1
|
Stefanucci A, Della Valle A, Scioli G, Marinaccio L, Pieretti S, Minosi P, Szucs E, Benyhe S, Masci D, Tanguturi P, Chou K, Barlow D, Houseknecht K, Streicher JM, Mollica A. Discovery of κ Opioid Receptor (KOR)-Selective d-Tetrapeptides with Improved In Vivo Antinociceptive Effect after Peripheral Administration. ACS Med Chem Lett 2022; 13:1707-1714. [PMID: 36385929 PMCID: PMC9661715 DOI: 10.1021/acsmedchemlett.2c00237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/13/2022] [Indexed: 11/29/2022] Open
Abstract
Peripherally active tetrapeptides as selective κ opioid receptor (KOR) agonists have been prepared in good overall yields and high purity following solid-phase peptide synthesis via Fmoc protection strategy. Structural modifications at the first and second position of the lead compound FF(d-Nle)R-NH2 (FE200041) were contemplated with aromatic side chains containing d-amino acids, such as (d)-pF-Phe, (d)-mF-Phe, (d)-oF-Phe, which led to highly selective and efficacious KOR agonists endowed with strong antinociceptive activity in vivo following intravenous (i.v.) and subcutaneous (s.c.) administration in the tail flick and formalin tests. These results suggest potential clinical applications in the treatment of neuropathic and inflammatory pain.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Alice Della Valle
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Lorenza Marinaccio
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Stefano Pieretti
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Paola Minosi
- Istituto
Superiore di Sanità, Centro Nazionale Ricerca e Valutazione Preclinica e Clinica dei farmaci, Viale Regina Elena 299, 00161 Rome, Italy
| | - Edina Szucs
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Sandor Benyhe
- Institute
of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | - Domiziana Masci
- Department
of Basic Biotechnological Sciences, Intensivological and Perioperative
Clinics, Catholic University of Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy
| | | | - Kerry Chou
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Deborah Barlow
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - Karen Houseknecht
- Department
of Biomedical Sciences, College of Osteopathic Medicine, University of New England, Biddeford, Maine 04005, United States
| | - John M. Streicher
- Department
of Pharmacology, College of Medicine, University
of Arizona, Tucson, Arizona 85724, United States
| | - Adriano Mollica
- Dipartimento
di Farmacia, Università di Chieti-Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| |
Collapse
|
2
|
Leduc-Pessah H, Trang T. Tackling the opioid crisis: Novel mechanisms and clinical perspectives. J Neurosci Res 2021; 100:5-9. [PMID: 34672010 DOI: 10.1002/jnr.24964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Heather Leduc-Pessah
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Tuan Trang
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Ferré G, Czaplicki G, Demange P, Milon A. Structure and dynamics of dynorphin peptide and its receptor. VITAMINS AND HORMONES 2019; 111:17-47. [DOI: 10.1016/bs.vh.2019.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
4
|
Allosteric modulation model of the mu opioid receptor by herkinorin, a potent not alkaloidal agonist. J Comput Aided Mol Des 2017; 31:467-482. [PMID: 28364251 DOI: 10.1007/s10822-017-0016-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
Modulation of opioid receptors is the primary choice for pain management and structural information studies have gained new horizons with the recently available X-ray crystal structures. Herkinorin is one of the most remarkable salvinorin A derivative with high affinity for the mu opioid receptor, moderate selectivity and lack of nitrogen atoms on its structure. Surprisingly, binding models for herkinorin are lacking. In this work, we explore binding models of herkinorin using automated docking, molecular dynamics simulations, free energy calculations and available experimental information. Our herkinorin D-ICM-1 binding model predicted a binding free energy of -11.52 ± 1.14 kcal mol-1 by alchemical free energy estimations, which is close to the experimental values -10.91 ± 0.2 and -10.80 ± 0.05 kcal mol-1 and is in agreement with experimental structural information. Specifically, D-ICM-1 molecular dynamics simulations showed a water-mediated interaction between D-ICM-1 and the amino acid H2976.52, this interaction coincides with the co-crystallized ligands. Another relevant interaction, with N1272.63, allowed to rationalize herkinorin's selectivity to mu over delta opioid receptors. Our suggested binding model for herkinorin is in agreement with this and additional experimental data. The most remarkable observation derived from our D-ICM-1 model is that herkinorin reaches an allosteric sodium ion binding site near N1503.35. Key interactions in that region appear relevant for the lack of β-arrestin recruitment by herkinorin. This interaction is key for downstream signaling pathways involved in the development of side effects, such as tolerance. Future SAR studies and medicinal chemistry efforts will benefit from the structural information presented in this work.
Collapse
|
5
|
Reed B, Butelman ER, Kreek MJ. Endogenous opioid system in addiction and addiction-related behaviors. Curr Opin Behav Sci 2017. [DOI: 10.1016/j.cobeha.2016.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Schmitt S, Delamare J, Tirel O, Fillesoye F, Dhilly M, Perrio C. N-[ 18F]-FluoropropylJDTic for κ-opioid receptor PET imaging: Radiosynthesis, pre-clinical evaluation, and metabolic investigation in comparison with parent JDTic. Nucl Med Biol 2016; 44:50-61. [PMID: 27821345 DOI: 10.1016/j.nucmedbio.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/07/2016] [Accepted: 09/17/2016] [Indexed: 02/08/2023]
Abstract
INTRODUCTION To image kappa opioid receptor (KOR) for preclinical studies, N-fluoropropylJDTic 9 derived from the best-established KOR antagonist JDTic, was labeled with fluorine-18. METHODS Radiosynthesis of [18F]9 was achieved according to an automated two-step procedure from [18F]-fluoride. Peripheral and cerebral distributions were determined by ex vivo experiments and by PET imaging in mouse. Radiometabolism studies were performed both in vivo in mice and in vitro in mouse and human liver microsomes. Identification of the major metabolic fragmentations was carried out by UPLC-MS analysis of enzymatic cleavage of non-radioactive ligand 9. Microsomal metabolic degradation of parent JDTic was also achieved for comparison. RESULTS The radiotracer [18F]9 was produced after 140±5min total synthesis time (2.2±0.4% not decay corrected radiochemical yield) with a specific activity of 41-89GBq/μmol (1.1-2.4Ci/μmol). Peripheral and regional brain distributions of [18F]9 were consistent with known KOR locations but no significant specific binding in brain was shown. [18F]9 presented a typical hepatobiliary and renal elimination, and was rapidly metabolized. The in vivo and in vitro radiometabolic profiles of [18F]9 were similar. Piperidine 12 was identified as the major metabolic fragment of the non-radioactive ligand 9. JDTic 7 was found to be much more stable than 9. CONCLUSION Although the newly proposed radioligand [18F]9 was concluded to be not suitable for KOR PET imaging due to the formation of brain penetrating radiometabolites, our findings highlight the metabolic stability of JDTic and may help in the design of novel JDTic derivatives for in vivo applications.
Collapse
Affiliation(s)
- Sébastien Schmitt
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France
| | - Jérôme Delamare
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France
| | - Olivier Tirel
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France
| | - Fabien Fillesoye
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France
| | - Martine Dhilly
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France
| | - Cécile Perrio
- Normandie Univ, UNICAEN, CEA, CNRS, UMR6301-ISTCT, LDM-TEP, Cyceron, Boulevard Henri Becquerel, 14000, Caen, France.
| |
Collapse
|
7
|
Guerrieri E, Bermudez M, Wolber G, Berzetei-Gurske IP, Schmidhammer H, Spetea M. Structural determinants of diphenethylamines for interaction with the κ opioid receptor: Synthesis, pharmacology and molecular modeling studies. Bioorg Med Chem Lett 2016; 26:4769-4774. [PMID: 27567368 DOI: 10.1016/j.bmcl.2016.08.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
The κ opioid (KOP) receptor crystal structure in an inactive state offers nowadays a valuable platform for inquiry into receptor function. We describe the synthesis, pharmacological evaluation and docking calculations of KOP receptor ligands from the class of diphenethylamines using an active-like structure of the KOP receptor attained by molecular dynamics simulations. The structure-activity relationships derived from computational studies was in accordance with pharmacological activities of targeted diphenethylamines at the KOP receptor established by competition binding and G protein activation in vitro assays. Our analysis identified that agonist binding results in breaking of the Arg156-Thr273 hydrogen bond, which stabilizes the inactive receptor conformation, and a crucial hydrogen bond with His291 is formed. Compounds with a phenolic 4-hydroxy group do not form the hydrogen bond with His291, an important residue for KOP affinity and agonist activity. The size of the N-substituent hosted by the hydrophobic pocket formed by Val108, Ile316 and Tyr320 considerably influences binding and selectivity, with the n-alkyl size limit being five carbon atoms, while bulky substituents turn KOP agonists in antagonists. Thus, combination of experimental and molecular modeling strategies provides an initial framework for understanding the structural features of diphenethylamines that are essential to promote binding affinity and selectivity for the KOP receptor, and may be involved in transduction of the ligand binding event into molecular changes, ultimately leading to receptor activation.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Marcel Bermudez
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Gerhard Wolber
- Institute of Pharmacy, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ilona P Berzetei-Gurske
- Biosciences Division, SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, United States
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Shang Y, Filizola M. Opioid receptors: Structural and mechanistic insights into pharmacology and signaling. Eur J Pharmacol 2015; 763:206-13. [PMID: 25981301 DOI: 10.1016/j.ejphar.2015.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/02/2015] [Accepted: 05/11/2015] [Indexed: 01/18/2023]
Abstract
Opioid receptors are important drug targets for pain management, addiction, and mood disorders. Although substantial research on these important subtypes of G protein-coupled receptors has been conducted over the past two decades to discover ligands with higher specificity and diminished side effects, currently used opioid therapeutics remain suboptimal. Luckily, recent advances in structural biology of opioid receptors provide unprecedented insights into opioid receptor pharmacology and signaling. We review here a few recent studies that have used the crystal structures of opioid receptors as a basis for revealing mechanistic details of signal transduction mediated by these receptors, and for the purpose of drug discovery.
Collapse
Affiliation(s)
- Yi Shang
- Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, One Gustave, L. Levy Place, Box 1677, New York, NY 10029, USA
| | - Marta Filizola
- Icahn School of Medicine at Mount Sinai, Department of Structural and Chemical Biology, One Gustave, L. Levy Place, Box 1677, New York, NY 10029, USA.
| |
Collapse
|
9
|
Guerrieri E, Mallareddy JR, Tóth G, Schmidhammer H, Spetea M. Synthesis and pharmacological evaluation of [(3)H]HS665, a novel, highly selective radioligand for the kappa opioid receptor. ACS Chem Neurosci 2015; 6:456-63. [PMID: 25496417 DOI: 10.1021/cn5002792] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Herein we report the radiolabeling and pharmacological investigation of a novel radioligand, the N-cyclobutylmethyl substituted diphenethylamine [(3)H]HS665, designed to bind selectively to the kappa opioid peptide (KOP) receptor, a target of therapeutic interest for the treatment of a variety of human disorders (i.e., pain, affective disorders, drug addiction, and psychotic disorders). HS665 was prepared in tritium-labeled form by a dehalotritiated method resulting in a specific activity of 30.65 Ci/mmol. Radioligand binding studies were performed to establish binding properties of [(3)H]HS665 to the recombinant human KOP receptor in membranes from Chinese hamster ovary cells stably expressing human KOP receptors (CHOhKOP) and to the native neuronal KOP receptor in guinea pig brain membranes. Binding of [(3)H]HS665 was specific and saturable in both tissue preparations. A single population of high affinity binding sites was labeled by [(3)H]HS665 in membranes from CHOhKOP cells and guinea pig brain with similar equilibrium dissociation constants, Kd, 0.45 and 0.64 nM, respectively. Average receptor density of [(3)H]HS665 recognition sites were 5564 and 154 fmol/mg protein in CHOhKOP cells and guinea pig brain, respectively. This study shows that the new radioligand distinguishes and labels KOP receptors specifically in neuronal and cellular systems expressing KOP receptors, making this molecule a valuable tool in probing structural and functional mechanisms governing ligand-KOP receptor interactions in both a recombinant and native in vitro setting.
Collapse
Affiliation(s)
- Elena Guerrieri
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Jayapal Reddy Mallareddy
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, H-6726 Szeged, Hungary
| | - Géza Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Temesvari krt 62, H-6726 Szeged, Hungary
| | - Helmut Schmidhammer
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Mariana Spetea
- Department of Pharmaceutical Chemistry, Institute of Pharmacy and Center for Molecular Biosciences (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
10
|
Schmitt S, Colloc'h N, Perrio C. Novel fluoroalkyl derivatives of selective kappa opioid receptor antagonist JDTic: Design, synthesis, pharmacology and molecular modeling studies. Eur J Med Chem 2014; 90:742-50. [PMID: 25513968 DOI: 10.1016/j.ejmech.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/08/2014] [Accepted: 12/10/2014] [Indexed: 11/17/2022]
Abstract
Novel N- and O-fluoroalkyl derivatives of the highly potent KOR antagonist JDTic were designed and synthesized. Their opioid receptor properties were compared in both in vitro binding assays and modeling approach. All compounds displayed nanomolar affinities for KOR. The fluoropropyl derivatives were more active than their fluoroethyl analogues. N-Fluoroalkylation was preferable to O-alkylation to keep a selective KOR binding. Compared to JDTic, the N-fluoropropyl derivative 2 bound to KOR with an only 4-fold lower affinity and a higher selectivity relative to MOR and DOR [Ki(κ) = 1.6 nM; Ki(μ)/Ki(κ) = 12; Ki(δ)/Ki(κ) = 159 for 2versus Ki(κ) = 0.42 nM; Ki(μ)/Ki(κ) = 9; Ki(δ)/Ki(κ) = 85 for JDTic]. Modeling studies based on the crystal structure of the JDTic/KOR complex revealed that fluorine atom in ligand 2 was involved in specific KOR binding. Ligand 2 was concluded to merit further development for KOR exploration.
Collapse
Affiliation(s)
- Sébastien Schmitt
- CNRS, UMR 6301 ISTCT, LDM-TEP, GIP CYCERON, Boulevard Henri Becquerel, 14074 Caen, France; Université de Caen Basse-Normandie, Normandie Univ., France; CEA, DSV/I2BM, France
| | - Nathalie Colloc'h
- Université de Caen Basse-Normandie, Normandie Univ., France; CEA, DSV/I2BM, France; CNRS, UMR 6301 ISTCT, CERVOxy group, GIP CYCERON, Boulevard Henri Becquerel, 14074 Caen, France
| | - Cécile Perrio
- CNRS, UMR 6301 ISTCT, LDM-TEP, GIP CYCERON, Boulevard Henri Becquerel, 14074 Caen, France; Université de Caen Basse-Normandie, Normandie Univ., France; CEA, DSV/I2BM, France.
| |
Collapse
|
11
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
12
|
Medina-Franco JL, Martinez-Mayorga K, Meurice N. Balancing novelty with confined chemical space in modern drug discovery. Expert Opin Drug Discov 2013; 9:151-65. [DOI: 10.1517/17460441.2014.872624] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|