1
|
Dytrych P, Kejík Z, Hajduch J, Kaplánek R, Veselá K, Kučnirová K, Skaličková M, Venhauerová A, Hoskovec D, Martásek P, Jakubek M. Therapeutic potential and limitations of curcumin as antimetastatic agent. Biomed Pharmacother 2023; 163:114758. [PMID: 37141738 DOI: 10.1016/j.biopha.2023.114758] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
Collapse
Affiliation(s)
- Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - Anna Venhauerová
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, 121 08 Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455/2, 128 08 Prague, Czech Republic.
| |
Collapse
|
2
|
Chhikara A, Roayapalley PK, Sakagami H, Amano S, Satoh K, Uesawa Y, Das U, Das S, Borrego EA, Guerena CD, Hernandez CR, Aguilera RJ, Dimmock JR. Novel Unsymmetric 3,5-Bis(benzylidene)-4-piperidones That Display Tumor-Selective Toxicity. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196718. [PMID: 36235258 PMCID: PMC9572513 DOI: 10.3390/molecules27196718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
Two series of novel unsymmetrical 3,5-bis(benzylidene)-4 piperidones 2a-f and 3a-e were designed as candidate antineoplastic agents. These compounds display potent cytotoxicity towards two colon cancers, as well as several oral squamous cell carcinomas. These compounds are less toxic to various non-malignant cells giving rise to large selectivity index (SI) figures. Many of the compounds are also cytotoxic towards CEM lymphoma and HL-60 leukemia cells. Representative compounds induced apoptotic cell death characterized by caspase-3 activation and subG1 accumulation in some OSCC cells, as well as the depolarization of the mitochondrial membrane potential in CEM cells. A further line of inquiry was directed to finding if the SI values are correlated with the atomic charges on the olefinic carbon atoms. The potential of these compounds as antineoplastic agents was enhanced by an ADME (absorption, distribution, metabolism, and excretion) evaluation of five lead molecules, which revealed no violations.
Collapse
Affiliation(s)
- Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi 110003, India
| | - Praveen K. Roayapalley
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | | | - Shigeru Amano
- School of Dentistry, Meikai University, Sakado 350-0283, Japan
| | - Keitaro Satoh
- School of Dentistry, Meikai University, Sakado 350-0283, Japan
| | - Yoshihiro Uesawa
- Department of Medical Molecular Informatics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Umashankar Das
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Swagatika Das
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Edgar A. Borrego
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Cristina D. Guerena
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Clare R. Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Cluster, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
- Correspondence:
| |
Collapse
|
3
|
Design and synthesis of some new 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines as multi tyrosine kinase inhibitors. Bioorg Chem 2022; 128:106099. [PMID: 35994884 DOI: 10.1016/j.bioorg.2022.106099] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
The present study involves design and synthesis of five series of 6-bromo-2-(pyridin-3-yl)-4-substituted quinazolines 9a-l, 11a-e, 13a-c, 14a-f and 15a-e. Candidates 9a-l and 11a-e were evaluated for their EGFR and HER2 inhibitory activity compared to Lapatinib. Compounds 9b, 9d, 9f, 11b and 11c were further screened for their in vitro cytotoxicity against two human breast cancer cell lines: AU-565 and MDA-MB-231 in addition to normal breast cell line MCF10A. Compound 9d revealed a remarkable cytotoxic efficacy against AU-565 cell line (IC50 = 1.54 µM) relative to Lapatinib (IC50 = 0.48 µM), whereas compounds 9d and 11c showed a superior cytotoxicity towards MDA-MB-231 (IC50 = 2.67 and 1.75 µM, respectively) in comparison to Lapatinib (IC50 = 9.29 µM). Moreover, compounds 13a-c, 13a-c, 14a-f and 15a-e were tested for their VEGFR-2 inhibitory activity compared to Sorafenib. Compounds 13a, 14c and 14e exhibited remarkable inhibition (IC50 = 79.80, 50.22 and 78.02 nM, respectively) relative to Sorafenib (IC50 = 51.87 nM). In vitro cytotoxicity of these compounds against HepG2, HCT-116 and normal cell (WISH) revealed a superior cytotoxicity against HepG2, HCT-116 especially 13a (IC50 = 17.51 and 5.56 µM, respectively) and 14c (IC50 = 10.40 and 3.37 µM, respectively) compared to Sorafenib (IC50 = 19.33 and 6.82 µM, respectively). Compounds 9d, 11c and 14c were subjected to cell cycle analysis and apoptotic assay. Molecular docking and ADME prediction studies were fulfilled to illustrate the interaction of the potent derivatives with the hot spots of the active site of EGFR, HER2 and VEGFR-2 along with prediction of their pharmacokinetic and physicochemical properties.
Collapse
|
4
|
Huber I, Pandur E, Sipos K, Barna L, Harazin A, Deli MA, Tyukodi L, Gulyás-Fekete G, Kulcsár G, Rozmer Z. Novel cyclic C 5-curcuminoids penetrating the blood-brain barrier: Design, synthesis and antiproliferative activity against astrocytoma and neuroblastoma cells. Eur J Pharm Sci 2022; 173:106184. [PMID: 35413433 DOI: 10.1016/j.ejps.2022.106184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/26/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Novel series of cyclic C5-curcuminoids 17a-j and 19-22 were prepared as cytotoxic agents and evaluated against human neuroblastoma (SH-SY5Y) or human grade IV astrocytoma (CCF-STTG1) cell lines in low (∼0.1 nM - 10 nM) concentrations. Among the tested 21 derivatives, 16 displayed potent antiproliferative activity with IC50 values in the low nanomolar to picomolar range (IC50 = 7.483-0.139 nM). Highly active compounds like N-monocarboxylic derivative 19b with IC50 = 0.139 nM value against neuroblastoma and N-alkyl substituted 11 with IC50 = 0.257 nM against astrocytoma proved some degree of selectivity toward non-cancerous astrocytes and kidney cells. This potent anticancer activity did not show a strong correlation with experimental logPTLC values, but the most potent antiproliferative molecules 11-13 and 19-22 are belonging to discrete subgroups of the cyclic C5-curcuminoids. Compounds 12, 17c and 19b were subjected to blood-brain barrier (BBB) penetration studies, too. The BBB was revealed to be permeable for all of them but, as the apparent permeability coefficient (Papp) values mirrored, in different ratios. Lower toxicity of 12, 17c and 19b was observed toward primary rat brain endothelial cells of the BBB model, which means they remained undamaged under 10 µM concentrations. Penetration depends, at least in part, on albumin binding of 12, 17c and 19b and the presence of monocarboxylic acid transporters in the case of 19b. Permeation through the BBB and albumin binding, we described here, is the first example of cyclic C5-curcuminoids as to our knowledge.
Collapse
Affiliation(s)
- Imre Huber
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary.
| | - Edina Pandur
- Department of Pharmaceutical Biology, University of Pécs, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, University of Pécs, Pécs, Hungary
| | - Lilla Barna
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - András Harazin
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Mária A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Levente Tyukodi
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | | | - Győző Kulcsár
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Rozmer
- Department of Pharmaceutical Chemistry, University of Pécs, Pécs, Hungary
| |
Collapse
|
5
|
Roayapalley PK, Sakagami H, Satoh K, Amano S, Bandow K, Aguilera RJ, Hernandez KGC, Schiaffino Bustamante AY, Dimmock SG, Sharma RK, Das U, Dimmock JR. Cytotoxic Tumour-Selective 1,5-Diaryl-3-Oxo-1,4-Pentadienes Mounted on a Piperidine Ring. MEDICINES 2021; 8:medicines8120078. [PMID: 34940290 PMCID: PMC8707244 DOI: 10.3390/medicines8120078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
A series of 3,5-bis(benzylidene)-4-piperidones 2a–u were prepared as candidate cytotoxic agents. In general, the compounds are highly toxic to human gingival carcinoma (Ca9-22), human squamous carcinoma-2 (HSC-2) and human squamous carcinoma-4 (HSC-4) neoplasms, but less so towards non-malignant human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF) and human pulp cells (HPC), thereby demonstrating tumour-selective toxicity. A further study revealed that most of the compounds in series 2 were more toxic to the human Colo-205 adenocarcinoma cell line (Colo-205), human HT29 colorectal adenocarcinoma cells (HT-29) and human CEM lymphoid cells (CEM) neoplasms than towards non-malignant human foreskin Hs27 fibroblast line (Hs27) cells. The potency of the cytotoxins towards the six malignant cell lines increased as the sigma and sigma star values of the aryl substituents rose. Attempts to condense various aryl aldehydes with 2,2,6,6-tetramethyl-4-piperidone led to the isolation of some 1,5-diaryl-1,4-pentadien-3-ones. The highest specificity for oral cancer cells was displayed by 2e and 2r. In the case of 2r, its selective toxicity exceeded that of doxorubicin and melphalan. The enones 2k, m, o have the highest SI values towards colon cancer and leukemic cells. Both 2e,r inhibited mitosis and increased the subG1 population (with a transient increase in G2/M phase cells). Slight activation of caspase-3, based on the cleavage of poly(ADP-ribose)polymerase (PARP) and procaspase 3, was detected.
Collapse
Affiliation(s)
- Praveen K. Roayapalley
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
- Correspondence:
| | - Hiroshi Sakagami
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Keitaro Satoh
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Shigeru Amano
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Kenjiro Bandow
- School of Dentistry, Meikai University, Sakado, Saitama 350-0283, Japan; (H.S.); (K.S.); (S.A.); (K.B.)
| | - Renato J. Aguilera
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Karla G. Cano Hernandez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Austre Y. Schiaffino Bustamante
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968-0519, USA; (R.J.A.); (K.G.C.H.); (A.Y.S.B.)
| | - Stephen G. Dimmock
- Department of Finance, National University of Singapore, Singapore 119245, Singapore;
| | - Rajendra K. Sharma
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 0W8, Canada;
| | - Umashankar Das
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| | - Jonathan R. Dimmock
- Drug Discovery and Development Research Group, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (U.D.); (J.R.D.)
| |
Collapse
|
6
|
Gao ZF, Wang L, Hou GG, Wang CH. Crystal structure of (3 E,5 E)-1-(4-cyanobenzenesulfonyl)-3,5-bis(3-fluorobenzylidene)piperidin-4-one-dichloromethane (1/1), C 27H 20Cl 2F 2N 2O 3S. Z KRIST-NEW CRYST ST 2021. [DOI: 10.1515/ncrs-2021-0299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C27H20Cl2F2N2O3S, triclinic,
P
1
‾
$P‾{1}$
(no. 2), a = 8.7887(4) Å, b = 11.2517(6) Å, c = 13.7609(7) Å, α = 74.962(4)°, β = 81.084(4)°, γ = 71.259(4)°, V = 1240.68(11) Å3, Z = 2, R
gt
(F) = 0.0582, wR
ref
(F
2) = 0.1543, T = 100.0(1) K.
Collapse
Affiliation(s)
- Zhong-Fei Gao
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Lei Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Gui-Ge Hou
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University , Yantai , 264003 , P. R. China
| | - Chun-Hua Wang
- School of Pharmacy, The Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, Binzhou Medical University , Yantai , 264003 , P. R. China
| |
Collapse
|
7
|
Nudelman A. Dimeric Drugs. Curr Med Chem 2021; 29:2751-2845. [PMID: 34375175 DOI: 10.2174/0929867328666210810124159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
This review intends to summarize the structures of an extensive number of symmetrical-dimeric drugs, having two monomers linked via a bridging entity while emphasizing the large versatility of biologically active substances reported to possess dimeric structures. The largest number of classes of these compounds consist of anticancer agents, antibiotics/antimicrobials, and anti-AIDS drugs. Other symmetrical-dimeric drugs include antidiabetics, antidepressants, analgesics, anti-inflammatories, drugs for the treatment of Alzheimer's disease, anticholesterolemics, estrogenics, antioxidants, enzyme inhibitors, anti-Parkisonians, laxatives, antiallergy compounds, cannabinoids, etc. Most of the articles reviewed do not compare the activity/potency of the dimers to that of their corresponding monomers. Only in limited cases, various suggestions have been made to justify unexpected higher activity of the dimers vs. the corresponding monomers. These suggestions include statistical effects, the presence of dimeric receptors, binding of a dimer to two receptors simultaneously, and others. It is virtually impossible to predict which dimers will be preferable to their respective monomers, or which linking bridges will lead to the most active compounds. It is expected that the extensive number of articles summarized, and the large variety of substances mentioned, which display various biological activities, should be of interest to many academic and industrial medicinal chemists.
Collapse
Affiliation(s)
- Abraham Nudelman
- Chemistry Department, Bar Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
8
|
Kumar RS, Almansour AI, Arumugam N, Kotresha D, Menéndez JC, Kumar RR. Ionic liquid mediated synthesis and
in vitro
mechanistic exploration of polycyclic cage‐like heterocyclic hybrid. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Raju Suresh Kumar
- Department of Chemistry College of Science, King Saud University Riyadh Saudi Arabia
| | | | - Natarajan Arumugam
- Department of Chemistry College of Science, King Saud University Riyadh Saudi Arabia
| | - D. Kotresha
- Department of Studies in Botany Davangere University Davangere India
| | - J. Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia Universidad Complutense Madrid Spain
| | - Raju Ranjith Kumar
- Department of Organic Chemistry, School of Chemistry Madurai Kamaraj University Madurai India
| |
Collapse
|
9
|
Hossain M, Das S, Das U, Doroudi A, Zhu J, Dimmock JR. Novel hybrid molecules of 3,5-bis(benzylidene)-4-piperidones and dichloroacetic acid which demonstrate potent tumour-selective cytotoxicity. Bioorg Med Chem Lett 2020; 30:126878. [DOI: 10.1016/j.bmcl.2019.126878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 12/19/2022]
|
10
|
Selvam C, Prabu SL, Jordan BC, Purushothaman Y, Umamaheswari A, Hosseini Zare MS, Thilagavathi R. Molecular mechanisms of curcumin and its analogs in colon cancer prevention and treatment. Life Sci 2019; 239:117032. [PMID: 31704450 DOI: 10.1016/j.lfs.2019.117032] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer remains to be the most prevalent malignancy in humans and 1.5 million men and women living in the United States are diagnosed with colorectal cancer, with a predicted 145,600 new cases to be diagnosed in 2019. Curcuminoids and its synthetic analogs are now of interest due to their bioactive attributes, especially their action as anticancer activity in various cancer cell line models. Several in vivo and in vitro studies have substantially proved their anticancer activities against colon cancer cell lines. Curcumin analogues like IND-4, FLLL, GO-Y030 and C086 have demonstrated to produce greater cytotoxicity when experimentally studied and study results from many have been suggested to be the same. Combination of curcumin with therapeutic cancer agents like tolfenamic acid, 5-fluorouracil, resveratrol and dasatinib showed improved cytotoxicity and chemotherapeutic effect. The results propose that employment of curcumin with novel drug delivery systems like liposome, micelles and nanoparticle have been performed which could improve the therapeutic efficacy against colon cancer. The present review highlights the mechanism of action, synergistic effect and novel delivery methods to improve the therapeutic potential of curcumin.
Collapse
Affiliation(s)
- Chelliah Selvam
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA.
| | - Sakthivel Lakshmana Prabu
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Brian C Jordan
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Yasodha Purushothaman
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Appavoo Umamaheswari
- Department of Pharmaceutical Technology, University College of Engineering (BIT Campus), Anna University, Thiruchirappalli, India
| | - Maryam Sadat Hosseini Zare
- Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, TX, 77004, USA
| | - Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| |
Collapse
|
11
|
Koroth J, Nirgude S, Tiwari S, Gopalakrishnan V, Mahadeva R, Kumar S, Karki SS, Choudhary B. Investigation of anti-cancer and migrastatic properties of novel curcumin derivatives on breast and ovarian cancer cell lines. Altern Ther Health Med 2019; 19:273. [PMID: 31638975 PMCID: PMC6802352 DOI: 10.1186/s12906-019-2685-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 09/13/2019] [Indexed: 01/08/2023]
Abstract
Background Curcumin is known for its multitude of medicinal properties, including anti-cancer and migrastatic activity. Efforts to overcome poor bioavailability, stability, and side effects associated with the higher dose of curcumin has led to the development of newer derivatives of curcumin. Thus, the focus of this study is to screen novel curcumin derivatives, namely ST03 and ST08, which have not been reported before, for their cytotoxicity and migrastatic property on cancer cells. Methods Anti-cancer activity of ST03 and ST08 was carried out using standard cytotoxicity assays viz., LDH, MTT, and Trypan blue on both solid and liquid cancer types. Flow cytometric assays and western blotting was used to investigate the cell death mechanisms. Transwell migration assay was carried out to check for migrastatic properties of the compounds. Results Both the compounds, ST03 and ST08, showed ~ 100 fold higher potency on liquid and solid tumour cell lines compared to its parent compound curcumin. They induced cytotoxicity by activating the intrinsic pathway of apoptosis in the breast (MDA-MB-231) and ovarian cancer cell lines (PA-1) bearing metastatic and stem cell properties, respectively. Moreover, ST08 also showed inhibition on breast cancer cell migration by inhibiting MMP1 (matrix metalloproteinase 1). Conclusion Both ST03 and ST08 exhibit anti-cancer activity at nanomolar concentration. They induce cell death by activating the intrinsic pathway of apoptosis. Also, they inhibit migration of the cancer cells by inhibiting MMP1 in breast cancer cells.
Collapse
|
12
|
Arumugam N, Almansour AI, Suresh Kumar R, Govindasami P, Al-Thamili DM, Krishnamoorthy R, Periasamy VS, Alshatwi AA, Mahalingam SM, Thangamani S, Menéndez JC. Multicomponent Domino Synthesis, Anticancer Activity and Molecular Modeling Simulation of Complex Dispirooxindolopyrrolidines. Molecules 2018; 23:molecules23051094. [PMID: 29734741 PMCID: PMC6100567 DOI: 10.3390/molecules23051094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 04/29/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022] Open
Abstract
A series of spirooxindolopyrrolidine fused N-styrylpiperidone heterocyclic hybrids has been synthesized in excellent yield via a domino multicomponent protocol that involves one-pot three component 1,3-dipolar cycloaddition and concomitant enamine reactions performed in an inexpensive ionic liquid, namely 1-butyl-3-methylimidazolium bromide ([bmim]Br). Compounds thus synthesized were evaluated for their cytotoxicity against U-937 tumor cells. Interestingly; compounds 5i and 5m exhibited a better cytotoxicity than the anticancer drug bleomycin. In addition; the effect of the synthesized compounds on the nuclear morphology of U937 FaDu cells revealed that treatment with compounds 5a–m led to their apoptotic cell death.
Collapse
Affiliation(s)
- Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Periyasami Govindasami
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Dhaifallah M Al-Thamili
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Rajapandian Krishnamoorthy
- Nanobiotecnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | | | - Ali A Alshatwi
- Nanobiotecnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia.
| | - S M Mahalingam
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, USA.
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, Glendale, AZ 85308, USA.
| | - J Carlos Menéndez
- Unidad de Química Orgánica y Farmacéutica, Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Schmitt F, Subramaniam D, Anant S, Padhye S, Begemann G, Schobert R, Biersack B. Halogenated Bis(methoxybenzylidene)-4-piperidone Curcuminoids with Improved Anticancer Activity. ChemMedChem 2018; 13:1115-1123. [DOI: 10.1002/cmdc.201800135] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Florian Schmitt
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | | | - Shrikant Anant
- University of Kansas Medical Center; 3901 Rainbow Boulevard Kansas City KS 66160 USA
| | - Subhash Padhye
- University of Kansas Medical Center; 3901 Rainbow Boulevard Kansas City KS 66160 USA
| | - Gerrit Begemann
- Developmental Biology; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Rainer Schobert
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| | - Bernhard Biersack
- Department of Chemistry; University of Bayreuth; Universitätsstraße 30 95440 Bayreuth Germany
| |
Collapse
|
14
|
Tugrak M, Gul HI, Sakagami H, Mete E. Synthesis and anticancer properties of mono Mannich bases containing vanillin moiety. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1833-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Makarov MV, Rybalkina EY, Anikina LV, Pukhov SA, Klochkov SG, Mischenko DV, Neganova ME, Khrustalev VN, Klemenkova ZS, Brel VK. 1,5-Diaryl-3-oxo-1,4-pentadienes based on (4-oxopiperidin-1-yl)(aryl)methyl phosphonate scaffold: synthesis and antitumor properties. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1726-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Design, synthesis, anticancer activity and cytotoxicity of novel 4-piperidone/cyclohexanone derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-016-2583-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Hossain M, Das U, Umemura N, Sakagami H, Balzarini J, De Clercq E, Kawase M, Dimmock JR. Tumour-specific cytotoxicity and structure-activity relationships of novel 1-[3-(2-methoxyethylthio)propionyl]-3,5-bis(benzylidene)-4-piperidones. Bioorg Med Chem 2016; 24:2206-14. [PMID: 27073056 DOI: 10.1016/j.bmc.2016.03.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/17/2016] [Accepted: 03/27/2016] [Indexed: 11/25/2022]
Abstract
A series of 1-acyl-3,5-bis(benzylidene)-4-piperidones 3-7 were designed and synthesized as novel cytotoxic agents. These compounds displayed potent cytotoxic properties towards human Molt4/C8, CEM, HSC-2, HSC-3 and HSC-4 neoplasms and also to murine L1210 cells. The majority of the compounds have sub-micromolar or very low micromolar IC50 and CC50 values and are significantly more potent than the reference alkylating drug melphalan. Evaluation of these compounds against non-malignant HGF and HPLF cells revealed the tumour-specific toxicity. In particular, 3e emerged as a promising lead cytotoxic agent which caused apoptosis and PARP1 cleavage in HSC-2 cells.
Collapse
Affiliation(s)
- Mohammad Hossain
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Naoki Umemura
- Division of Pharmacology, Mekai University School of Dentistry, Saitama 350-0238, Japan
| | - Hiroshi Sakagami
- Division of Pharmacology, Mekai University School of Dentistry, Saitama 350-0238, Japan
| | - Jan Balzarini
- Rega Institute of Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute of Medical Research, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Masami Kawase
- Faculty of Pharmaceutical Sciences, Matsuyama University, Matsuyama, Ehime 790-8578, Japan
| | - Jonathan R Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.
| |
Collapse
|
18
|
Awad H, Das U, Dimmock J, El-Aneed A. Establishment of tandem mass spectrometric fingerprint of novel antineoplastic curcumin analogues using electrospray ionization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1307-1316. [PMID: 26405792 DOI: 10.1002/rcm.7222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/03/2015] [Accepted: 05/02/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE Curcumin analogues are antineoplastic agents, designed based on the structure of the spice turmeric with structural modifications aiming at enhancing potency. The goal is to identify the common tandem mass spectrometric (MS/MS) behavior of 13 novel curcumin analogues. Such knowledge is critical for their biological assessment, including metabolite identification and pharmacokinetic evaluation. METHODS Both detection of the protonated molecules [M + H](+) of the synthesized compounds and determination of their exact molecular masses were achieved with hybrid quadrupole orthogonal time-of-flight mass spectrometry (QqTOF-MS). Low-energy collision-induced dissociation (CID)-MS/MS analysis was performed using triple quadrupole linear ion trap mass spectrometry (QqLIT-MS). Both instruments were equipped with an electrospray ionization (ESI) source. MS(3) and neutral loss experiments were performed using QqLIT-MS to confirm the genesis of the observed product ions. RESULTS Abundant [M + H](+) molecules were formed using the QqTOF-MS hybrid instrument with mass accuracies below 6 ppm. CID-MS/MS dissociation studies were centered on the piperidone ring of curcumin analogues; twelve common product ions have been identified from the fission of the various bonds within the piperidone moiety. There was a tendency for the formation of highly conjugated product ions, stabilized via resonance. The variety of the side-chain substituents at the nitrogen atom resulted in side-chain-specific product ions. CONCLUSIONS The ESI-CID-MS/MS analysis of curcumin analogues revealed a common fragmentation behavior of all tested compounds, which gave diagnostic product ions identified for each molecule. The established MS/MS behavior will be applied to determine metabolic by-products of curcumin analogues as well as to develop targeted identification/quantification methods within biological extracts.
Collapse
Affiliation(s)
- H Awad
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - U Das
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - J Dimmock
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - A El-Aneed
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| |
Collapse
|
19
|
Makarov MV, Rybalkina EY, Klemenkova ZS, Röschenthaler GV. 3,5-Bis(arylidene)-4-piperidinones modified with bisphosphonate groups using a 1,2,3-triazole ring: Synthesis and antitumor properties. Russ Chem Bull 2015. [DOI: 10.1007/s11172-014-0752-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Poorghorban M, Das U, Alaidi O, Chitanda JM, Michel D, Dimmock J, Verrall R, Grochulski P, Badea I. Characterization of the host-guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin-gemini surfactant and evaluation of its anticancer activity. Int J Nanomedicine 2015; 10:503-15. [PMID: 25609956 PMCID: PMC4298337 DOI: 10.2147/ijn.s70828] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Curcumin analogs, including the novel compound NC 2067, are potent cytotoxic agents that suffer from poor solubility, and hence, low bioavailability. Cyclodextrin-based carriers can be used to encapsulate such agents. In order to understand the interaction between the two molecules, the physicochemical properties of the host–guest complexes of NC 2067 with β-cyclodextrin (CD) or β-cyclodextrin–gemini surfactant (CDgemini surfactant) were investigated for the first time. Moreover, possible supramolecular structures were examined in order to aid the development of new drug delivery systems. Furthermore, the in vitro anticancer activity of the complex of NC 2067 with CDgemini surfactant nanoparticles was demonstrated in the A375 melanoma cell line. Methods Physicochemical properties of the complexes formed of NC 2067 with CD or CDgemini surfactant were investigated by synchrotron-based powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Synchrotron-based small- and wide-angle X-ray scattering and size measurements were employed to assess the supramolecular morphology of the complex formed by NC 2067 with CDgemini surfactant. Lastly, the in vitro cell toxicity of the formulations toward A375 melanoma cells at various drug-to-carrier mole ratios were measured by cell viability assay. Results Physical mixtures of NC 2067 and CD or CDgemini surfactant showed characteristics of the individual components, whereas the complex of NC 2067 and CD or CDgemini surfactant presented new structural features, supporting the formation of the host–guest complexes. Complexes of NC 2067 with CDgemini surfactants formed nanoparticles having sizes of 100–200 nm. NC 2067 retained its anticancer activity in the complex with CDgemini surfactant for different drug-to-carrier mole ratios, with an IC50 (half-maximal inhibitory concentration) value comparable to that for NC 2067 without the carrier. Conclusion The formation of host–guest complexes of NC 2067 with CD or CDgemini surfactant has been confirmed and hence the CDgemini surfactant shows good potential to be used as a delivery system for anticancer agents.
Collapse
Affiliation(s)
- Masoomeh Poorghorban
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Umashankar Das
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Osama Alaidi
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jackson M Chitanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Deborah Michel
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan Dimmock
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ronald Verrall
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pawel Grochulski
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada ; Canadian Light Source, Saskatoon, SK, Canada
| | - Ildiko Badea
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
21
|
New 3,5-bis(arylidene)-4-piperidones with bisphosphonate moiety: synthesis and antitumor activity. Russ Chem Bull 2014. [DOI: 10.1007/s11172-014-0569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Santiago-Vazquez Y, Das S, Das U, Robles-Escajeda E, Ortega NM, Lema C, Varela-Ramírez A, Aguilera RJ, Balzarini J, De Clercq E, Dimmock SG, Gorecki DKJ, Dimmock JR. Novel 3,5-bis(arylidene)-4-oxo-1-piperidinyl dimers: structure-activity relationships and potent antileukemic and antilymphoma cytotoxicity. Eur J Med Chem 2014; 77:315-22. [PMID: 24657568 DOI: 10.1016/j.ejmech.2014.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 02/26/2014] [Accepted: 03/05/2014] [Indexed: 01/08/2023]
Abstract
Novel clusters of 3,5-bis(benzylidene)-4-oxo-1-piperidinyl dimers 3-5 were evaluated against human Molt4/C8 and CEM T-lymphocytes and human HeLa cervix adenocarcinoma cells as well as murine L1210 leukemia neoplasms. Several of these compounds demonstrated IC50 values in the submicromolar and low micromolar range and compounds possessing 4-fluoro, 4-chloro and 3,4,5-trimethoxy substituents in the series 3 and 4 were identified as potent molecules. A heat map revealed the very high cytotoxic potencies of representative compounds against a number of additional leukemic and lymphoma cell lines and displayed greater toxicity to these cells than nonmalignant MCF10A and Hs-27 neoplasms. These dienones are more refractory to breast and prostate cancers. The evaluation of representative compounds in series 3-5 against a panel of human cancer cell lines revealed them to be potent cytotoxins with average IC50 values ranging from 0.05 to 8.51 μM. In particular, the most potent compound 4g demonstrated over 382-fold and 590-fold greater average cytotoxic potencies in this screen than the reference drugs, melphalan and 5-fluorouracil, respectively. A mode of action investigation of two representative compounds 3f and 4f indicated that they induce apoptosis which is due, at least in part, to the activation of caspase-3 and depolarization of the mitochondrial membrane potential.
Collapse
Affiliation(s)
- Yahaira Santiago-Vazquez
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Swagatika Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Umashankar Das
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada.
| | - Elisa Robles-Escajeda
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Nora M Ortega
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Carolina Lema
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Armando Varela-Ramírez
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Renato J Aguilera
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA.
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000 Leuven, Belgium
| | - Stephen G Dimmock
- Department of Finance, Nanyang Technological University, Singapore 639798, Singapore
| | - Dennis K J Gorecki
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Jonathan R Dimmock
- Cytometry, Screening and Imaging Facility, Border Biomedical Research Center, Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
23
|
Sun J, Zhang S, Yu C, Hou G, Zhang X, Li K, Zhao F. Design, Synthesis and Bioevaluation of NovelN-Substituted-3,5-Bis(Arylidene)-4-piperidone Derivatives as Cytotoxic and Antitumor Agents with Fluorescent Properties. Chem Biol Drug Des 2014; 83:392-400. [DOI: 10.1111/cbdd.12254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/18/2013] [Accepted: 10/17/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Jufeng Sun
- Binzhou Medical University; Yantai 264003 China
| | | | - Chen Yu
- Binzhou Medical University; Yantai 264003 China
| | - Guige Hou
- Binzhou Medical University; Yantai 264003 China
| | | | - Keke Li
- Binzhou Medical University; Yantai 264003 China
| | - Feng Zhao
- Binzhou Medical University; Yantai 264003 China
| |
Collapse
|