1
|
Asif M, Almehmadi M, Alsaiari AA, Allahyani M. Diverse Pharmacological Potential of different Substituted Pyrazole Derivatives. Curr Org Synth 2024; 21:858-888. [PMID: 37861007 DOI: 10.2174/0115701794260444230925095804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/01/2023] [Accepted: 08/25/2023] [Indexed: 10/21/2023]
Abstract
The chemistry of heterocyclic compounds has been a topic of research interest. Some five-membered heterocyclic compounds have been the subject of extensive research due to their different types of pharmacological effects. The five-membered nitrogen-containing heterocyclic compounds pyrazole, pyrazoline, and pyrazolone derivatives have a lot of interest in the fields of medical and agricultural chemistry due to their diverse spectrum of therapeutic activities. Various substituted pyrazole, pyrazoline, and pyrazolone compounds exhibited diverse pharmacological effects like Anti-microbial, anti-inflammatory, anti-tubercular, anti-fungal, anti-malarial, anti-diabetic, diuretic, anti-depressant, anticonvulsant, antioxidant, anti-leishmanial, antidiabetic, and antiviral, etc. In recent decades, the synthesis of numerous pyrazole, pyrazoline, and pyrazolone derivatives by different synthetic methods as well as research into their chemical and biological behavior have become more important. This review focuses on synthetic methods of the pyrazole, pyrazoline, and pyrazolone derivatives, which have significant biological properties and a variety of applications.
Collapse
Affiliation(s)
- Mohammad Asif
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, 226003, Uttar Pradesh, India
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mamdouh Allahyani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| |
Collapse
|
2
|
Goyal A, Kharkwal H, Piplani M, Singh Y, Murugesan S, Aggarwal A, Kumar P, Chander S. Spotlight on 4-substituted quinolines as potential anti-infective agents: Journey beyond chloroquine. Arch Pharm (Weinheim) 2023; 356:e2200361. [PMID: 36494101 DOI: 10.1002/ardp.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022]
Abstract
Continued emerging resistance of pathogens against the clinically approved candidates and their associated limitations continuously demand newer agents having better potency with a more suited safety profile. Quinoline nuclei containing scaffolds of natural and synthetic origin have been documented for diverse types of pharmacological activities, and a number of drugs are clinically approved. In the present review, we unprecedentedly covered the biological potential of 4-substituted quinoline and elaborated a rationale for its special privilege to afford the significant number of approved clinical drugs, particularly against infectious pathogens. Compounds with 4-substituted quinoline are well documented for antimalarial activity, but in the last two decades, they have been extensively explored for activity against cancer, tuberculosis, and several other pathogens including viruses, bacteria, fungi, and other infectious pathogens. In the present study, the anti-infective spectrum of this scaffold is discussed against viruses, mycobacteria, malarial parasites, and fungal and bacterial strains, along with recent updates in this area, with special emphasis on the structure-activity relationship.
Collapse
Affiliation(s)
- Ankush Goyal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Harsha Kharkwal
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Mona Piplani
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Yogendra Singh
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | | | - Amit Aggarwal
- School of Pharmacy, Maharaja Agrasen University, Solan, Himachal Pradesh, India
| | - Piyush Kumar
- Department of Chemistry, Indian Institute of Technology, Jammu, Jammu and Kashmir, India
| | - Subhash Chander
- Amity Institute of Phytochemistry & Phytomedicine, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Kaur N, Korkor C, Mobin SM, Chibale K, Singh K. Fluorene-Chloroquine Hybrids: Synthesis, in vitro Antiplasmodial Activity, and Inhibition of Heme Detoxification Machinery of Plasmodium falciparum. ChemMedChem 2022; 17:e202200414. [PMID: 36017666 DOI: 10.1002/cmdc.202200414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Indexed: 11/10/2022]
Abstract
Fluorene-chloroquine hybrids have been identified as a new promising class of antiplasmodial agents. The most active compound 9d exhibited good in vitro antiplasmodial activity against a chloroquine-sensitive NF54 strain of the human malaria parasite Plasmodium falciparum with an IC50 value of 139 nM. UV-visible absorption, FTIR spectral and 1H NMR titration data corroborated the binding of 9d to monomeric and µ-oxodimeric heme as well as inhibition of β-hematin formation, which collectively supported the inhibition of heme detoxification machinery in P. falciparum. In silico docking studies revealed the binding interactions of the hybrids in the active site of the wild type as well as quadruple mutant of Pf-DHFR-TS dihydrofolate enzyme. Further, the ADMET parameters were predicted and were in good agreement with the expected values, suggesting the drug likeness of the synthesized hybrid molecules.Introduction.
Collapse
Affiliation(s)
- Navpreet Kaur
- IIT Indore Discipline of Chemistry: Indian Institute of Technology Indore Discipline of Chemistry, Chemistry, INDIA
| | - Constance Korkor
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Shaikh M Mobin
- IIT Indore: Indian Institute of Technology Indore, Chemistry, INDIA
| | - Kelly Chibale
- University of Cape Town Institute of Infectious Disease and Molecular Medicine, Chemistry, INDIA
| | - Kamaljit Singh
- Guru Nanak Dev University, Department of Chemistry, Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143005, 143005, Amritsar, INDIA
| |
Collapse
|
4
|
Díaz I, Salido S, Nogueras M, Cobo J. Design and Synthesis of New Pyrimidine-Quinolone Hybrids as Novel hLDHA Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070792. [PMID: 35890090 PMCID: PMC9322123 DOI: 10.3390/ph15070792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 02/05/2023] Open
Abstract
A battery of novel pyrimidine-quinolone hybrids was designed by docking scaffold replacement as lactate dehydrogenase A (hLDHA) inhibitors. Structures with different linkers between the pyrimidine and quinolone scaffolds (10-21 and 24−31) were studied in silico, and those with the 2-aminophenylsulfide (U-shaped) and 4-aminophenylsulfide linkers (24−31) were finally selected. These new pyrimidine-quinolone hybrids (24−31)(a−c) were easily synthesized in good to excellent yields by a green catalyst-free microwave-assisted aromatic nucleophilic substitution reaction between 3-(((2/4-aminophenyl)thio)methyl)quinolin-2(1H)-ones 22/23(a−c) and 4-aryl-2-chloropyrimidines (1−4). The inhibitory activity against hLDHA of the synthesized hybrids was evaluated, resulting IC50 values of the U-shaped hybrids 24−27(a−c) much better than the ones of the 1,4-linked hybrids 28−31(a−c). From these results, a preliminary structure−activity relationship (SAR) was established, which enabled the design of novel 1,3-linked pyrimidine-quinolone hybrids (33−36)(a−c). Compounds 35(a−c), the most promising ones, were synthesized and evaluated, fitting the experimental results with the predictions from docking analysis. In this way, we obtained novel pyrimidine-quinolone hybrids (25a, 25b, and 35a) with good IC50 values (<20 μM) and developed a preliminary SAR.
Collapse
|
5
|
Gülbenek C, Yıldırım M, Yıldırım A. Microwave-mediated approach to highly substituted nitropyrimidines via double Mannich reactions and their biological properties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
There Is No Last Name For This Author P, Kaur H, Persoons L, Andrei G, Singh K. Quinoline-dihydropyrimidin-2(1H)-one hybrids: Synthesis, biological activity and mechanistic studies. ChemMedChem 2022; 17:e202200031. [PMID: 35174629 DOI: 10.1002/cmdc.202200031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/16/2022] [Indexed: 11/10/2022]
Abstract
A novel class of quinoline-dihydropyrimidin-2(1H)-one (DHPM) hybrids was synthesized and in vitro antiplasmodial activity was evaluated against chloroquine sensitive (D10) and chloroquine resistant (Dd2) strains of Plasmodium falciparum, the human malaria parasite. The antiplasmodial activity was compared to previously reported DHPM based molecular hybrids. Dual mode of antiplasmodial action of the most active member has been evaluated through heme binding study and in silico docking in the active site of dihydrofolate enzymes (wild-type as well as mutant). Favourable pharmacokinetic parameters were predicted in the ADMET evaluation. The new hybrids were also tested against a number of DNA and RNA viruses. No antiviral activity was found, except for one hybrid that showed mild inhibitory activity against two strains of cytomegalovirus (AD-169 and Davis), The most active hybrid was found to be a selective inhibitor of the growth of P. falciparum as well as a modest inhibitor of varicella zoster virus in HEL cells. Cytotoxicity of all hybrids was assessed in HEL, HeLa, Vero, MDCK, and CRFK cell cultures.
Collapse
Affiliation(s)
| | | | - Leentje Persoons
- KU Leuven: Katholieke Universiteit Leuven, Microbiology, BELGIUM
| | - Graciela Andrei
- KU Leuven: Katholieke Universiteit Leuven, Microbiology, BELGIUM
| | - Kamaljit Singh
- Guru Nanak Dev University, Chemistry, GT Road, 143005, Amritsar, INDIA
| |
Collapse
|
7
|
Synthesis, Molecular Docking, and Antimalarial Activity of Hybrid 4-Aminoquinoline-pyrano[2,3-c]pyrazole Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14111174. [PMID: 34832956 PMCID: PMC8622706 DOI: 10.3390/ph14111174] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 11/24/2022] Open
Abstract
Widespread resistance of Plasmodium falciparum to current artemisinin-based combination therapies necessitate the discovery of new medicines. Pharmacophoric hybridization has become an alternative for drug resistance that lowers the risk of drug–drug adverse interactions. In this study, we synthesized a new series of hybrids by covalently linking the scaffolds of pyrano[2,3-c]pyrazole with 4-aminoquinoline via an ethyl linker. All synthesized hybrid molecules were evaluated through in vitro screenings against chloroquine-resistant (K1) and -sensitive (3D7) P. falciparum strains, respectively. Data from in vitro assessments showed that hybrid 4b displayed significant antiplasmodial activities against the 3D7 strain (EC50 = 0.0130 ± 0.0002 μM) and the K1 strain (EC50 = 0.02 ± 0.01 μM), with low cytotoxic effect against Vero mammalian cells. The high selectivity index value on the 3D7 strain (SI > 1000) and the K1 strain (SI > 800) and the low resistance index value from compound 4b suggested that the pharmacological effects of this compound were due to selective inhibition on the 3D7 and K1 strains. Molecular docking analysis also showed that 4b recorded the highest binding energy on P. falciparum lactate dehydrogenase. Thus, P. falciparum lactate dehydrogenase is considered a potential molecular target for the synthesized compound.
Collapse
|
8
|
N-Directed Pd-Catalyzed Photoredox-Mediated C–H Arylation for Accessing Phenyl-Extended Analogues of Biginelli/Suzuki-Derived Ethyl 4-Methyl-2,6-diphenylpyrimidine-5-carboxylates. Catalysts 2021. [DOI: 10.3390/catal11091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The availability and application of direct, functional group-compatible C–H activation methods for late-stage modification of small-molecule bioactives and other valuable materials remains an ongoing challenge in organic synthesis. In the current study, we demonstrate that a LED-activated, photoredox-mediated, Pd(OAc)2-catalyzed C–H arylation, employing a phenyldiazonium aryl source and either tris(2,2′-bipyridine)ruthenium(II) or (2,2′-bipyridine)bis[3,5-di-fluoro-2-[5-(trifluoromethyl)-2-pyridinyl-kN][phenyl-kC]iridium(III) as photoredox initiator, may successfully produce unprecedented mono- and bis-phenyl derivatives of functionality-rich 2,6-diphenylpyrimidine substrates at room temperature. The series of 19 substrates employed herein, which share the biologically-relevant 4-methyl-2,6-diphenylpyrimidine-5-carboxylate scaffold, were generated via a synthetic route involving (3-component) Biginelli condensation, oxidative dehydrogenation of the obtained 3,4-dihydropyrimidin-2(1H)-one to 2-hydroxypyrimidine, O-sulfonylation, and Suzuki-Miyaura C–C cross-coupling. Submission of these substrates to pyrimidine-N-atom-directed C–H arylation conditions led to regioselective phenylation at the ortho site(s) of the pyrimidine-C2-connected phenyl ring, revealing substituent-dependent electronic and steric effects. A focused library of 18 mono- and 10 bis-phenyl derivatives was generated. Its members exhibit interesting 3D and peripheral substitution features that render them promising for evaluation in drug discovery efforts.
Collapse
|
9
|
Farooq S, Ngaini Z. One‐pot
and
two‐pot
methods for chalcone derived pyrimidines synthesis and applications. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4226] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Malaysia
| |
Collapse
|
10
|
Liu Y, Yang L, Liu B, Yin D, Dang Y, Yang X, Zou Q. One Pot Biginelli Synthesis of Novel 3,4-Dihydropyrimidin-2(1H)-ones Catalyzed by Sulfamic Acid. ORG PREP PROCED INT 2020. [DOI: 10.1080/00304948.2020.1816073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuting Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Lan Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Bin Liu
- School of Pharmacy, Shaanxi Institute of International Trade and Commerce, Xi’an, China
| | - Dawei Yin
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Yang Dang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Xiaoming Yang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| | - Qian Zou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi’an, China
| |
Collapse
|
11
|
Madhav H, Hoda N. An insight into the recent development of the clinical candidates for the treatment of malaria and their target proteins. Eur J Med Chem 2020; 210:112955. [PMID: 33131885 DOI: 10.1016/j.ejmech.2020.112955] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
Malaria is an endemic disease, prevalent in tropical and subtropical regions which cost half of million deaths annually. The eradication of malaria is one of the global health priority nevertheless, current therapeutic efforts seem to be insufficient due to the emergence of drug resistance towards most of the available drugs, even first-line treatment ACT, unavailability of the vaccine, and lack of drugs with a new mechanism of action. Intensification of antimalarial research in recent years has resulted into the development of single dose multistage therapeutic agents which has advantage of overcoming the antimalarial drug resistance. The present review explored the current progress in the development of new promising antimalarials against prominent target proteins that have the potential to be a clinical candidate. Here, we also reviewed different aspects of drug resistance and highlighted new drug candidates that are currently in a clinical trial or clinical development, along with a few other molecules with excellent antimalarial activity overs ACTs. The summarized scientific value of previous approaches and structural features of antimalarials related to the activity are highlighted that will be helpful for the development of next-generation antimalarials.
Collapse
Affiliation(s)
- Hari Madhav
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia (A Central University), New Delhi, 110025, India.
| |
Collapse
|
12
|
Singh L, Fontinha D, Francisco D, Mendes AM, Prudêncio M, Singh K. Molecular Design and Synthesis of Ivermectin Hybrids Targeting Hepatic and Erythrocytic Stages of Plasmodium Parasites. J Med Chem 2020; 63:1750-1762. [PMID: 32011136 DOI: 10.1021/acs.jmedchem.0c00033] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ivermectin is a powerful endectocide, which reduces the incidence of vector-borne diseases. Besides its strong insecticidal effect on mosquito vectors of the disease, ivermectin inhibits Plasmodium falciparum sporogonic and blood stage development and impairs Plasmodium berghei development inside hepatocytes, both in vitro and in vivo. Herein, we present the first report on structural modification of ivermectin to produce dual-action molecular hybrids with good structure-dependent in vitro activity against both the hepatic and erythrocytic stages of P. berghei and P. falciparum infection, suggesting inclusion of ivermectin antimalarial hybrids in malaria control strategies. The most active hybrid displayed over threefold and 10-fold higher in vitro activity than ivermectin against hepatic and blood stage infections, respectively. Although an overwhelming insecticidal effect against Anopheles stephensi mosquitoes in laboratory conditions was not noticed, in silico docking analysis supports allosteric binding to glutamate-gated chloride channels similar to ivermectin.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| | - Diana Fontinha
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Denise Francisco
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Antonio M Mendes
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Miguel Prudêncio
- Instituto de Medicina Molecular , Faculdade de Medicina da Universidade de Lisboa , Av. Prof. Egas Moniz , Lisboa 1649-028 , Portugal
| | - Kamaljit Singh
- Department of Chemistry , Guru Nanak Dev University , Amritsar 143 005 , India
| |
Collapse
|
13
|
Hambardzumyan EN, Vorskanyan AS, Shahbazyan LV, Yengoyan AP. Synthesis and Plant Growth Stimulating Action of 2-Amino-6-methylpyrimidine-4(3H)-thione Derivatives. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
One-pot, multi-component synthesis of 3,4-dihydropyrimidin-2(1H)-one derivatives containing ferrocenyl. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
C. S. Pinheiro L, M. Feitosa L, O. Gandi M, F. Silveira F, Boechat N. The Development of Novel Compounds Against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules 2019; 24:molecules24224095. [PMID: 31766184 PMCID: PMC6891514 DOI: 10.3390/molecules24224095] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
Based on medicinal chemistry tools, new compounds for malaria treatment were designed. The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine, mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR) Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model. Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed, which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine. Hybrids between chloroquine-atorvastatin and primaquine-atorvastatin were also synthesized and shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives, new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.
Collapse
Affiliation(s)
- Luiz C. S. Pinheiro
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
| | - Lívia M. Feitosa
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Marilia O. Gandi
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Flávia F. Silveira
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Correspondence: ; Tel.: +55-21-3977-2464
| |
Collapse
|
16
|
Yang R, Du W, Yuan H, Qin T, He R, Ma Y, Du H. Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents. Mol Divers 2019; 24:1065-1075. [PMID: 31705363 DOI: 10.1007/s11030-019-10012-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/02/2019] [Indexed: 12/14/2022]
Abstract
A series of 2-phenyl-4-aminoquinolines were designed, synthesized and evaluated for their antifungal activities against three phytopathogenic fungi in vitro. All of the target compounds were fully elucidated by 1H NMR, 13C NMR and HRMS spectra. The results indicated that most of the target compounds demonstrated significant activities against the tested fungi. Among them, compound 6e exhibited more promising inhibitory activities against C. lunata (EC50 = 13.3 μg/mL), P. grisea (EC50 = 14.4 μg/mL) and A. alternate (EC50 = 15.6 μg/mL), superior to azoxystrobin, a commercial agricultural fungicide. The structure-activity relationship (SAR) revealed that the aniline moiety at position 4 of the quinoline scaffold played a key role in the potency of a compound. And the substitution positions of the aniline moiety significantly influenced the activities. These encouraging results yielded a variety of 2-phenylquinolines bearing an aniline moiety acting as promising antifungal agents.
Collapse
Affiliation(s)
- Rui Yang
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| | - Wenhao Du
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Huan Yuan
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Tianhong Qin
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Renxiao He
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Yanni Ma
- Key Laboratory of Natural Products, Henan Academy of Sciences, Zhengzhou, 450002, People's Republic of China
| | - Haiying Du
- College of Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| |
Collapse
|
17
|
Feng LS, Xu Z, Chang L, Li C, Yan XF, Gao C, Ding C, Zhao F, Shi F, Wu X. Hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant Plasmodium falciparum. Med Res Rev 2019; 40:931-971. [PMID: 31692025 DOI: 10.1002/med.21643] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/16/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Malaria is a tropical disease, leading to around half a million deaths annually. Antimalarials such as quinolines are crucial to fight against malaria, but malaria control is extremely challenged by the limited pipeline of effective pharmaceuticals against drug-resistant strains of Plasmodium falciparum which are resistant toward almost all currently accessible antimalarials. To tackle the growing resistance, new antimalarial drugs are needed urgently. Hybrid molecules which contain two or more pharmacophores have the potential to overcome the drug resistance, and hybridization of quinoline privileged antimalarial building block with other antimalarial pharmacophores may provide novel molecules with enhanced in vitro and in vivo activity against drug-resistant (including multidrug-resistant) P falciparum. In recent years, numerous of quinoline hybrids were developed, and their activities against a panel of drug-resistant P falciparum strains were screened. Some of quinoline hybrids were found to possess promising in vitro and in vivo potency. This review emphasized quinoline hybrid molecules with potential in vitro antiplasmodial and in vivo antimalarial activity against drug-resistant P falciparum, covering articles published between 2010 and 2019.
Collapse
Affiliation(s)
| | - Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Le Chang
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Chuan Li
- WuXi AppTec Co, Ltd, Wuhan, China
| | | | | | | | | | - Feng Shi
- WuXi AppTec Co, Ltd, Wuhan, China
| | - Xiang Wu
- WuXi AppTec Co, Ltd, Wuhan, China
| |
Collapse
|
18
|
Marella A, Verma G, Shaquiquzzaman M, Khan MF, Akhtar W, Alam MM. Malaria Hybrids: A Chronological Evolution. Mini Rev Med Chem 2019; 19:1144-1177. [PMID: 30887923 DOI: 10.2174/1389557519666190315100027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 05/27/2018] [Accepted: 11/03/2018] [Indexed: 01/13/2023]
Abstract
Malaria, an upsetting malaise caused by a diverse class of Plasmodium species affects about 40% of the world's population. The distress associated with it has reached colossal scales owing to the development of resistance to most of the clinically available agents. Hence, the search for newer molecules for malaria treatment and cure is an incessant process. After the era of a single molecule for malaria treatment ended, there was an advent of combination therapy. However, lately there had been reports of the development of resistance to many of these agents as well. Subsequently, at present most of the peer groups working on malaria treatment aim to develop novel molecules, which may act on more than one biological processes of the parasite life cycle, and these scaffolds have been aptly termed as Hybrid Molecules or Double Drugs. These molecules may hold the key to hitherto unknown ways of showing a detrimental effect on the parasite. This review enlists a few of the recent advances made in malaria treatment by these hybrid molecules in a sequential manner.
Collapse
Affiliation(s)
| | - Garima Verma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Shaquiquzzaman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Faraz Khan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Wasim Akhtar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| | - Md Mumtaz Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi - 110062, India
| |
Collapse
|
19
|
Ashton TD, Devine SM, Möhrle JJ, Laleu B, Burrows JN, Charman SA, Creek DJ, Sleebs BE. The Development Process for Discovery and Clinical Advancement of Modern Antimalarials. J Med Chem 2019; 62:10526-10562. [DOI: 10.1021/acs.jmedchem.9b00761] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Trent D. Ashton
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Shane M. Devine
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Jörg J. Möhrle
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Benoît Laleu
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Jeremy N. Burrows
- Medicines for Malaria Venture, ICC, Route de Pré-Bois 20, 1215 Geneva, Switzerland
| | - Susan A. Charman
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Darren J. Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brad E. Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
20
|
Bhagat S, Arfeen M, Das G, Ramkumar M, Khan SI, Tekwani BL, Bharatam PV. Design, synthesis and biological evaluation of 4-aminoquinoline-guanylthiourea derivatives as antimalarial agents. Bioorg Chem 2019; 91:103094. [PMID: 31376783 DOI: 10.1016/j.bioorg.2019.103094] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/10/2019] [Accepted: 06/26/2019] [Indexed: 11/15/2022]
Abstract
Guanylthiourea (GTU) has been identified as an important antifolate antimalarial pharmacophore unit, whereas, 4-amino quinolones are already known for antimalarial activity. In the present work molecules carrying 4-aminoquinoline and GTU moiety have been designed using molecular docking analysis with PfDHFR enzyme and heme unit. The docking results indicated that the necessary interactions (Asp54 and Ile14) and docking score (-9.63 to -7.36 kcal/mmol) were comparable to WR99210 (-9.89 kcal/mol). From these results nine molecules were selected for synthesis. In vitro analysis of these synthesized compounds reveal that out of the nine molecules, eight show antimalarial activity in the range of 0.61-7.55 μM for PfD6 strain and 0.43-8.04 μM for PfW2 strain. Further, molecular dynamics simulations were performed on the most active molecule to establish comparative binding interactions of these compounds and reference ligand with Plasmodium falciparum dihydrofolate reductase (PfDHFR).
Collapse
Affiliation(s)
- Shweta Bhagat
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Minhajul Arfeen
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Gourav Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Mridula Ramkumar
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar 160062, Punjab, India
| | - Shabana I Khan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Babu L Tekwani
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar 160062, Punjab, India.
| |
Collapse
|
21
|
Gupta P, Singh L, Singh K. The hybrid antimalarial approach. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Sharma K, Shrivastava A, Mehra RN, Deora GS, Alam MM, Zaman MS, Akhter M. Synthesis of novel benzimidazole acrylonitriles for inhibition of Plasmodium falciparum growth by dual target inhibition. Arch Pharm (Weinheim) 2017; 351. [PMID: 29227011 DOI: 10.1002/ardp.201700251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/08/2022]
Abstract
Antimalarial drug resistance has emerged as a threat for treating malaria, generating a need to design and develop newer, more efficient antimalarial agents. This research aimed to identify novel leads as antimalarials. Dual receptor mechanism could be a good strategy to combat developing drug resistance. A series of benzimidazole acrylonitriles containing 18 compounds were designed, synthesized and evaluated for cytotoxicity, heme binding, ferriprotoporphyrin IX biomineralisation inhibition, and falcipain-2 enzyme assay. Furthermore, in silico docking and MD simulation studies were also performed.The tests revealed quite encouraging results. Three compounds, viz. R-01 (0.69 μM), R-04 (1.60 μM), and R-08 (1.61 μM), were found to have high antimalarial activity. These compounds were found to be in bearable cytotoxicity limits and their biological assay suggested that they had inhibitory activity against falcipain-2 and hemozoin formation. The docking revealed the binding mode of benzimidazole acrylonitrile derivatives and MD simulation studies revealed that the protein-ligand complex was stable. The agents exhibit good hemozoin formation inhibition activity and, hence, may be utilized as leads to design a newer drug class to overcome the drug resistance of hemozoin formation inhibitors such as chloroquine.
Collapse
Affiliation(s)
- Kalicharan Sharma
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Apeksha Shrivastava
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Ram N Mehra
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal, Madhya Pradesh, India
| | - Girdhar S Deora
- School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Mohammad M Alam
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Mohammad S Zaman
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Faculty of Pharmacy and Bioinformatics Infrastructure Facility, Department of Pharmaceutical Chemistry, Jamia Hamdard, New Delhi, India
| |
Collapse
|
23
|
Liang C, Pei S, Ju W, Jia M, Tian D, Tang Y, Mao G. Synthesis and in vitro and in vivo antitumour activity study of 11-hydroxyl esterified bergenin/cinnamic acid hybrids. Eur J Med Chem 2017; 133:319-328. [DOI: 10.1016/j.ejmech.2017.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/25/2022]
|
24
|
Mishra M, Mishra VK, Kashaw V, Iyer AK, Kashaw SK. Comprehensive review on various strategies for antimalarial drug discovery. Eur J Med Chem 2016; 125:1300-1320. [PMID: 27886547 DOI: 10.1016/j.ejmech.2016.11.025] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 01/14/2023]
Abstract
The resistance of malaria parasites to existing drugs carries on growing and progressively limiting our ability to manage this severe disease and finally lead to a massive global health burden. Till now, malaria control has relied upon the traditional quinoline, antifolate and artemisinin compounds. Very few new antimalarials were developed in the past 50 years. Among recent approaches, identification of novel chemotherapeutic targets, exploration of natural products with medicinal significance, covalent bitherapy having a dual mode of action into a single hybrid molecule and malaria vaccine development are explored heavily. The proper execution of these approaches and proper investment from international agencies will accelerate the discovery of drugs that provide new hope for the control or eventual eradication of this global infectious disease. This review explores various strategies for assessment and development of new antimalarial drugs. Current status and scientific value of previous approaches are systematically reviewed and new approaches provide a pragmatic forecast for future developments are introduced as well.
Collapse
Affiliation(s)
- Mitali Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Vikash K Mishra
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India
| | - Varsha Kashaw
- SVN Institute of Pharmaceutical Sciences, SVN University, Sagar, MP, India
| | - Arun K Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Sushil Kumar Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar, MP, India; Use-inspired Biomaterials & Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
25
|
Shaveta, Mishra S, Singh P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur J Med Chem 2016; 124:500-536. [PMID: 27598238 DOI: 10.1016/j.ejmech.2016.08.039] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 07/21/2016] [Accepted: 08/17/2016] [Indexed: 12/22/2022]
Abstract
The practice of polypharmacology is not a new concept but the approaches which are being adopted for administering the two or more drugs together are varied from time to time. Taking two or more drugs simultaneously, co-formulation of two or more active agents in a single tablet and development of hybrid molecular entities capable to modulate multiple targets are the three popular approaches for multidrug therapy. The simultaneous use of more than one drug for the chemotherapy of a single disease demands a lot of patient compliance. Hence the present form of polypharmacology is gaining popularity in the form of hybrid molecules (multiple ligand approach). From the last 1-2 decades, the synthesis of hybrid molecules by the combination of different biologically relevant moieties has been under constant escalation along with their evaluation as diverse range of pharmacological agents and as potent drugs. This review is focused on the biological potential of hybrid molecules with particular mention of those exhibiting anti-fungal, anti-tuberculosis, anti-malarial, anti-inflammatory and anti-cancer activities. A comparison of the drug potency of the hybrid molecules with their individual counterparts is discussed for quantifying the significance of the concept of molecular hybridisation.
Collapse
Affiliation(s)
- Shaveta
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sahil Mishra
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India
| | - Palwinder Singh
- UGC Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
26
|
Singh K, Kaur T. Pyrimidine-based antimalarials: design strategies and antiplasmodial effects. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00084c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The versatility in the design strategies of pyrimidine scaffold offer considerable opportunity for developing antimalarials capable of hitting different biological targets.
Collapse
Affiliation(s)
- Kamaljit Singh
- Department of Chemistry
- Centre for Advanced Studies-II
- Guru Nanak Dev University
- Amritsar-143005
- India
| | - Tavleen Kaur
- Department of Nephrology
- Guru Nanak Dev Hospital
- Amritsar
- India
| |
Collapse
|
27
|
Kondaparla S, Soni A, Manhas A, Srivastava K, Puri SK, Katti SB. Synthesis and antimalarial activity of new 4-aminoquinolines active against drug resistant strains. RSC Adv 2016. [DOI: 10.1039/c6ra14016e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the present study we have synthesized a new class of 4-aminoquinoline derivatives and bioevaluated them for antimalarial activity against theP. falciparum in vitro(3D7 & K1) andP. yoelii in vivo(N-67 strain).
Collapse
Affiliation(s)
- Srinivasarao Kondaparla
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Awakash Soni
- Parasitology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Ashan Manhas
- Parasitology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Kumkum Srivastava
- Parasitology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Sunil K. Puri
- Parasitology Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - S. B. Katti
- Medicinal & Process Chemistry Division
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| |
Collapse
|
28
|
Xu CC, Deng T, Fan ML, Lv WB, Liu JH, Yu BY. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives. Eur J Med Chem 2016; 107:192-203. [DOI: 10.1016/j.ejmech.2015.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/14/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
|
29
|
Pinheiro LCS, Boechat N, Ferreira MDLG, Júnior CCS, Jesus AML, Leite MMM, Souza NB, Krettli AU. Anti-Plasmodium falciparum activity of quinoline-sulfonamide hybrids. Bioorg Med Chem 2015; 23:5979-84. [PMID: 26190461 DOI: 10.1016/j.bmc.2015.06.056] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/12/2015] [Accepted: 06/20/2015] [Indexed: 01/30/2023]
Abstract
Fifteen quinoline-sulfonamide hybrids, with a 7-chloroquinoline moiety connected by a linker group to arylsulfonamide moieties with different substituents in the 4-position were synthesized and assayed against Plasmodium falciparum. The compounds displayed high schizonticidal blood activity in vitro, with IC50 values ranging from 0.05 to 1.63 μM, in the anti-HPR2 assay against clone W2-chloroquine-resistant; ten of them showed an IC50 (ranging from 0.05 to 0.40 μM) lower than that of chloroquine and sulfadoxine. Among them, two compounds inhibited Plasmodium berghei parasitemia by 47% and 49% on day 5 after mice inoculation. The most active, in vivo, hybrid 13 is considered to be a new prototype for the development of an antimalarial drug against chloroquine-resistant parasites.
Collapse
Affiliation(s)
- Luiz C S Pinheiro
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Núbia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Maria de Lourdes G Ferreira
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Carlos C S Júnior
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil; Programa de Pós Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antônio M L Jesus
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Milene M M Leite
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Nicolli B Souza
- Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil
| | - Antoniana U Krettli
- Centro de Pesquisas René Rachou, CPqRR-FIOCRUZ, Belo Horizonte, MG 30190-002, Brazil; Programa de Pós Graduação em Medicina Molecular, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
30
|
Chopra R, de Kock C, Smith P, Chibale K, Singh K. Ferrocene-pyrimidine conjugates: Synthesis, electrochemistry, physicochemical properties and antiplasmodial activities. Eur J Med Chem 2015; 100:1-9. [DOI: 10.1016/j.ejmech.2015.05.043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 11/15/2022]
|
31
|
Kaur H, Machado M, de Kock C, Smith P, Chibale K, Prudêncio M, Singh K. Primaquine-pyrimidine hybrids: synthesis and dual-stage antiplasmodial activity. Eur J Med Chem 2015; 101:266-73. [PMID: 26142491 DOI: 10.1016/j.ejmech.2015.06.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
A series of novel pyrimidine-primaquine hybrids were synthesized and their effectiveness against the blood and liver stages of malaria parasites was evaluated. The hybrids displayed enhanced liver stage in vitro activity against P. berghei liver stage infection.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Marta Machado
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Peter Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kelly Chibale
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 701, South Africa
| | - Miguel Prudêncio
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Kamaljit Singh
- Department of Chemistry, UGC-Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
32
|
Ulahannan RT, Panicker CY, Varghese HT, Musiol R, Jampilek J, Van Alsenoy C, War JA, Al-Saadi AA. Vibrational spectroscopic and molecular docking study of (2E)-N-(4-chloro-2-oxo-1,2-dihydroquinolin-3-yl)-3-phenylprop-2-enamide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 151:335-349. [PMID: 26143326 DOI: 10.1016/j.saa.2015.06.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 06/20/2015] [Accepted: 06/22/2015] [Indexed: 06/04/2023]
Abstract
FT-IR and FT-Raman spectra of (2E)-N-(4-chloro-2-oxo-1,2-dihydroquinolin-3-yl)-3-phenylprop-2-enamide were recorded and analyzed experimentally and theoretically. The synthesis, (1)H NMR and PES scan results are also discussed. Nonlinear optical behavior of the examined molecule was investigated by the determination of first hyperpolarizability. The calculated HOMO and LUMO energies show the chemical activity of the molecule. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. From the MEP it is evident that the negative charge covers the carbonyl group and the positive region is over the NH group. The calculated geometrical parameters (SDD) are in agreement with that of similar derivatives. Molecular docking simulations against targets from Mycobacterium tuberculosis are reported and the results suggest that the compound might exhibit inhibitory activity against PknB.
Collapse
Affiliation(s)
- Rajeev T Ulahannan
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India
| | - C Yohannan Panicker
- Department of Physics, TKM College of Arts and Science, Kollam, Kerala, India.
| | | | - Robert Musiol
- Institute of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 61242 Brno, Czech Republic
| | - Christian Van Alsenoy
- University of Antwerp, Chemistry Department, Universiteitsplein 1, B2610 Antwerp, Belgium
| | - Javeed Ahmad War
- Department of Chemistry, Dr. H.S.Gour Central University, Sagar, M.P. 470003, India
| | - Abdulaziz A Al-Saadi
- Department of Chemistry, King Fahd University for Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
33
|
Kaur H, Balzarini J, de Kock C, Smith PJ, Chibale K, Singh K. Synthesis, antiplasmodial activity and mechanistic studies of pyrimidine-5-carbonitrile and quinoline hybrids. Eur J Med Chem 2015; 101:52-62. [PMID: 26114811 DOI: 10.1016/j.ejmech.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 12/26/2022]
Abstract
A series of hybrids comprising of 5-cyanopyrimidine and quinoline moiety were synthesized and tested for in vitro antiplasmodial activity against NF54 and Dd2 strains of Plasmodium falciparum. Hybrid bearing m-nitrophenyl substituent at C-4 of pyrimidine displayed the highest antiplasmodial activity [IC50 = 56 nM] against the CQ(R) (Dd2) strain, which is four-fold greater than CQ.
Collapse
Affiliation(s)
- Hardeep Kaur
- Department of Chemistry, UGC-Centre of Advance Study-II, Guru Nanak Dev University, Amritsar 143005, India
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, 10 Minderbroedersstraat, B-3000 Leuven, Belgium
| | - Carmen de Kock
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Peter J Smith
- Division of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kelly Chibale
- Department of Chemistry, South African Medical Research Council Drug Discovery and Development Research Unit, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Kamaljit Singh
- Department of Chemistry, UGC-Centre of Advance Study-II, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
34
|
Jones RA, Panda SS, Hall CD. Quinine conjugates and quinine analogues as potential antimalarial agents. Eur J Med Chem 2015; 97:335-55. [PMID: 25683799 DOI: 10.1016/j.ejmech.2015.02.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/08/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
Malaria is a tropical disease, prevalent in Southeast Asia and Africa, resulting in over half a million deaths annually; efforts to develop new antimalarial agents are therefore particularly important. Quinine continues to play a role in the fight against malaria, but quinoline derivatives are more widely used. Drugs based on the quinoline scaffold include chloroquine and primaquine, which are able to act against the blood and liver stages of the parasite's life cycle. The purpose of this review is to discuss reported biologically active compounds based on either the quinine or quinoline scaffold that may have enhanced antimalarial activity. The review emphasises hybrid molecules, and covers advances made in the last five years. The review is divided into three sections: modifications to the quinine scaffold, modifications to aminoquinolines and finally metal-containing antimalarial compounds.
Collapse
Affiliation(s)
- Rachel A Jones
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA.
| | - Siva S Panda
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| | - C Dennis Hall
- Center for Heterocyclic Compounds, University of Florida, Department of Chemistry, Gainesville, FL 32611-7200, USA
| |
Collapse
|
35
|
Mildly basic ionic liquid catalyzed pseudo four component synthesis of 7,10-diaryl-7H-benzo[7,8]chromeno[2,3-d]pyrimidin-8-amine derivatives under solvent-free conditions. RSC Adv 2014. [DOI: 10.1039/c4ra11141a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
36
|
Teixeira C, Vale N, Pérez B, Gomes A, Gomes JRB, Gomes P. "Recycling" classical drugs for malaria. Chem Rev 2014; 114:11164-220. [PMID: 25329927 DOI: 10.1021/cr500123g] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cátia Teixeira
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal.,CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Nuno Vale
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Bianca Pérez
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - Ana Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| | - José R B Gomes
- CICECO, Departamento de Química, Universidade de Aveiro , P-3810-193 Aveiro, Portugal
| | - Paula Gomes
- Centro de Investigação em Química da Universidade do Porto, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , P-4169-007 Porto, Portugal
| |
Collapse
|
37
|
Marella A, Akhter M, Shaquiquzzaman M, Tanwar O, Verma G, Alam MM. Synthesis, 3D-QSAR and docking studies of pyrimidine nitrile-pyrazoline: a novel class of hybrid antimalarial agents. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1188-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Synthesis and biological evaluation of some novel pyrido[1,2-a]pyrimidin-4-ones as antimalarial agents. Eur J Med Chem 2014; 79:422-35. [PMID: 24763263 DOI: 10.1016/j.ejmech.2014.04.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/05/2014] [Accepted: 04/08/2014] [Indexed: 11/20/2022]
Abstract
Novel pyrido[1,2-a]pyrimidin-4-ones have been synthesized and evaluated for their antimalarial activity by SYBR Green I assay against erythrocytic stages of chloroquine (CQ) sensitive Pf 3D7 strain. The antimalarial screening of 42 different compounds revealed that 3-Fluorobenzyl(4-oxo-4H-pyrido [1,2-a]pyrimidin-3-yl)carbamate (21, IC50 value 33 μM) and 4-Oxo-N-[4-(trifluoromethyl)benzyl]-4H-pyrido[1,2-a]pyrimidine-3-carboxamide (37, IC50 value 37 μM) showed moderate antimalarial activity. Cytotoxicity study was performed against mammalian cell line (Huh-7) by using the MTT assay for the moderately active compounds. Structural activity relationship (SAR) studies displayed that B-ring unsubstituted pyrido[1,2-a]pyrimidine scaffold is responsible for the antimalarial activities of the evaluated derivatives. This SAR based antimalarial screening supported that pyrido[1,2-a]pyrimidin-4-one can be considered as a lead heterocyclic structure for further development of more potent derivatives for antimalarial activity.
Collapse
|
39
|
Mishra A, Batchu H, Srivastava K, Singh P, Shukla PK, Batra S. Synthesis and evaluation of new diaryl ether and quinoline hybrids as potential antiplasmodial and antimicrobial agents. Bioorg Med Chem Lett 2014; 24:1719-23. [DOI: 10.1016/j.bmcl.2014.02.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/11/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
|
40
|
Ghorab MM, El-Gazzar MG, Alsaid MS. Synthesis and anti-breast cancer evaluation of novel N-(guanidinyl)benzenesulfonamides. Int J Mol Sci 2014; 15:5582-95. [PMID: 24694543 PMCID: PMC4013583 DOI: 10.3390/ijms15045582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 11/18/2022] Open
Abstract
A series of 4-(substituted)-N-(guanidinyl)benzenesulfonamides bearing biologically active pyrazole, pyrimidine and pyridine moieties were prepared and evaluated for their anticancer activity against human tumor breast cell line (MCF7). These sulfonamides showed promising activity with IC50 values ranging from 49.5 to 70.2 μM. The structure-activity relationship of the synthesized compounds was studied. Interestingly, it was found that the most potent compounds in this study were the corresponding 2-cyanoacrylate 3, 3-oxobutanoate 4, pyrazole 6, pyridine 9 and pyrazole 13. Compounds 7 and 8 are nearly as active as Doxorubicin as reference drug with (IC50 values=70.2, 68.1 μM), while compounds 5, 10 and 11 exhibited a moderate activity.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo 11371, Egypt.
| | - Mansour S Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
41
|
Kumar D, Khan SI, Tekwani BL, Ponnan P, Rawat DS. Synthesis, antimalarial activity, heme binding and docking studies of 4-aminoquinoline–pyrimidine based molecular hybrids. RSC Adv 2014. [DOI: 10.1039/c4ra09768h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A series of novel 4-aminoquinoline–pyrimidine hybrids was synthesized and evaluated for their antimalarial activity.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Shabana I. Khan
- National Center for Natural Products Research
- University of Mississippi
- , USA
- Department of Biomolecular Sciences
- University of Mississippi
| | - Babu L. Tekwani
- National Center for Natural Products Research
- University of Mississippi
- , USA
- Department of Biomolecular Sciences
- University of Mississippi
| | - Prija Ponnan
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| | - Diwan S. Rawat
- Department of Chemistry
- University of Delhi
- Delhi-110007, India
| |
Collapse
|
42
|
Singh K, Kaur H, Smith P, de Kock C, Chibale K, Balzarini J. Quinoline–Pyrimidine Hybrids: Synthesis, Antiplasmodial Activity, SAR, and Mode of Action Studies. J Med Chem 2013; 57:435-48. [DOI: 10.1021/jm4014778] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kamaljit Singh
- Department
of Chemistry, UGC Centre of Advance Study-I, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Hardeep Kaur
- Department
of Chemistry, UGC Centre of Advance Study-I, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Peter Smith
- Division
of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Carmen de Kock
- Division
of Pharmacology, Department of Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Kelly Chibale
- Department
of Chemistry, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 701, South Africa
| | - Jan Balzarini
- Rega
Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| |
Collapse
|
43
|
Attia MI, El-Emam AA, Al-Turkistani AA, Kansoh AL, El-Brollosy NR. Synthesis of novel 2-(substituted amino)alkylthiopyrimidin-4(3H)-ones as potential antimicrobial agents. Molecules 2013; 19:279-90. [PMID: 24378967 PMCID: PMC6271362 DOI: 10.3390/molecules19010279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/16/2022] Open
Abstract
5-Alkyl-6-(substituted benzyl)-2-thiouracils 3a,c were reacted with (2-chloroethyl) diethylamine hydrochloride to afford the corresponding 2-(2-diethylamino)ethylthiopyrimidin- 4(3H)-ones 4a,b. Reaction of 3a-c with N-(2-chloroethyl)pyrrolidine hydrochloride and/or N-(2-chloroethyl)piperidine hydrochloride gave the corresponding 2-[2-(pyrrolidin-1-yl)ethyl]-thiopyrimidin-4(3H)-ones 5a-c and 2-[2-(piperidin-1-yl)ethyl]thiopyrimidin-4(3H)-ones 6a,b, respectively. Treatment of 3a-d with N-(2-chloroethyl)morpholine hydrochloride under the same reaction conditions formed the corresponding 2-[2-(morpholin-4-yl)ethyl]thiopyrimidines 6c-f. On the other hand, 3a,b were reacted with N-(2-bromoethyl)phthalimide and/or N-(3-bromopropyl)phthalimide to furnish the corresponding 2-[2-(N-phthalimido)ethyl]-pyrimidines 7a,b and 2-[3-(N-phthalimido)-propyl]pyrimidines 7c,d, respectively. Compounds 3a-d, 4a,b, 5a-c, 6a-f and 7a-d were screened against Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Bacillus subtilis NRRL 4219 and Bacillus cereus), yeast-like pathogenic fungus (Candida albicans ATCC 10231) and a fungus (Aspergillusniger NRRL 599). The best antibacterial activity was displayed by compounds 3a, 3b, 4a, 5a, 5b, 6d, 6f, 7b and 7d, whereas compounds 4b, 5b, 5c, 6a, 6b and 6f exhibited the best antifungal activity.
Collapse
Affiliation(s)
- Mohamed I Attia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali A El-Emam
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulghafoor A Al-Turkistani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Amany L Kansoh
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Nasser R El-Brollosy
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P. O. Box 2457, Riyadh 11451, Saudi Arabia.
| |
Collapse
|