we present an alternative approach to monitor the time-dependent organization of water molecules during the final stage of the ligand-receptor recognition process by means of membrane molecular dynamics simulations. We inspect the variation of fluid dynamics properties of water molecules upon ligand binding with the aim to correlate the results with the binding affinities. The outcomes of this analysis are transferred into a bidimensional graph called water fluid dynamics maps, that allow a fast graphical identification of protein "hot-spots" characterized by peculiar shape and electrostatic properties that can play a critical role in ligand binding. We hopefully believe that the proposed approach might represent a valuable tool for structure-based drug discovery that can be extended to cases where crystal structures are not yet available, or have not been solved at high resolution.
Collapse
Affiliation(s)
- Davide Sabbadin
- Molecular Modeling Section (MMS), Dipartimento di Scienze del Farmaco, Università di Padova , via Marzolo 5, 35131 Padova, Italy
| | | | | |
Collapse
|
24
|
Congreve M, Dias JM, Marshall FH. Structure-based drug design for G protein-coupled receptors. PROGRESS IN MEDICINAL CHEMISTRY 2014; 53:1-63. [PMID: 24418607 DOI: 10.1016/b978-0-444-63380-4.00001-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our understanding of the structural biology of G protein-coupled receptors has undergone a transformation over the past 5 years. New protein-ligand complexes are described almost monthly in high profile journals. Appreciation of how small molecules and natural ligands bind to their receptors has the potential to impact enormously how medicinal chemists approach this major class of receptor targets. An outline of the key topics in this field and some recent examples of structure- and fragment-based drug design are described. A table is presented with example views of each G protein-coupled receptor for which there is a published X-ray structure, including interactions with small molecule antagonists, partial and full agonists. The possible implications of these new data for drug design are discussed.
Collapse
Affiliation(s)
- Miles Congreve
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - João M Dias
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| | - Fiona H Marshall
- Heptares Therapeutics Ltd, BioPark, Welwyn Garden City, Hertfordshire, United Kingdom
| |
Collapse
|
25
|
Matos MJ, Vilar S, Kachler S, Fonseca A, Santana L, Uriarte E, Borges F, Tatonetti NP, Klotz KN. Insight into the interactions between novel coumarin derivatives and human A3 adenosine receptors. ChemMedChem 2014; 9:2245-53. [PMID: 25044491 DOI: 10.1002/cmdc.201402205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Indexed: 02/06/2023]
Abstract
A study focused on the discovery of new chemical entities based on the 3-arylcoumarin scaffold was performed with the aim of finding new adenosine receptor (AR) ligands. Thirteen synthesized compounds were evaluated by radioligand binding (A1, A2A, and A3) and adenylyl cyclase activity (A2B) assays in order to study their affinity for the four human AR (hAR) subtypes. Seven of the studied compounds proved to be selective A3 AR ligands, with 3-(4'-methylphenyl)-8-(2-oxopropoxy)coumarin (12) being the most potent (Ki =634 nM). None of the compounds showed affinity for the A2B receptor, while four compounds were found to be nonselective AR ligands for the other three subtypes. Docking simulations were carried out to identify the hypothetical binding mode and to rationalize the interaction of these types of coumarin derivatives with the binding site of the three ARs to which binding was observed. The results allowed us to conclude that the 3-arylcoumarin scaffold composes a novel and promising class of A3 AR ligands. ADME properties were also calculated, with the results suggesting that these compounds are promising leads for the identification of new drug candidates.
Collapse
Affiliation(s)
- Maria João Matos
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Avda. das Ciencias, 15782 Santiago de Compostela (Spain); CIQUP, Department of Chemistry & Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal).
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dal Ben D, Buccioni M, Lambertucci C, Thomas A, Volpini R. Simulation and comparative analysis of binding modes of nucleoside and non-nucleoside agonists at the A2B adenosine receptor. In Silico Pharmacol 2013; 1:24. [PMID: 25505666 PMCID: PMC4215817 DOI: 10.1186/2193-9616-1-24] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/11/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE A2B receptor agonists are studied as possible therapeutic tools for a variety of pathological conditions. Unfortunately, medicinal chemistry efforts have led to the development of a limited number of potent agonists of this receptor, in most cases with a low or no selectivity versus the other adenosine receptor subtypes. Among the developed molecules, two structural families of compounds have been identified based on nucleoside and non-nucleoside (pyridine) scaffolds. The aim of this work is to analyse the binding mode of these molecules at 3D models of the human A2B receptor to identify possible common interaction features and the key receptor residues involved in ligand interaction. METHODS The A2B receptor models are built by using two recently published crystal structures of the human A2A receptor in complex with two different agonists. The developed models are used as targets for molecular docking studies of nucleoside and non-nucleoside agonists. The generated docking conformations are subjected to energy minimization and rescoring by using three different scoring functions. Further analysis of top-score conformations are performed with a tool evaluating the interaction energy between the ligand and the binding site residues. RESULTS Results suggest a set of common interaction points between the two structural families of agonists and the receptor binding site, as evidenced by the superimposition of docking conformations and by analysis of interaction energy with the receptor residues. CONCLUSIONS The obtained results show that there is a conserved pattern of interaction between the A2B receptor and its agonists. These information and can provide useful data to support the design and the development of A2B receptor agonists belonging to nucleoside or non-nucleoside structural families.
Collapse
Affiliation(s)
- Diego Dal Ben
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Michela Buccioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Catia Lambertucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Ajiroghene Thomas
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| | - Rosaria Volpini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, Camerino, MC 62032 Italy
| |
Collapse
|
27
|
Floris M, Sabbadin D, Ciancetta A, Medda R, Cuzzolin A, Moro S. Implementing the "Best Template Searching" tool into Adenosiland platform. In Silico Pharmacol 2013; 1:25. [PMID: 25505667 PMCID: PMC4230649 DOI: 10.1186/2193-9616-1-25] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 11/25/2013] [Indexed: 11/17/2022] Open
Abstract
Background Adenosine receptors (ARs) belong to the G protein-coupled receptors (GCPRs) family. The recent release of X-ray structures of the human A2A AR (h A2A AR ) in complex with agonists and antagonists has increased the application of structure-based drug design approaches to this class of receptors. Among them, homology modeling represents the method of choice to gather structural information on the other receptor subtypes, namely A1, A2B, and A3 ARs. With the aim of helping users in the selection of either a template to build its own models or ARs homology models publicly available on our platform, we implemented our web-resource dedicated to ARs, Adenosiland, with the “Best Template Searching” facility. This tool is freely accessible at the following web address: http://mms.dsfarm.unipd.it/Adenosiland/ligand.php. Findings The template suggestions and homology models provided by the “Best Template Searching” tool are guided by the similarity of a query structure (putative or known ARs ligand) with all ligands co-crystallized with hA2A AR subtype. The tool computes several similarity indexes and sort the outcoming results according to the index selected by the user. Conclusions We have implemented our web-resource dedicated to ARs Adenosiland with the “Best Template Searching” facility, a tool to guide template and models selection for hARs modelling. The underlying idea of our new facility, that is the selection of a template (or models built upon a template) whose co-crystallized ligand shares the highest similarity with the query structure, can be easily extended to other GPCRs.
Collapse
Affiliation(s)
| | - Davide Sabbadin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Antonella Ciancetta
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | | | - Alberto Cuzzolin
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| | - Stefano Moro
- Molecular Modeling Section (MMS), Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, I-35131 Padova, Italy
| |
Collapse
|
28
|
Jalani HB, Pandya AN, Pandya DH, Sharma JA, Sudarsanam V, Vasu KK. An efficient one-pot synthesis of functionally diverse 2-aminothiazoles from isothiocyanates, amidines/guanidines and halomethylenes. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.07.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|